Report no. 00/10

On the use of Runge-Kutta time-marching and multigrid
for the solution of steady adjoint equations

M. B. Giles

This paper considers the solution of steady adjoint equations us-
ing a class of iterative methods which includes preconditioned Runge-
Kutta time-marching with multigrid. It is shown that, if formulated
correctly, equal numbers of iterations of the direct and adjoint itera-
tive solvers will result in the same value for the linear functional being
sought. The precise details of the adjoint iteration are formulated for
the case of Runge-Kutta time-marching with partial updates, which
is commonly used in CFD computations. The theory is supported
by numerical results from a MATLAB program for two model prob-
lems, and from programs for the solution of the linear and adjoint 3D
Navier-Stokes equations.

(This report is an expanded version of a paper presented at the
AD2000 Conference in Nice, France on June 19-23, 2000.)

Key words and phrases: Adjoint, Runge-Kutta, multigrid, design

This research was supported by EPSRC research grant GR/L95700.

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England OX1 3QD

http: //www.comlab.ox.ac.uk

email: giles@comlab.oxford.ac.uk June, 2000

1 Introduction

In CFD analysis, it is common to use Runge-Kutta time-marching with local
timesteps and/or local preconditioning to solve the steady flow equations [11].
The use of multigrid, obtaining fine grid corrections by transferring residuals into
a coarser grid and solving the coarse grid equations to obtain a correection which
is interpolated onto the fine grid, provides even greater iterative convergence rates
and is used extensively in CFD [10]. It is natural then to use similar techniques
to solve the steady adjoint flow equations which arise in the context of optimal
design and error analysis [7].

In formulating the adjoint equations, if one follows the discrete adjoint ap-
proach in which the adjoint operator is the transpose of the corresponding linear
operator [1,5] then the definition and construction of the spatial part of the
operator is clear [7]. The implementation of the adjoint code can be aided sig-
nificantly by the use of Automatic Differentation software (such as ADJIFOR
[2] or Odyssee [6]) which will generate adjoint code for the spatial discretisation,
given the nonlinear code as input.

However, it is not so clear how one should treat the iterative solution pro-
cedure if one wants a procedure which is truly adjoint, in the sense that 1000
iterations of the adjoint solver will give a linear functional which is equal to that
given by 1000 iterations of the linearised direct solver. Although not a necessity,
since it is only the steady adjoint solution which is needed, it is nevertheless
very desirable because it means that the asymptotic rate of convergence of the
adjoint solver must be exactly the same as the linear direct solver, and it is this
guaranteed success of the discrete adjoint approach which is one of its strengths.
It is also very helpful as a check on the correct implementation of the adjoint
solver. By contrast, if one follows the so-called ‘continuous’ adjoint approach
in which one discretises the adjoint p.d.e. [9], then it is often very difficult to
fully validate the programming implementation given the lack of test cases with
analytic adjoint solutions.

The purpose of this paper therefore is to investigate the construction of a
proper adjoint treatment of Runge-Kutta time-marching to obtain a steady-state
solution. The theory is first derived for equations which are continuous in time,
and then for a class of methods which includes Runge-Kutta time-marching.
The analysis allows for the possibility of partial updating of some terms, as
commonly used by Jameson [8] and others in not updating the viscous fluxes at
each stage, as well as the use of matrix preconditioning, as in block-Jacobi [10]
or low Mach number preconditioning [11]. The analysis also covers the use of
multigrid, showing that the restriction operator for the adjoint solver must be
the transpose of the prolongation operator for the linear solver, and vice versa.

The paper concludes with a simple Matlab program which illustrates the pro-
gramming of the direct and adjoint methods and produces results which support
the conclusion that the adjoint Runge-Kutta time-marching is a true adjoint in

the sense defined above. The theoretical results are also supported by numer-
ical tests with codes which approximate the linear and adjoint Navier-Stokes
equations, using both block-Jacobi preconditioning and multigrid.

The analysis is related to the work of Christianson [3, 4] on fixed point itera-
tion for solving the direct and adjoint equations. However, the present work dif-
fers from that of Christianson in restricting attention to linear iterative methods
(excluding other methods such as conjugate gradient algorithms) and problems
in which the adjoint variables have the same dimension as the primal variables.
As a consequence, it is possible to formulate the adjoint iteration using working
variables which converge to the steady adjoint variables. This is not possible
in Christianson’s more general approach. The present work also differs from
Christianson’s in considering in detail the application of the general theory to
preconditioned Runge-Kutta time-marching and multigrid.

2 Continuous equations
In the steady problem, the functional to be evaluated is the inner product
I'=(g,u),
where u is the solution of the linear equations
Lu=f.

In steady design problems, f, g, u are all real vectors and L is a real matrix.
However, in this paper we want to also allow for the case of complex vectors and
matrices, as arises in the adjoint harmonic unsteady equations, and therefore the
inner product notation denotes

(g,u) = ¢"u.

where g7 is the Hermitian, the complex conjugate transpose, of g.
The functional can be re-written as

I = (Q,U) - (UJLu_f) = (Uaf) - (LHU_gaU) = (Uaf)a
where v is the solution of the adjoint equations
L'y =g.

In the corresponding unsteady problem with the same steady vectors f, g, the
unsteady u(t) is given by the differential equation

du

for some constant matrix P, subject to the initial conditions u(0) = 0, and the
functional is the inner product

I'=(g,u(T)),

at the final time 7" which is chosen to be sufficiently large that % is very small
and therefore u(7') is very close to being the solution of the steady equations.

The unsteady adjoint problem is given by

= (M)~ [(0,5 (L) dt

= (g u(™) ~ [(<S4 TP) — (P,) d — (w(T), u(T))

T
= [(P, f)

where w is the solution of the differential equation

dw _ LEpHy,
dt

which is solved backwards in time subject to the final condition w(T') = g.
To obtain the link with the steady adjoint equation, we define

T
v(t) :/ PHw dt
t

so that the functional is

I'= (v(0), f)
and v(t) satisfies the differential equation
dv
—— = Plu(t
- w(t)

subject to the final condition v(7T") = 0. In this form, v(¢) is seen to correspond
to an unsteady evolution towards the solution of the steady adjoint equation,
and if T is very large then v(0) will be very close to the steady adjoint solution.

3 Discrete equations

The discrete unsteady equations using the general class of one-step methods
(which includes the generalised Runge-Kutta time-marching methods to be dis-
cussed in the next section) can be expressed as

un+1 = " +R(f—LU,n),

where R is a matrix which depends on the details of the one-step method, in-

cluding the timestep and whether or not any preconditioning is used. Writing

the iterative equations in this form emphasises the point that the solution of the

steady-state equations is also a steady solution of the unsteady discrete equations.

It will be assumed that the iterative procedure is stable, and hence u™ converges

exponentially towards the steady-state solution from the initial condition u® = 0.
The functional is evaluated using the final value u”, which gives

I=(g,u").

Proceeding as before to find the discrete adjoint formulation yields

I = ()= 3 @™ - — R(f - Lu")

n=0
= (g,u") — (", u") ~ Nz {(=(" —w"),um) + (LT RMw™* u") — (RTw™, f)}
N—-1

= (g—w™u™)+ > {(w"“—w" — LT R ™) + (RHw"+1,f)},

n=0

in which we have used the following identity which is the discrete equivalent of
integration by parts,

N-1 N-1
Z anJrl (bn+1_bn) — G,NbN o aObO _ Z (an+1_an) b".
n=0 n=0

Consequently, if w satisfies the difference equation

w" = wn+1 o LHRHwn+1,

subject to the final condition w" = ¢, then the functional is

N—-1

I = Z (RHwn+1, f)

n=0

The above description of the discrete adjoint problem corresponds to what
would be generated by Automatic Differentiation, using Odysee or ADJIFOR,

but as with the continuous equations it is preferable to cast the problem as time-
marching towards the solution of the steady discrete adjoint equations. To do
this we define the variable v™ as

N-1
vt = Z RTw™ n< N

m=n

with v = 0, so that the functional can be expressed as
I=@"f).

Finally, the difference equation for v™ comes from

Un_anrl — RHwn+1
N-1
— RH (g_ Z (wm+1_wm)>
m=n-+1

N-1

m=n+1

B (g B LHUn—H)

showing that v” evolves towards the solution of the steady adjoint equations, with
exactly the same rate of exponential convergence as the linear direct solution.

4 General Runge-Kutta schemes

In this section we consider a quite general class of Runge-Kutta methods which is
used extensively in CFD, and includes both preconditioning and partial updates
for viscous and smoothing fluxes. The aim is to first cast the methods into the
form used above, finding an expression for the operator R, and hence determine
R for the adjoint iterative scheme.

Splitting the linear operator L into two parts

Lu=Cu+ Du,

where C'u represents the inviscid flux terms and Du represents the viscous and
smoothing fluxes, a preconditioned version of the partial-update M-stage Runge-

Kutta scheme used by Jameson [8] and others can be expressed as

d® = o

un

d™ = B Dul™D 4 (1-5,)d"Y
u™ = u® +aq,P (f — Culm=b — d(m))

W = O

(4.1)

where 3; = «,, = 1, and P is a preconditioning matrix which in the simplest

case is just the identity matrix scaled by a local timestep.
Defining r to be the residual at the beginning of the step,

r=f—Lu",

and defining the perturbation quantities

d9 = —Dy"
@ = 0

dm = fnDalm D+ (1= f,) domY
@ = P (r— CatmD - dm)

utt =y 4 M)

m=1,2,...

)

The advantage of this form is that it makes it clear that the algorithm fits into

the standard form
un-i—l — Un—|—R(f o Lun),

analysed earlier, with the matrix R defined implicitly by the system of simulta-

neous equations

aM o P
d® 0
@ as P
B : = . (f = Lu™)

where
— 02D I

OéQPC OéQP I

—(1=Bm) —PuD I
aMPC O[MP I

from which it follows that

o P
0
O[QP
R:(O 00..0 I)B*I
0
OéMP
Therefore,
0
0
o
RH:(alPH 0 awPH . . 0 aMPH) (BH)*
0
I

and so the adjoint time-marching procedure is given by

M
o = o+ 3, PP
m=1

where the quantities @™ are defined by

) 0
d® 0
w® 0
B . =1 . (g —L" v"“) ,
dM) 0
W

which in turn gives the algorithm

oM = g — LHyntl

dM = P

w~(m) = QO PHpm+) 4 ﬂmtlDHCZ(m—i_l) m—=M-,... 2.1
d™ = —a, PP + (1—By) d™HD

M
T — Un+1 + Z ampr(m)
m=1
(4.3)
Changing variables to ™ = PH (™) gives the final form of the algorithm,
M) — pH (g _H Un—i—l)
dM = —a,, oM

S(m) _ pH(_ H 35(m+1) H gm+1)
v = P (Oém+1c v +ﬂm+1D d) m:M—l,...,Q,l-

dm™ = —a, 5™ + (1= LFhn1) J(m+1)
M
YL — vn+1+zam6(m)
m=1

5 Multigrid

The general analysis in Section 3 is also applicable to the use of preconditioned
multigrid [10]. In this case, the operator R for the updating of the solution on
the finest grid using calculations on the coarser grids can be expressed as

R=PET,

where T represents the transfer (or restriction) of the fine grid residual onto the
coarser grid, E represents the evolution of the correction on the coarser grid
(which may itself involves the use of even coarser grids) and P represents the
transfer (or prolongation) of the coarse grid changes onto the fine grid.

For the adjoint iterative process, one therefore has

RE —TH pH pH

The key observation here is that the restriction for the adjoint equations is the
transpose of the prolongation for the direct equations, and vice versa.

10

6 Numerical results

Appendix A contains a MATLAB program which solves either a simple scalar
o.d.e. or an upwind approximation to the convection equation with a harmonic
source term, depending on the value of the parameter icase. In either case, the
direct problem is solved with two different but mathematically equivalent forms of
the direct solver, corresponding to Equations (4.1) and (4.2), and two equivalent
forms of the adjoint solver, corresponding to Equations (4.3) and (4.4). In all
cases, the numerical results confirm that the direct and adjoint solvers produce
the same value for the functional after the same number of iterations.

The theory in this paper has also been tested with two FORTRAN programs,
one of which solves the linearised Navier-Stokes equations with a harmonic source
term, and the other of which solves the corresponding discrete adjoint equations.
It proved to be an invaluable aid in debugging the two codes; once the bugs had
been fixed, identical values (to within machine accuracy) for the functional were
obtained after equal number of iterations of each code.

7 Discussion and Conclusions

In this paper we have developed an iterative procedure for solving discrete ad-
joint equations. It is a true adjoint of a commonly-used preconditioned Runge-
Kutta time-marching algorithm for the iterative solution of the original nonlinear
equations, in the sense that one obtains exactly the same functional after equal
number of iterations of either the adjoint code or the linearised code on which it
is based. This guarantees that the iterative convergence rate of the adjoint code
is identical to that of the linear code, and the asymptotic convergence rate of the
original nonlinear code.

It is hoped that, in conjunction with Automatic Differentiation techniques,
this will help the development of adjoint codes for a variety of design optimisation
problems which require iterative solvers.

Acknowledgments

Mihai Duta contributed greatly to the programming of the adjoint Navier-Stokes
code and carried out most of the verification of its equivalence to the linearised
Navier-Stokes code.

11

References

1]

2]

3]

[4]

[5]

7]

8]

9]

[10]

[11]

W.K. Anderson and D.L. Bonhaus. Airfoil design on unstructured grids for
turbulent flows. ATAA J., 37(2):185-191, 1999.

A. Carle, M. Fagan, and L.L. Green. Preliminary results from the application
of automated code generation to CFL3D. ATAA Paper 98-4807, 1998.

B. Christianson. Reverse accumulation and attractive fixed points. Opt.
Meth. and Software, 3(4):311-326, 1994.

B. Christianson. Reverse accumulation and implicit functions. Opt. Meth.
and Software, 9(4):307-322, 1998.

J. Elliott and J. Peraire. Practical 3D aerodynamic design and optimization
using unstructured meshes. ATAA J., 35(9):1479-1485, 1997.

C. Faure. Splitting of algebraic expressions for automatic differentiation.
Proceedings of the second SIAM Int. Workshop on Computational Differen-
tiation, 1996.

M.B. Giles and N.A. Pierce. An introduction to the adjoint approach to
design. European Journal of Flow, Turbulence and Control, to appear, 2000.

A. Jameson. Transonic flow calculations for aircraft. In F. Brezzi, editor,
Lecture Notes in Mathematics, Numerical Methods in Fluid Dynamics, pages
391-404. Springer-Verlag, 1985.

A. Jameson. Aerodynamic design via control theory. J. Sci. Comput., 3:233—
260, 1988.

N.A. Pierce and M.B. Giles. Preconditioned multigrid methods for compress-
ible flow calculations on stretched meshes. J. Comput. Phys., 136:425-445,
1997.

J. Weiss and W. Smith. Preconditioning applied to variable and constant
density flows. ATAA J., 33(11):2050-2057, 1995.

12

AppendixA MATLAB program

nstep = 5;
alfas(1) = 0.25;
alfas(2) = 0.166666666667;
alfas(3) = 0.375;
alfas(4) = 0.5;
alfas(5) = 1.0;
betas(1) = 1.0;
betas(2) = 0.0;
betas(3) = 0.56;
betas(4) = 0.0;
betas(5) = 0.44;

icase = input(’enter icase value’);

if icase ==
niter = 2;

D
C
P

nnn
=

f
g

1
1

>

>

elseif icase ==
niter = 5;

N
h

10;
1/N;

omega = 0.1;
e = ones(N,1);

D
C

spdiags([-e 2*%e -e], -1 : 1, N, N) * 0.5/h;
spdiags([-e e], -1:2:1, N, N) * 0.5/h ...
spdiags ([e 1, 0 , N, N) * omegaxij;

+ 0

D(N,N)
C(N,N)

0.5%D(N,N) ;
- C(N,N-1);

P = 2.0xh + 0.01x%1;

f = ones(N,1);
g = ones(N,1);
end

zero = zeros(size(f));

13

%%é
% direct -- usual i

/A /A
Yot ToToTo o oo ToTo o o o ToTo o To o Jo ToTo 1o o o ToTo 1o o o ToTo o o o To o o o To T o o o To T o o To To o o o To T o

u = zero;
for it = 1:niter
ud = u;
d = zero;
for n = 1:nstep
d = (1-betas(n))*d + betas(n)*D*u;
u = u0 + alfas(n)*Px(f - Cxu - d);
end
end
g’ *u

%%é

i direct —-- new i
yA A
Dot tolo T o Toto To o ToTo Toto To o To To Foto To o Fo To To o o Fo o To Fo o to To Fo o To oo o Fo oo Fo Fo o To oo o o o Fo o o

for it = 1:niter
= zero;
dd = zero;
= f - (C+D)*u;

for n = 1:nstep
(1-betas(n))*dd + betas(n)*D*du;
alfas(n)*P*x(r - Cxdu - dd);

u =1u + du;
end

g’ *u

14

A Y Y Y Y Y Y S Y Y S Y Y
; adjoint -- new ;
i%%%é
Vv = zero;

Zero,

for it = 1:niter
= - (C+D) ’*v;

09

nstep:-1:1

d - alfas(n)*P’*r;

v + alfas(n)*P’*r;

- alfas(n)*C’*P’*r + betas(n)*D’*d;
(1-betas(n))*d;

Q.
nmnunns

end;

v *xf

%%é
i adjoint -- new (re-arranged) i
b b
Tt ToTo o To o ToTo 1o o oo To o To o o ToTo 1o o o To 1o 1o o o To 1o 1o o To To 1o o o To T o o o To 1o o o To To 1o o o To T o
vV = zero;

dd = zero;

betas(nstep+l) = 1;

for it = 1l:niter
for n = nstep:-1:1

if n == nstep
dv = P’x(g-(C+D) ’*v);
else
dv = P’*(-alfas(n+1)*C’*dv + betas(n+1)*D’*dd) ;
end
dd = (1-betas(n+1))*dd - alfas(n)*dv;
v = v + alfas(n)*dv;
end;
end;

v *xf

