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21 IntrodutionThere is a long history of the use of adjoint equations in optimal ontrol theory [30℄.In uid dynamis, the �rst use of adjoint equations for design was by Pironneau [37℄,but within the �eld of aeronautial omputational uid dynamis, the use of adjointequations has been pioneered by Jameson, who used his knowledge of optimal ontroltheory to develop what he alls optimal design methods. The term `optimal' refers tothe fat that one is trying to �nd the geometry whih minimises some objetive funtionsubjet to a set of onstraints. In a sequene of papers by himself [24, 25, 26℄ and withReuther and other o-authors [39, 42, 28℄ Jameson developed the adjoint approah forpotential ow, the Euler equations and the Navier-Stokes equations. The omplexity ofthe appliations within these papers also progressed from 2D airfoil optimisation, to 3Dwing design and �nally to omplete airraft on�gurations [27, 40, 41℄.A number of other researh groups have developed adjoint CFD odes for design op-timisation [6, 23, 44, 4, 22, 29, 3, 8℄. An overview of reent developments in adjoint designmethods is provided elsewhere [33℄. Of partiular interest is the work of Elliott [11, 9℄and Anderson [34, 2℄ on unstrutured grids using the `disrete' adjoint approah, andthe work of Mohammadi [31, 32℄ in using automati di�erentiation software to reatethe adjoint ode from an original CFD ode; both of these approahes will be disussedfurther in this paper.Considering the importane of design to aeronautial engineering, and indeed to allof engineering, it is perhaps surprising that the development of adjoint CFD odes hasnot been more rapid in the deade sine Jameson's �rst papers appeared. In part, thismay be due to some of the limitations of the adjoint approah, whih will be disussedlater in this paper. However, it seems likely that part of the reason is its omplexity,both in the mathematial formulation of the adjoint p.d.e. and boundary onditions inthe `ontinuous' approah favoured by Jameson, and in the reation of the adjoint CFDode in the `disrete' approah.In this paper we aim to address some of these diÆulties. The adjoint theory is pre-sented �rstly in the ontext of linear algebra, in whih it is most easily understood. Thisis the basis for the disrete adjoint CFD approah in whih one works with the algebraiequations that ome from the disretisation of the original uid dynami equations.The paper then treats the extension to p.d.e.'s as used in Jameson's ontinuousadjoint approah in whih the adjoint p.d.e. is formulated and then disretised. Theemphasis in the present review is on the onstrution of the adjoint p.d.e. and itsboundary onditions, the physial signi�ane of the adjoint solution, and the mannerin whih geometri perturbations are introdued.The paper onludes with a disussion of the pros and ons of the two approahes,the disrete and the ontinuous, and examples of the use of adjoint methods to optimisebusiness jet designs.



32 Disrete adjoint approah2.1 Linearised objetive funtionThe goal of aerodynami design optimisation is the minimisation (or maximisation) ofan objetive funtion that is a nonlinear funtion of a set of disrete ow variables. Forexample, the lift may be expressed as L(U) where U is the set of all ow variables atdisrete grid points arising from an approximate solution of the Euler equations, andL is a salar funtion whih approximates the appropriate weighted integral of pressureover the surfae of an airraft.In design optimisation, the question of interest is: what is the perturbation in L dueto a perturbation in the geometry, and hene the ow �eld? If u is the perturbation inthe ow �eld, then the linearised perturbation in the lift isgTu � �L�U u:Therefore, the goal is to evaluate the quantity gTu where u satis�es the appropriatelinearised ow equations.2.2 Duality and adjoint variablesSuppose one wishes to evaluate the quantity gTu given that u satis�es the linear systemof equations Au = f;for some given matrix A and vetor f . The dual form is to evaluate vTf where theadjoint solution v satis�es the linear system of equationsATv = g:Note the use of the transposed matrix AT , and the interhange in the roles of f and g.The equivalene of the two forms is easily proved as follows,vTf = vTAu = (AT v)Tu = gTu:Given a single f and a single g, nothing would be gained (or lost) by using the dualform. Exatly the same value for the linear objetive funtion would be obtained withexatly the same omputational e�ort. However, suppose now that we want the value ofthe objetive funtion for p di�erent values of f , and m di�erent value of g. The hoiewould be to do either p di�erent primal alulations or m di�erent dual alulations.When the dimension of the system is very large, the ost of the vetor dot produts isnegligible ompared to solving the linear systems of equations, and therefore the dual(or adjoint) approah is muh heaper when m�p.



42.3 Physial interpretationIt is possible to work with adjoint variables and regard them as a purely mathematialonstrut, but they do have physial signi�ane.One way of looking at them is that they give the inuene of an arbitrary soureterm f on the funtional of interest,Au = f �! vTfsoure term funtional perturbationAnother is that they are the value of the objetive funtion orresponding to theappropriate Green's funtion. To see this, we de�ne f (i) to be a vetor whose elementsare zero apart from the ith whih is unity. The orresponding solution u(i) given byAu(i) = f (i)is the disrete equivalent of a Green's funtion andvTf (i) = vi = gTu(i):Thus, the ith omponent of the adjoint variables is equal to the value of the objetivefuntion when the solution is equal to the ith Green's funtion.2.4 Duality formulation for adjoint designGiven a set of design variables, �, whih ontrol the geometry of the airfoil, wing orairraft being designed, and a set of ow variables at disrete grid points, U , the aimis to minimise a salar objetive funtion J(U; �). This minimisation is subjet to theonstraint that the disrete ow equations and boundary onditions are all satis�ed.These may be expressed olletively asN(U; �) � N(U;X(�)) = 0;where X is the vetor of grid point oordinates whih depends on �. Using tehniquessuh as the `method of springs' [38℄ or variants on trans�nite interpolation [45, 42℄, thegrid deforms smoothly as hanges in the design variables modify the surfae geometry.Hene, �X=�� is usually non-zero at both interior and surfae grid points.For a single design variable, we an linearise about a base solution U0 to getdJd� = �J�U dUd� + �J��;subjet to the onstraint that the ow sensitivity dUd� satis�es the linearised ow equa-tions �N�U dUd� + �N�� = 0:



5By de�ning u = dUd� ; A = �N�U ;gT = �J�U ; f = ��N��we an onvert this into the standard formdJd� = gTu+ �J��;subjet to Au = f:The diret sensitivity of the objetive funtion to perturbations in the design variables iseasy to evaluate. The term gTu � vTf an be omputed either by the diret approah,solving Au = f , or by the adjoint approah, solving ATv = g. For a single design variablethere would be no bene�t in using the adjoint approah, but for multiple design variables,eah has a di�erent f , but the same g, so the adjoint approah is omputationally muhmore eÆient.2.5 Alternative Lagrange viewpointIn the presentation above, we have used the terminology of duality, oming from themathematis of vetor spaes, linear algebra and linear programming. An alternative de-sription arises using the terminology of Lagrange multipliers assoiated with onstrainedminimisation. In this framework, the adjoint variables are Lagrange multipliers, usuallywritten as �, and are introdued into an augmented objetive funtionI(U; �) = J(U; �)� �TN(U; �);to enfore the satisfation of the disrete ow equations. Considering general perturba-tions dU and d� givesdI = � �J�U � �T �N�U � dU + ��J�� � �T �N�� � d�:If �T is hosen to satisfy the adjoint equation�J�U � �T �N�U = 0 =) ��N�U �T� = � �J�U �T ;then dI = ��J�� � �T �N�� � d�;and thus dId� is obtained.



6 The �nal equations are exatly the same as those derived by onsidering duality; itis really only the desription of the mathematis whih di�ers. In aeronautial CFD,most people follow Jameson in adopting the Lagrange multiplier viewpoint for designoptimisation beause of its onnetion to onstrained optimisation and optimal ontroltheory. On the other hand, we prefer the duality viewpoint beause it seems morenatural for other uses of adjoint variables, suh as error analysis [35, 17, 46, 36℄, whihdo not involve onstrained optimisation.2.6 Nonlinear optimisationReturning to the design problem, the aim is to �nd the set of design variables � whihminimise the nonlinear objetive funtion J(U; �), where U is an impliit funtion of �through the ow equations N(U; �) = 0:These nonlinear ow equations and the orresponding linear adjoint equations are bothlarge systems whih are usually solved by an iterative proedure.There are two prinipal shools of thought as to the best method for marhing thedesign variables to a loal minimum. In the �rst approah, a simple steepest desentalgorithm is employed, �� = ��dJd�;where � ontrols the step size. The advantage of this method is that partially-onvergedow and adjoint solutions may be used to evaluate the gradients as long as these gradientsare properly smoothed (preonditioned) prior to updating � [26℄. As a result, the ostper design yle is relatively low.In the seond approah, approximations to the Hessian matrix of seond derivativesd2Jd�id�j ;are used to speed onvergene via a quasi-Newton proedure suh as BFGS [18℄. Thismethod therefore requires more aurate ow and adjoint solutions, whih must generallybe onverged fully during eah design iteration. As a result, the ost of eah design yleis signi�antly inreased.The relative eÆieny and robustness of the partially and fully-onverged approahesis still subjet to debate. We have been unable to �nd any referene whih presents alear quantitative omparison of the two approahes, but the anedotal evidene is thatthe partially-onverged approah yields the lowest total omputational time.2.7 Limitations of the adjoint approah2.7.1 ConstraintsEngineering design appliations often have a set of onstraints whih must be satis�ed, inaddition to the disrete ow equations. Some of these may be geometri, suh as airfoil



7design in whih the length of the hord and the area of the airfoil are �xed. Others maydepend on the ow variables, suh as wing design in whih one wishes to minimise thedrag but keep the lift �xed.Geometri onstraints are easily inorporated by modifying the searh diretion forthe design variables to ensure that the geometri onstraints are satis�ed. It is theonstraints whih depend on the ow whih pose a problem. If the onstraint is takento be `hard' and so must be satis�ed at all stages of the optimisation proedure, then weneed to know both the value of the onstraint funtion, whih we shall label J2(U(�); �),and its linear sensitivity to the design variables. The latter requires a seond adjointalulation; the addition of more ow-based hard onstraints would require even moreadjoint alulations. This type of onstraint therefore undermines the omputationalost bene�ts of the adjoint approah. If the number of hard onstraints is almost aslarge as the number of design variables, then the bene�t is entirely lost.To avoid this, the alternative is to use `soft' onstraints via the addition of penaltyterms in the objetive funtion, e.g. J(U) + � (J2(U))2. The value of � ontrols theextent to whih the optimal solution violates the onstraint J2(U; �) = 0. The largerthe value of �, the smaller the violation, but it also worsens the onditioning of theoptimisation problem and hene inreases the number of steps to reah the optimum.2.7.2 Least-squares problemsIn the diret linear perturbation approah one evaluates eah of the linear ow sensi-tivities dU=d�i, one by one, by solving the linearised ow equations orresponding toa unit perturbation in a single design variable. From these one an then alulate thelinear sensitivity of the objetive funtion to eah of the design variables, but the totalost is proportional to the number of the design variables, making the adjoint approahmuh heaper.However, if the objetive funtion is of a least-squares type,J(U) = 12Xn (pn(U)� Pn)2 ;then dJd�i =Xn �p�U dUd�i (pn(U)� Pn) ;and so d2Jd�id�j �Xn � �p�U dUd�i�� �p�U dUd�j� ;assuming that pn(U)�Pn is small. Thus, the diret linear perturbation approah alsogives the approximate Hessian matrix, leading to very rapid onvergene for the opti-misation iteration. By ontrast, the adjoint approah provides no information on theHessian, so optimisation methods suh as BFGS whih build up an approximation tothe Hessian take more steps to onverge than the diret linear perturbation approahfor least-squares appliations. It is important to keep in mind, however, that for large



8numbers of design variables, the adjoint approah may still be more eÆient, sine theost of eah step is signi�antly higher when the sensitivities are evaluated diretly.2.7.3 Limitations of gradient-based optimisationThe adjoint approah is only helpful in the ontext of gradient-based optimisation andsuh optimisation has its own limitations. Firstly, it is only appropriate when the designvariables are ontinuous. For design variables whih an take only integer values (e.g. thenumber of engines on an airraft) stohasti proedures suh as simulated annealingand geneti algorithms are more suitable. Seondly, if the objetive funtion ontainsmultiple minima, then the gradient approah will generally onverge to the nearest loalminimum without searhing for lower minima elsewhere in the design spae. If theobjetive funtion is known to have multiple loal minima, and possibly disontinuities,then again a stohasti searh method may be more appropriate.2.8 Implementation issuesIn onept, the disrete adjoint approah is relatively straightforward. The linear algebraderivation is easy to grasp, and there is the attrative feature that the gradient of theobjetive funtion with respet to the design variables is exatly the same as would beobtained by the diret linear perturbation method.Nonetheless, the pratial implementation of this approah an be hallenging. Thenonlinear ow solver often solves the steady-state equations, R(U) = 0; by a time-marhing iterative solution of dUdt +R(U) = 0:Linearising the steady-state equations gives Lu = f; whereL � �R�U ; u � �U�� ; f � ��R�� :Following a diret approah, the linear perturbation equations ould also be solved bymarhing to steady-state the equationsdudt + Lu = f:Similarly, the adjoint equations LTv=g, an be solved by time-marhing1 the equa-tion dvdt + LT v = g:The fat that L and LT have the same eigenvalues means that the asymptoti onver-gene of the time-marhing iteration in both ases will be idential, and will be equal tothe asymptoti onvergene rate of the nonlinear ow solver.1The true adjoint of the unsteady equation dudt +Lu=f is �dvdt +LTv=g but this is only well-posedwhen solved bakwards in time. Swithing from t to �t gives the forward time-marhing equation givenabove.



9Let us turn now to the onstrution of the produt LT v. When approximating theEuler equations on an unstrutured grid, the residual vetor R(U) an be expressed asa sum of ontributions from eah edge of the grid, with eah edge ontributing only tothe residuals at the nodes at either end of the edge. Symbolially, we an write this asR �Xe Re(U):Linearisation gives Lu =Xe Leu; Le � �Re�Uwhere Le is a sparse matrix whose only non-zero elements have row and olumn numbersboth mathing one or other of the two nodes at either end of the edge. Therefore,LT v =Xe LTe v:At the programming level, this produt involves exatly the same loop over all of theedges as for the original nonlinear ow disretisation. In priniple, one ould omputethe non-zero elements of the matrix Le and then form the produt LTe v. However, itis more eÆient to alulate the produt diretly without expliitly onstruting thematrix. A ommon objetion to the disrete approah is the memory overhead that isinurred if the linearised matrix is pre-omputed and stored to redue the total numberof operations. By forming the produt diretly, this memory overhead an be avoidedwhile maintaining an operation ount that is not substantially greater than that of theoriginal nonlinear solver.When approximating the Navier-Stokes equations on an unstrutured grid, the resid-ual vetor an sometimes be expressed symbolially asR �Xe Re(U;DU);where the vetor DU represents the numerial approximation to the ow solution gra-dient at the grid nodes at either end of the edge. When linearised, this beomesLu � Au+ V D u;in whih the matries A; V;D an eah be expressed as a sum of extremely sparse elemen-tal matries as desribed above for the Euler equations. The disrete adjoint operatorfor the Navier-Stokes equations is thenLTv � ATv +DTV Tv;indiating that the adjoint gradient subroutine responsible for DT must be applied afterthe visous subroutine responsible for V T . At �rst this seems ounter-intuitive, but themathematis is quite lear.



10 Working out the mathematial expressions for LTe v and determining the best methodfor implementing the produt is relatively easy for the invisid uxes of the Euler equa-tions. This proess is far more arduous for the visous uxes in the Navier-Stokes equa-tions and for harateristi smoothing uxes for the Euler equations. An alternative isto use AD (Automati Di�erentiation) software suh as Odyss�ee [13, 12℄ or ADIFOR andADJIFOR [5, 7℄ to generate the Fortran ode to ompute the produt LTe v. In forwardmode, AD software takes the original ode whih omputed Re(U) and then uses thebasi rules of linearisation to onstrut the ode to evaluate Leu. In reverse mode, itprodues the ode to alulate LTe v; it may seem that this is a muh harder task butin fat it is not. Furthermore, there are theoretial results whih guarantee that thenumber of oating point operations is no more than three times that of the originalnonlinear ode [20℄.A �nal point onerns the evaluation of the term f , whih is the soure term for thediret perturbation equations and is in the objetive funtion in the adjoint approah.Again, forward mode AD software ould be used, but a very muh simpler alternativeis to use the `omplex variable method' [43℄ used by Anderson and o-workers [1℄. Theessene of the idea is that lim�!0 I fR(U; �+i�)g� = �R�� :In this equation, R(U; �) has been taken to be a omplex analyti funtion, and thenotation If: : :g denotes the imaginary part of a omplex quantity. The equation itselfis an immediate onsequene of a Taylor series expansion. The key is that this anbe evaluated numerially using �=10�20. Unlike the usual �nite di�erene approxima-tion of a linear sensitivity, there is no subtration of two quantities whih are almostequal; therefore there is no unaeptable loss of auray due to mahine rounding er-ror. Applying this tehnique to a FORTRAN ode requires little more than replaing allREAL*8 delarations by COMPLEX*16, and de�ning appropriate omplex analyti versionsof ertain intrinsi funtions.We have found this omplex variable method to be extremely e�etive. We have alsoused it to verify the orretness of our hand-oded adjoint alulations by heking theidentity uT (LTv) = vT (Lu), with the produt LT v being omputed using the adjointode, and the produt Lu = lim�!0 I fR(U+i�u; �)g� ;being omputed using the omplex variable method.3 Continuous adjoint approah3.1 Duality and the adjoint p.d.e.Duality in the ase of p.d.e.'s is a natural extension of duality in the linear algebraformulation. Using the notation (V; U) to denote an integral inner produt over some



11domain 
, (V; U) � Z
 V TU dx;suppose that one wants to evaluate the funtional (g; u), where u is the solution of thep.d.e. Lu = f;on the domain 
 subjet to homogeneous boundary onditions on the boundary �
.Using the adjoint formulation, the idential funtional takes the form (v; f) where vis the solution of the adjoint p.d.e. L�v = g;plus appropriate homogeneous adjoint b..'s. The adjoint operator L� is de�ned by theidentity (V; LU) = (L�V; U);whih must hold for all funtions V; U satisfying the respetive homogeneous boundaryonditions. Given the de�nitions, the proof of the equivalene of the two forms of theproblem is trivial (v; f) = (v; Lu) = (L�v; u) = (g; u):3.2 ExamplesTo illustrate the onstrution of the adjoint operator and boundary onditions, let usonsider the one-dimensional onvetion-di�usion equationLu � dudx � �d2udx2 ; 0 < x < 1;subjet to the homogeneous boundary onditions u(0) = u(1) = 0.Using integration by parts, for any twie-di�erentiable funtion v we have(v; Lu) = Z 10 v�dudx � �d2udx2� dx= Z 10 u��dvdx � �d2vdx2� dx+ �vu� �vdudx + �udvdx�10= Z 10 u��dvdx � �d2vdx2� dx+ ���vdudx�10 :For the integral term to equal the inner produt (g; u) in the adjoint identity, we needto de�ne the adjoint operator to beL�v = �dvdx � �d2vdx2 ;and to eliminate the boundary term the adjoint b..'s must bev(0) = v(1) = 0:



12 Table 1: Various operators and their adjointsoperator adjointdudx � �d2udx2 �dvdx � �d2vdx2r � (kru) r � (krv)�u�t � �2u�x2 ��v�t � �2v�x2�u�t + �u�x ��v�t � �v�xNote the reversal in sign of the �rst derivative in the adjoint operator; this implies areversal in the onvetion diretion.Table 1 lists a number of other di�erential operators and their adjoints. Note thehanges of sign whih our due to the integration by parts. This produes a reversal ofausality in time-varying problems so that, for example, the adjoint paraboli operatoris well-posed only if one starts with `initial data' at the �nal time and then integratesbakwards in time towards the initial time of the original problem.3.3 Physial interpretationThe physial signi�ane of adjoint variables an again be understood by onsideringGreen's funtions and their e�et on the inner produt of interest.The solution of the p.d.e. Lu = f isu(x) = Z
G(x; x0) f(x0) dx0;where G(x; x0) is the Green's funtion. Therefore,Z
 gT (x) u(x) dx = Z
Z
 gT (x)G(x; x0) f(x0) dx dx0= Z
 vT (x0) f(x0) dx0;where vT (x0) = Z
 gT (x)G(x; x0) dx:Thus, the adjoint variables at a partiular point orrespond to the funtional evaluatedusing the Green's funtion for the same point.



133.4 Boundary termsSo far, we have assumed that the original problem has homogeneous b..'s and theobjetive funtion onsists only of an inner produt over the whole domain and nota boundary integral. More generally, boundary integral terms in the primal objetivefuntion lead to inhomogeneous b..'s for the adjoint, while inhomogeneous b..'s for theprimal problem lead to boundary terms in the adjoint funtional [15℄.The general form of the adjoint identity is(V; LU)
 + (C�V;BU)�
 = (L�V; U)
 + (B�V; CU)�
for all funtions U; V , with the notation (:; :)�
 denoting an inner produt over theboundary. B and C are both boundary operators (possibly involving normal derivatives)given in the de�nition of the original problem. B� and C� are the orresponding adjointboundary operators whih an be found by integration by parts.Using this general adjoint identity, it follows immediately that(v; f)
 + (C�v; f2)�
 = (g; u)
 + (g2; Cu)�
when Lu = f in 
; and Bu = f2 on �
;L�v = g in 
; and B�v = g2 on �
:There are some restritions on what an be imposed as b..'s and objetive funtions.The analysis is ompliated (see [28℄ and [15℄ for details) but it reveals that on a solidsurfae, the boundary integral term in the objetive funtion must be a weighted integralof the linear perturbation in the pressure when using the Euler equations. Similarly, forthe Navier-Stokes equations it must be a weighted integral of the linear perturbation inthe normal and tangential fores on the surfae, and either the heat ux or the surfaetemperature (depending whether one is speifying the surfae temperature or adiabationditions, respetively).3.5 Geometri e�etsPerhaps the most ompliated part of the ontinuous approah to design is the mannerin whih design variable perturbations produe the soure term f for the linearisedp.d.e. and the inhomogeneous term f2 for the linearised b..'s.We will outline two approahes, both of whih use urvilinear oordinates (�; �) intwo dimensions. Writing the Euler equations in their usual vetor form as�F�x + �G�y = 0;when transformed to the urvilinear oordinates they beome��� �F �y�� �G�x��� + ��� ��F �y�� +G�x��� = 0:



14 In the approah used by Jameson, the urvilinear oordinates orrespond to gridlines of a strutured grid, with the airfoil surfae being de�ned as � = 0 [26℄. A smallperturbation ~� to a design parameter produes hanges suh asF �! F + �F�U dUd� ~��x�� �! �x�� + �2x���� ~�:Terms not depending on ~� all anel, and terms depending on ~�2 are negleted. Hene,we get the linearised equations,��� ��A�y�� �B�x��� u�+ ��� ���A�y�� +B�x��� u� =� ��� �F �2y���� �G �2x������ ��� ��F �2y���� +G �2x����� ;where A = �F�U ; B = �G�U ; u = dUd� :The boundary ondition on an invisid wall is that there is no ow normal to thesurfae �=0. This remains true as � hanges but one needs to onsider the linearisedperturbation to the unit normal, whih eventually leads to the inhomogeneous boundaryterm f2.For omplex geometries, it is often not possible to generate strutured grids in whihthe surfae orresponds to �= onst. Instead, one an generalise the above approah byde�ning x(�; �) = � + ~�X(�; �);y(�; �) = � + ~�Y (�; �);so that (x; y) � (�; �) when ~�=0, and X(�; �); Y (�; �) are smooth funtions mathingthe surfae deformation so that the surfae remains �xed in (�; �) oordinates as �hanges. This leads to the linearised equation��� (Au) + ��� (Bu) = � ��� �F �Y�� �G�X�� �� ��� ��F �Y�� +G�X�� � :This equation an then be approximated using an unstrutured grid in the (�; �) do-main, whih is the same as the (x; y) domain for the unperturbed geometry. Boundaryonditions are handled in the same way as in Jameson's treatment, taking aount ofthe perturbation to the unit normal as the surfae geometry hanges.3.6 Other issuesWith the ontinuous adjoint approah, after linearising the original ow equations andintegrating by parts to obtain the adjoint formulation of the problem, there is then total



15freedom as to how one disretises the adjoint p.d.e. Indeed, without making reourseto the disrete approah, where the adjoint implementation is �xed by the primal dis-retisation, there is even some ambiguity as to how one should implement the invisidadjoint uxes for the Euler equations. In priniple, the adjoint disretisation may bedeveloped without regard for the disretisation of the nonlinear ow problem. Of oursethe standard issues or auray, stability and onvergene remain ritial to the suessof the iterative solution proess.When onsidering shoked Euler ows, then in the analyti formulation, the shoksneed to be treated as disontinuities aross whih the Rankine-Hugoniot shok jumprelations are enfored [16℄. This treatment leads to the result that the adjoint variablesare ontinuous aross the shok and that an additional adjoint boundary ondition mustbe imposed along the length of the shok. Imposing suh a b.. would be ompliated, asit would require the automati identi�ation of the shok loation in the nonlinear owalulation. Quasi-1D results have demonstrated that the ontinuous implementationnaturally leads to satisfation of the adjoint boundary ondition at the shok [16℄. Inpratie, researhers using the ontinuous adjoint approah do not enfore this b.., andtheir results indiate no diÆulties as a onsequene.The observations about the limitations of the disrete adjoint approah apply equallyto the ontinuous adjoint approah. There is one additional point that needs to be maderegarding the optimisation proess. The ontinuous adjoint approah yields a disreteapproximation to the gradient of the analyti objetive funtion with respet to eah ofthe design variables. This will not be exatly equal to the gradient of the disrete ap-proximation to the objetive funtion. Therefore, there is a slight inonsisteny betweenthe disrete objetive funtion and the omputed gradient. As a result, the optimisationproess will fail to onverge further one the solution is near a loal minimum.4 Relative advantages of two approahesIn the previous two setions we have gone through, in some detail, the formulation ofthe disrete and ontinuous adjoint approahes urrently in use by di�erent researhers.The di�erene between the two approahes is shown shematially in Figure 1. In bothases one ends up with a set of disrete adjoint equations. In the fully-disrete approahone starts by disretising the nonlinear p.d.e.; these equations are then linearised andtransposed. In the the ontinuous adjoint approah, the disretisation is the �nal step,after �rst linearising and forming the adjoint problem. One ould even follow an inter-mediate path, linearising the original equations, disretising them and then taking thetranspose. In priniple, if eah of the steps is performed orretly, and all of the solutionsare suÆiently smooth (e.g. no shoks) then in the limit of in�nite grid resolution allthree approahes should be onsistent and onverge to the orret analyti value for thegradient of the objetive funtion.However, there are important oneptual di�erenes between the di�erent approahes,and for �nite resolution grids there will be di�erenes in the omputed results. Here weattempt to summarise what we see as being the advantages and disadvantages of the two
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Figure 1: Alternative approahes to forming disrete adjoint equationsapproahes. This assessment is based on our joint experiene in developing an adjointNavier-Stokes ode using the disrete approah, and the experiene of the seond authorin working with Jameson to develop an adjoint Navier-Stokes ode by the ontinuousapproah [28℄.The advantages of the fully disrete approah are:� The exat gradient of the disrete objetive funtion is obtained.This ensures that the optimisation proess an onverge fully. It also providesa onvenient hek on the orretness of the programming implementation; withthe ontinuous approah one doesn't know whether a slight disagreement is aonsequene of the inexat gradient or a possible programming error.� Creation of the adjoint program is oneptually straightforward.In the future this should enable the almost automati reation of adjoint programsusing AD software. This bene�t inludes the iterative solution proess sine thetransposed matrix has the same eigenvalues as the original linear matrix and sothe same iterative solution method is guaranteed to onverge.On the other hand, the advantages of the ontinuous approah are:� The physial signi�ane of adjoint variables and the role of adjoint b..'s is muhlearer.Only by onstruting the adjoint ow equations an one develop a good under-standing of the nature of adjoint solutions, suh as the ontinuity at shoks, thelogarithmi singularity at a soni point in quasi-1D ows but not in 2D or 3D (ingeneral) and the inverse square-root singularity along the stagnation streamlineupstream of an airfoil in 2D [15℄.� The adjoint program is simpler and requires less memory.



17Beause one is free to disretise the adjoint p.d.e. in any onsistent way, the ad-joint ode an be muh simpler. However, our experiene has been that even whenfollowing a ontinuous approah, it is advantageous to onsult the disrete for-mulation so as to hoose an appropriate disretisation for the ontinuous adjointequations. It is also generally the ase that ontinuous adjoint solvers require lessmemory than the fully-disrete odes, but this di�erene is not substantial if pre-omputation and storage of the linearised matrix is avoided when implementingthe disrete method.It remains an open question as to whih approah is better when there are nonlineardisontinuities suh as shoks. For quasi-1D Euler alulations, for whih we have de-rived the analyti solution of the adjoint equations [16℄, both approahes give numerialresults whih onverge to the analyti solution. For the disrete approah, this followsbeause the integrated pressure an be proved to be predited with seond order auray[14℄. The linearised disretisation should therefore yield perturbations to the integral ofpressure that are at least �rst-order aurate. The disrete adjoint formulation, whih isonstruted using this linearised operator, must therefore behave orretly to �rst orderat the shok. For the ontinuous approah, in the absene of expliit enforement of theorret adjoint b.. at the shok, the orret asymptoti behaviour an be explained asthe e�et of numerial smoothing, given that the orret analyti solution is the onlysmooth solution at the shok [16℄.In 2D and 3D there is no proof of seond order auray for quantities suh as lift anddrag, and there is a disontinuity in the gradient of the adjoint variables at the loationof the shok. Therefore it remains an open question as to whether either approah willgive a onsistent approximation to the gradient of the objetive funtion in the limitof in�nite grid resolution. However, pratial results for appliations with weak shokssuggest that any inonsisteny must be small.Although we have aimed to be objetive in our assessment of the relative advan-tages of the two approahes, it should be noted that we are advoates of the disreteapproah. An advoate of the ontinuous approah may plae a di�erent emphasis onthe above observations and hene reah a di�erent onlusion. Certainly, both meth-ods have performed well in pratie, and it remains to be seen whether either approahwill demonstrate ompelling advantages over the other in terms of design performane.Ultimately, the �nal hoie may always remain, to some extent, a matter of personaltaste.5 AppliationResults from a paper by Elliot and Peraire [10℄ show the use of a disrete adjoint imple-mentation for design optimisation on unstrutured grids. The main appliation onsid-ered is the wing optimisation of a business jet for whih the surfae grid of the baselineon�guration is shown in Figure 2.Simple algebrai funtions are used to de�ne six design perturbation modes for thewing surfae; are was taken to ensure ompatible perturbations to grid points on the
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Figure 2: Initial surfae grid for airraft wing design [10℄

Figure 3: Evolution of the wing geometry during design [10℄
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Figure 4: Evolution of the pressure distribution on the wing [10℄

Figure 5: Business jet on�guration [41℄
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DesignDesign Point 3Figure 6: Multipoint drag minimization at �xed lift. Pressure distributions at thez=0.475 span station for the three design points desribed in Table 2 [41℄.Table 2: Multipoint drag redution, normalised relative to original drag at entral designpoint [41℄. Mah CL Original C�D Design C�D0.81 0.35 1.00257 0.854130.82 0.30 1.00000 0.779150.83 0.25 1.08731 0.76836fuselage. A linearised version of the method of springs is used to reate the grid defor-mations in the interior. The implementation is based on the disrete adjoint approah,using BFGS optimisation, and both multigrid and parallel omputing to redue theexeution time.The objetive funtion is the mean-square deviation from a target pressure distribu-tion orresponding to a `lean wing' in the absene of the rear-mounted engine naelleand pylon. Two design iterations are taken, dereasing the objetive funtion by 75%.Figures 3 and 4 show the evolution of the wing geometry and pressure distributions,respetively.Another example of the adjoint approah to design is provided by the work of Reutherand o-authors [41℄, who perform a transoni multipoint wing design for a business jeton�guration of the type shown in Figure 5. Here, the objetive is to minimize drag forseveral ight onditions simultaneously.This work employs a ontinuous adjoint formulation on a strutured multiblok meshusing parallel multigrid ow and adjoint solvers. The wing surfae is parameterisedwith 18 Hiks-Henne bump funtions [21℄ at eah of �ve span stations and a total of 30onstraints are imposed on maximum thikness, spar thikness, leading edge bluntnessand trailing edge angle. The results were obtained after �ve design iterations using theoptimization pakage NPSOL [19℄ during whih the interior grid points were perturbedusing WARP-MB [40℄.The initial on�guration was designed for ruise at M = 0:8 and CL = 0:3 and the



21three new design points are summarized in Table 2. The original and designed pressuredistributions are displayed at a single span station for eah of the three design pointsin Figure 6. The shok strength has been substantially redued in all ases, leading tothe drag redutions desribed in Table 2. While a single point design would ahievelower drag at the spei�ed ruise onditions, the multipoint design has the advantage ofmaintaining better o�-design performane [41℄.6 ConlusionsThe development of design environments is urrently a major fous of researh in ompu-tational engineering. As part of this e�ort, adjoint methods o�er the ability to eÆientlyompute linear design sensitivities when there are a large number of design variables.In reviewing the fundamental theory, we began with the linear algebra perspetivefrom whih these ideas are most easily understood. For oneptual as well as pragmatireasons, we believe that the `disrete' numerial implementations whih follow this ap-proah have a number of advantages over those based on the alternate `ontinuous'approah. On the other hand, a sound grasp of the adjoint p.d.e. theory is essential tounderstanding the physial signi�ane of the adjoint variables and their behaviour atkey points in the ow �eld, suh as at shoks.It is hoped that this overview of the theory and of a number of important imple-mentation issues will help others to develop adjoint tehniques as an integral part ofengineering design systems. Although the fous of this paper has been on aeronautialdesign, the ideas are equally relevant to any area of engineering design involving largenumbers of ontinuous design variables.Referenes[1℄ K. Anderson, J. Newman, D. Whit�eld, and E. Nielsen. Sensitivity analysis forthe Navier-Stokes equations on unstrutured grids using omplex variables. AIAAPaper 99-3294, 1999.[2℄ W.K. Anderson and D.L. Bonhaus. Airfoil design on unstrutured grids for turbu-lent ows. AIAA J., 37(2):185{191, 1999.[3℄ W.K. Anderson and V. Venkatakrishnan. Aerodynami design optimization onunstrutured grids with a ontinuous adjoint formulation. Comput. & Fluids, 28(4-5):443{480, 1999.[4℄ O. Baysal and M. Eleshaky. Aerodynami design optimization using sensitivityanalysis and omputational uid dynamis. AIAA J., 30(3):718{725, 1992.[5℄ C. Bishof, A. Carle, G. Corliss, A. Griewank, and P. Hoveland. ADIFOR: gener-ating derivative odes from Fortran programs. Sienti� Programming, 1(1):11{29,1992.



22[6℄ H. Cabuk, C.H. Shung, and V. Modi. Adjoint operator approah to shape designfor internal inompressible ow. In G.S. Dulikravih, editor, Proeedings of the3rd International Conferene on Inverse Design and Optimization in EngineeringSienes, pages 391{404, 1991.[7℄ A. Carle, M. Fagan, and L.L. Green. Preliminary results from the appliation ofautomated ode generation to CFL3D. AIAA Paper 98-4807, 1998.[8℄ A. Dadone and B. Grossman. CFD design problems using progressive optimization.AIAA Paper 99-3295, 1999.[9℄ J. Elliott. Aerodynami optimization based on the Euler and Navier-Stokes equationsusing unstrutured grids. PhD thesis, MIT Dept. of Aero. and Astro., 1998.[10℄ J. Elliott and J. Peraire. Aerodynami design using unstrutured meshes. AIAAPaper 96-1941, 1996.[11℄ J. Elliott and J. Peraire. Pratial 3D aerodynami design and optimization usingunstrutured meshes. AIAA J., 35(9):1479{1485, 1997.[12℄ C. Faure. Splitting of algebrai expressions for automati di�erentiation. Proeed-ings of the seond SIAM Int. Workshop on Computational Di�erentiation, 1996.[13℄ J. Gilbert, G. Le Vey, and J. Masse. La di��erentiation automatique de fontionsrepr�esent�ees par des programmes. INRIA Rapport de Reherhe 1557, 1991.[14℄ M.B. Giles. Analysis of the auray of shok-apturing in the steady quasi-1DEuler equations. Comput. Fluid Dynamis J., 5(2):247{258, 1996.[15℄ M.B. Giles and N.A. Piere. Adjoint equations in CFD: duality, boundary onditionsand solution behaviour. AIAA Paper 97-1850, 1997.[16℄ M.B. Giles and N.A. Piere. On the properties of solutions of the adjoint Eulerequations. In M. Baines, editor, Numerial Methods for Fluid Dynamis VI. ICFD,Jun 1998.[17℄ M.B. Giles and N.A. Piere. Improved lift and drag estimates using adjoint Eulerequations. AIAA Paper 99-3293, 1999.[18℄ P. Gill, W. Murray, and M. Wright. Pratial optimization. Aademi Press, 1981.[19℄ P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. User's guide for npsol(version 4.0). a fortran pakage for nonlinear programming. Tehnial report, Dept.of Operations Researh, Stanford University, 1986. Report No. TR SOL86-2.[20℄ A. Griewank. On automati di�erentiation. In Mathematial Programming '88.Kluwer, 1989.



23[21℄ R.M. Hiks and P.A. Henne. Wing design by numerial optimization. J. Airraft,15:407{412, 1978.[22℄ W.P. Hu�man, R.G. Melvin, D.P. Young, F.T. Johnson, J.E. Bussoletti, M.B.Bieterman, and C.L. Himes. Pratial design and optimization in omputationaluid dynamis. AIAA Paper 93-3111, 1993.[23℄ V.M. Korivi A.C. Taylor III and G.W. Hou. Sensitivity analysis, approximateanalysis and design optimization for internal and external visous ows. AIAAPaper 91-3083, 1991.[24℄ A. Jameson. Aerodynami design via ontrol theory. J. Si. Comput., 3:233{260,1988.[25℄ A. Jameson. Optimum aerodynami design using CFD and ontrol theory. AIAA-95-1729-CP, 1995.[26℄ A. Jameson. Optimum aerodynami design using ontrol theory. In M. Hafez andK. Oshima, editors, Computational Fluid Dynamis Review 1995, pages 495{528.John Wiley & Sons, 1995.[27℄ A. Jameson. Re-engineering the design proess through omputation. J. Airraft,36:36{50, 1999.[28℄ A. Jameson, N. Piere, and L. Martinelli. Optimum aerodynami design using theNavier-Stokes equations. J. Theor. Comp. Fluid Meh., 10:213{237, 1998.[29℄ J. Lewis and R. Agarwal. Airfoil design via ontrol theory using the full-potentialand Euler equations. The Forum on CFD for Design and Optimization (IMECE95), 1995.[30℄ J.L. Lions. Optimal Control of Systems Governed by Partial Di�erential Equations.Springer-Verlag, 1971. Translated by S.K Mitter.[31℄ B. Mohammadi. Optimal shape design, reverse mode of automati di�erentiationand turbulene. AIAA Paper 97-0099, 1997.[32℄ B. Mohammadi. Pratial appliations to uid ows of automati di�erentiationfor design problems. VKI Leture Series 1997-05 on Inverse Design, 1997.[33℄ J.C. Newman, A.C. Taylor, R.W. Barnwell, P.A. Newman, and G. J.-W. Hou.Overview of sensitivity analysis and shape optimization for omplex aerodynamion�gurations. J. Airraft, 36(1):87{96, 1999.[34℄ E. Nielsen and W.K. Anderson. Aerodynami design optimization on unstruturedmeshes using the Navier-Stokes equations. AIAA Paper 98-4809, 1998.



24[35℄ N.A. Piere and M.B. Giles. Adjoint reovery of superonvergent funtionals fromapproximate solutions of partial di�erential equations. Tehnial Report NA98/18,Oxford University Computing Laboratory, 1998.[36℄ N.A. Piere and M.B. Giles. Adjoint reovery of superonvergent funtionals fromPDE approximations. SIAM Rev., to appear, 2000.[37℄ O. Pironneau. On optimum design in uid mehanis. J. Fluid Meh., 64:97{110,1974.[38℄ R.D. Raush, J.T. Batina, and H.T.Y. Yang. Three-dimensional time-marhingaeroelasti analyses using an unstrutured-grid Euler method. AIAA J., 31(9):1626{1633, 1993.[39℄ J. Reuther and A. Jameson. Control based airfoil design using the Euler equations.AIAA Paper 94-4272-CP, 1994.[40℄ J. Reuther, A. Jameson, J.J. Alonso, M.J. Remlinger, and D. Saunders. Con-strained multipoint aerodynami shape optimisation using an adjoint formulationand parallel omputers, part 1. J. Airraft, 36(1):51{60, 1999.[41℄ J. Reuther, A. Jameson, J.J. Alonso, M.J. Remlinger, and D. Saunders. Con-strained multipoint aerodynami shape optimisation using an adjoint formulationand parallel omputers, part 2. J. Airraft, 36(1):61{74, 1999.[42℄ J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saunders. Aerodynamishape optimization of omplex airraft on�gurations via an adjoint formulation.AIAA Paper 96-0094, 1996.[43℄ W. Squire and G. Trapp. Using omplex variables to estimate derivatives of realfuntions. SIAM Rev., 10(1):110{112, 1998.[44℄ S. Ta'asan, G. Kuruvila, and M.D. Salas. Aerodynami design and optimization inone shot. AIAA Paper 92-0025, 1992.[45℄ J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin. Numerial Grid Generation,Foundations and Appliations. Elsevier, 1985.[46℄ D. Venditti and D. Darmofal. A multilevel error estimation and grid adaptivestrategy for improving the auray of integral outputs. AIAA Paper 99-3292,1999.


