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On the use of Runge-Kutta time-mar
hing and multigridfor the solution of steady adjoint equations
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21 Introdu
tionIn CFD analysis, it is 
ommon to use Runge-Kutta time-mar
hing with lo
altimesteps and/or lo
al pre
onditioning to solve the steady 
ow equations [11℄.The use of multigrid, obtaining �ne grid 
orre
tions by transferring residuals intoa 
oarser grid and solving the 
oarse grid equations to obtain a 
orree
tion whi
his interpolated onto the �ne grid, provides even greater iterative 
onvergen
e ratesand is used extensively in CFD [10℄. It is natural then to use similar te
hniquesto solve the steady adjoint 
ow equations whi
h arise in the 
ontext of optimaldesign and error analysis [7℄.In formulating the adjoint equations, if one follows the dis
rete adjoint ap-proa
h in whi
h the adjoint operator is the transpose of the 
orresponding linearoperator [1, 5℄ then the de�nition and 
onstru
tion of the spatial part of theoperator is 
lear [7℄. The implementation of the adjoint 
ode 
an be aided sig-ni�
antly by the use of Automati
 Di�erentation software (su
h as ADJIFOR[2℄ or Odyssee [6℄) whi
h will generate adjoint 
ode for the spatial dis
retisation,given the nonlinear 
ode as input.However, it is not so 
lear how one should treat the iterative solution pro-
edure if one wants a pro
edure whi
h is truly adjoint, in the sense that 1000iterations of the adjoint solver will give a linear fun
tional whi
h is equal to thatgiven by 1000 iterations of the linearised dire
t solver. Although not a ne
essity,sin
e it is only the steady adjoint solution whi
h is needed, it is neverthelessvery desirable be
ause it means that the asymptoti
 rate of 
onvergen
e of theadjoint solver must be exa
tly the same as the linear dire
t solver, and it is thisguaranteed su

ess of the dis
rete adjoint approa
h whi
h is one of its strengths.It is also very helpful as a 
he
k on the 
orre
t implementation of the adjointsolver. By 
ontrast, if one follows the so-
alled `
ontinuous' adjoint approa
hin whi
h one dis
retises the adjoint p.d.e. [9℄, then it is often very diÆ
ult tofully validate the programming implementation given the la
k of test 
ases withanalyti
 adjoint solutions.The purpose of this paper therefore is to investigate the 
onstru
tion of aproper adjoint treatment of Runge-Kutta time-mar
hing to obtain a steady-statesolution. The theory is �rst derived for equations whi
h are 
ontinuous in time,and then for a 
lass of methods whi
h in
ludes Runge-Kutta time-mar
hing.The analysis allows for the possibility of partial updating of some terms, as
ommonly used by Jameson [8℄ and others in not updating the vis
ous 
uxes atea
h stage, as well as the use of matrix pre
onditioning, as in blo
k-Ja
obi [10℄or low Ma
h number pre
onditioning [11℄. The analysis also 
overs the use ofmultigrid, showing that the restri
tion operator for the adjoint solver must bethe transpose of the prolongation operator for the linear solver, and vi
e versa.The paper 
on
ludes with a simple Matlab program whi
h illustrates the pro-gramming of the dire
t and adjoint methods and produ
es results whi
h supportthe 
on
lusion that the adjoint Runge-Kutta time-mar
hing is a true adjoint in



3the sense de�ned above. The theoreti
al results are also supported by numer-i
al tests with 
odes whi
h approximate the linear and adjoint Navier-Stokesequations, using both blo
k-Ja
obi pre
onditioning and multigrid.The analysis is related to the work of Christianson [3, 4℄ on �xed point itera-tion for solving the dire
t and adjoint equations. However, the present work dif-fers from that of Christianson in restri
ting attention to linear iterative methods(ex
luding other methods su
h as 
onjugate gradient algorithms) and problemsin whi
h the adjoint variables have the same dimension as the primal variables.As a 
onsequen
e, it is possible to formulate the adjoint iteration using workingvariables whi
h 
onverge to the steady adjoint variables. This is not possiblein Christianson's more general approa
h. The present work also di�ers fromChristianson's in 
onsidering in detail the appli
ation of the general theory topre
onditioned Runge-Kutta time-mar
hing and multigrid.2 Continuous equationsIn the steady problem, the fun
tional to be evaluated is the inner produ
tI = (g; u);where u is the solution of the linear equationsLu = f:In steady design problems, f; g; u are all real ve
tors and L is a real matrix.However, in this paper we want to also allow for the 
ase of 
omplex ve
tors andmatri
es, as arises in the adjoint harmoni
 unsteady equations, and therefore theinner produ
t notation denotes (g; u) � gHu:where gH is the Hermitian, the 
omplex 
onjugate transpose, of g.The fun
tional 
an be re-written asI = (g; u)� (v; L u� f) = (v; f)� (LHv � g; u) = (v; f);where v is the solution of the adjoint equationsLHv = g:In the 
orresponding unsteady problem with the same steady ve
tors f; g, theunsteady u(t) is given by the di�erential equationdudt = P (f�Lu);



4for some 
onstant matrix P , subje
t to the initial 
onditions u(0) = 0, and thefun
tional is the inner produ
t I = (g; u(T ));at the �nal time T whi
h is 
hosen to be suÆ
iently large that dudt is very smalland therefore u(T ) is very 
lose to being the solution of the steady equations.The unsteady adjoint problem is given byI = (g; u(T ))� Z T0 (w; dudt + P (Lu� f)) dt= (g; u(T ))� Z T0 (�dwdt + LHPHw; u)� (PHw; f) dt� (w(T ); u(T ))= Z T0 (PHw; f) dt;where w is the solution of the di�erential equationdwdt = LHPHw;whi
h is solved ba
kwards in time subje
t to the �nal 
ondition w(T ) = g.To obtain the link with the steady adjoint equation, we de�nev(t) = Z Tt PHw dtso that the fun
tional is I = (v(0); f)and v(t) satis�es the di�erential equation�dvdt = PHw(t)= PH  g � Z Tt dwdt dt!= PH  g � Z Tt LHPHw dt!= PH �g � LHv� ;subje
t to the �nal 
ondition v(T ) = 0. In this form, v(t) is seen to 
orrespondto an unsteady evolution towards the solution of the steady adjoint equation,and if T is very large then v(0) will be very 
lose to the steady adjoint solution.



53 Dis
rete equationsThe dis
rete unsteady equations using the general 
lass of one-step methods(whi
h in
ludes the generalised Runge-Kutta time-mar
hing methods to be dis-
ussed in the next se
tion) 
an be expressed asun+1 = un +R (f�Lun);where R is a matrix whi
h depends on the details of the one-step method, in-
luding the timestep and whether or not any pre
onditioning is used. Writingthe iterative equations in this form emphasises the point that the solution of thesteady-state equations is also a steady solution of the unsteady dis
rete equations.It will be assumed that the iterative pro
edure is stable, and hen
e un 
onvergesexponentially towards the steady-state solution from the initial 
ondition u0 = 0.The fun
tional is evaluated using the �nal value uN , whi
h givesI = (g; uN):Pro
eeding as before to �nd the dis
rete adjoint formulation yieldsI = (g; uN)� N�1Xn=0(wn+1; un+1 � un �R (f � Lun))= (g; uN)� (wN ; uN)� N�1Xn=0 n(�(wn+1�wn); un) + (LHRHwn+1; un)� (RHwn+1; f)o= (g�wN ; uN) + N�1Xn=0 n(wn+1�wn � LHRHwn+1; un) + (RHwn+1; f)o ;in whi
h we have used the following identity whi
h is the dis
rete equivalent ofintegration by parts,N�1Xn=0 an+1 (bn+1�bn) = aNbN � a0b0 � N�1Xn=0(an+1�an) bn:Consequently, if w satis�es the di�eren
e equationwn = wn+1 � LHRHwn+1;subje
t to the �nal 
ondition wN = g, then the fun
tional isI = N�1Xn=0(RHwn+1; f):The above des
ription of the dis
rete adjoint problem 
orresponds to whatwould be generated by Automati
 Di�erentiation, using Odysee or ADJIFOR,



6but as with the 
ontinuous equations it is preferable to 
ast the problem as time-mar
hing towards the solution of the steady dis
rete adjoint equations. To dothis we de�ne the variable vn asvn = N�1Xm=nRHwm+1; n < Nwith vN = 0, so that the fun
tional 
an be expressed asI = (v0; f):Finally, the di�eren
e equation for vn 
omes fromvn � vn+1 = RHwn+1= RH 0�g � N�1Xm=n+1(wm+1�wm)1A= RH 0�g � N�1Xm=n+1LHRHwm+11A= RH �g � LHvn+1�showing that vn evolves towards the solution of the steady adjoint equations, withexa
tly the same rate of exponential 
onvergen
e as the linear dire
t solution.4 General Runge-Kutta s
hemesIn this se
tion we 
onsider a quite general 
lass of Runge-Kutta methods whi
h isused extensively in CFD, and in
ludes both pre
onditioning and partial updatesfor vis
ous and smoothing 
uxes. The aim is to �rst 
ast the methods into theform used above, �nding an expression for the operator R, and hen
e determineRH for the adjoint iterative s
heme.Splitting the linear operator L into two partsLu � C u+Du;where Cu represents the invis
id 
ux terms and Du represents the vis
ous andsmoothing 
uxes, a pre
onditioned version of the partial-updateM -stage Runge-



7Kutta s
heme used by Jameson [8℄ and others 
an be expressed asd(0) = 0u(0) = und(m) = �mDu(m�1) + (1��m) d(m�1)u(m) = u(0) + �mP �f � C u(m�1) � d(m)�un+1 = u(M) 9>=>; m = 1; 2; : : : ;M
(4.1)where �1 = �M = 1, and P is a pre
onditioning matrix whi
h in the simplest
ase is just the identity matrix s
aled by a lo
al timestep.De�ning r to be the residual at the beginning of the step,r = f � Lun;and de�ning the perturbation quantities~d(m) � d(m) �Dun; ~u(m) � u(m) � un;the algorithm 
an be re-expressed as~d(0) = �Dun~u(0) = 0~d(m) = �mD ~u(m�1) + (1��m) ~d(m�1)~u(m) = �mP �r � C ~u(m�1) � ~d(m)�un+1 = un + ~u(M) 9>=>; m = 1; 2; : : : ;M (4.2)

The advantage of this form is that it makes it 
lear that the algorithm �ts intothe standard form un+1 = un +R (f � Lun);analysed earlier, with the matrix R de�ned impli
itly by the system of simulta-neous equations B0BBBBBBBBBBB�
~u(1)~d(2)~u(2)::~d(M)~u(M)

1CCCCCCCCCCCA = 0BBBBBBBBBBB�
�1P0�2P::0�MP

1CCCCCCCCCCCA (f � Lun)



8where
B = 0BBBBBBBBBBBBB�

I��2D I�2PC �2P I: : :: : :�(1��M) ��MD I�MPC �MP I
1CCCCCCCCCCCCCA ;from whi
h it follows that

R = � 0 0 0 : : 0 I � B�1 0BBBBBBBBBBB�
�1P0�2P::0�MP

1CCCCCCCCCCCA :Therefore,
RH = � �1PH 0 �2PH : : 0 �MPH � �BH��1 0BBBBBBBBBBB�

000::0I
1CCCCCCCCCCCA ;and so the adjoint time-mar
hing pro
edure is given byvn = vn+1 + MXm=1�mPH ~w(m)where the quantities ~w(m) are de�ned by

BH 0BBBBBBBBBBB�
~w(1)~d(2)~w(2)::~d(M)~w(M)

1CCCCCCCCCCCA = 0BBBBBBBBBBB�
000::0I
1CCCCCCCCCCCA�g � LH vn+1� ;



9whi
h in turn gives the algorithm~w(M) = g � LH vn+1~d(M) = ��MPH ~w(M)~w(m) = ��m+1CHPH ~w(m+1) + �m+1DH ~d(m+1)~d(m) = ��mPH ~w(m) + (1��m+1) ~d(m+1)vn = vn+1 + MXm=1�mPH ~w(m)
9>=>; m =M�1; : : : ; 2; 1:

(4.3)Changing variables to ~v(m) = PH ~w(m) gives the �nal form of the algorithm,~v(M) = PH �g � LH vn+1�~d(M) = ��M ~v(M)~v(m) = PH ���m+1CH~v(m+1) + �m+1DH ~d(m+1)�~d(m) = ��m~v(m) + (1��m+1) ~d(m+1)vn = vn+1 + MXm=1�m~v(m)
9>=>; m = M�1; : : : ; 2; 1:

(4.4)5 MultigridThe general analysis in Se
tion 3 is also appli
able to the use of pre
onditionedmultigrid [10℄. In this 
ase, the operator R for the updating of the solution onthe �nest grid using 
al
ulations on the 
oarser grids 
an be expressed asR � P E T;where T represents the transfer (or restri
tion) of the �ne grid residual onto the
oarser grid, E represents the evolution of the 
orre
tion on the 
oarser grid(whi
h may itself involves the use of even 
oarser grids) and P represents thetransfer (or prolongation) of the 
oarse grid 
hanges onto the �ne grid.For the adjoint iterative pro
ess, one therefore hasRH = TH EH PH :The key observation here is that the restri
tion for the adjoint equations is thetranspose of the prolongation for the dire
t equations, and vi
e versa.



106 Numeri
al resultsAppendix A 
ontains a MATLAB program whi
h solves either a simple s
alaro.d.e. or an upwind approximation to the 
onve
tion equation with a harmoni
sour
e term, depending on the value of the parameter i
ase. In either 
ase, thedire
t problem is solved with two di�erent but mathemati
ally equivalent forms ofthe dire
t solver, 
orresponding to Equations (4.1) and (4.2), and two equivalentforms of the adjoint solver, 
orresponding to Equations (4.3) and (4.4). In all
ases, the numeri
al results 
on�rm that the dire
t and adjoint solvers produ
ethe same value for the fun
tional after the same number of iterations.The theory in this paper has also been tested with two FORTRAN programs,one of whi
h solves the linearised Navier-Stokes equations with a harmoni
 sour
eterm, and the other of whi
h solves the 
orresponding dis
rete adjoint equations.It proved to be an invaluable aid in debugging the two 
odes; on
e the bugs hadbeen �xed, identi
al values (to within ma
hine a

ura
y) for the fun
tional wereobtained after equal number of iterations of ea
h 
ode.7 Dis
ussion and Con
lusionsIn this paper we have developed an iterative pro
edure for solving dis
rete ad-joint equations. It is a true adjoint of a 
ommonly-used pre
onditioned Runge-Kutta time-mar
hing algorithm for the iterative solution of the original nonlinearequations, in the sense that one obtains exa
tly the same fun
tional after equalnumber of iterations of either the adjoint 
ode or the linearised 
ode on whi
h itis based. This guarantees that the iterative 
onvergen
e rate of the adjoint 
odeis identi
al to that of the linear 
ode, and the asymptoti
 
onvergen
e rate of theoriginal nonlinear 
ode.It is hoped that, in 
onjun
tion with Automati
 Di�erentiation te
hniques,this will help the development of adjoint 
odes for a variety of design optimisationproblems whi
h require iterative solvers.A
knowledgmentsMihai Duta 
ontributed greatly to the programming of the adjoint Navier-Stokes
ode and 
arried out most of the veri�
ation of its equivalen
e to the linearisedNavier-Stokes 
ode.
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12 AppendixA MATLAB programnstep = 5;alfas(1) = 0.25;alfas(2) = 0.166666666667;alfas(3) = 0.375;alfas(4) = 0.5;alfas(5) = 1.0;betas(1) = 1.0;betas(2) = 0.0;betas(3) = 0.56;betas(4) = 0.0;betas(5) = 0.44;i
ase = input('enter i
ase value');if i
ase == 1niter = 2;D = 1;C = i;P = 2.0;f = 1;g = 1;elseif i
ase == 2niter = 5;N = 10;h = 1/N;omega = 0.1;e = ones(N,1);D = spdiags([-e 2*e -e℄, -1 : 1, N, N) * 0.5/h;C = spdiags([-e e℄, -1:2:1, N, N) * 0.5/h ...+ spdiags([ e ℄, 0 , N, N) * omega*i;D(N,N) = 0.5*D(N,N);C(N,N) = - C(N,N-1);P = 2.0*h + 0.01*i;f = ones(N,1);g = ones(N,1);endzero = zeros(size(f));



13%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% dire
t -- usual %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%u = zero;for it = 1:niteru0 = u;d = zero;for n = 1:nstepd = (1-betas(n))*d + betas(n)*D*u;u = u0 + alfas(n)*P*(f - C*u - d);endendg'*u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% dire
t -- new %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%u = zero;for it = 1:niterdu = zero;dd = zero;r = f - (C+D)*u;for n = 1:nstepdd = (1-betas(n))*dd + betas(n)*D*du;du = alfas(n)*P*(r - C*du - dd);end;u = u + du;endg'*u



14%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% adjoint -- new %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%v = zero;for it = 1:niterd = zero;r = g - (C+D)'*v;for n = nstep:-1:1d = d - alfas(n)*P'*r;v = v + alfas(n)*P'*r;r = - alfas(n)*C'*P'*r + betas(n)*D'*d;d = (1-betas(n))*d;end;end;v'*f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% adjoint -- new (re-arranged) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%v = zero;dd = zero;betas(nstep+1) = 1;for it = 1:niterfor n = nstep:-1:1if n == nstepdv = P'*(g-(C+D)'*v);elsedv = P'*(-alfas(n+1)*C'*dv + betas(n+1)*D'*dd);enddd = (1-betas(n+1))*dd - alfas(n)*dv;v = v + alfas(n)*dv;end;end;v'*f


