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On the use of Runge-Kutta time-marhing and multigridfor the solution of steady adjoint equations

M. B. GilesThis paper onsiders the solution of steady adjoint equations us-ing a lass of iterative methods whih inludes preonditioned Runge-Kutta time-marhing with multigrid. It is shown that, if formulatedorretly, equal numbers of iterations of the diret and adjoint itera-tive solvers will result in the same value for the linear funtional beingsought. The preise details of the adjoint iteration are formulated forthe ase of Runge-Kutta time-marhing with partial updates, whihis ommonly used in CFD omputations. The theory is supportedby numerial results from a MATLAB program for two model prob-lems, and from programs for the solution of the linear and adjoint 3DNavier-Stokes equations.(This report is an expanded version of a paper presented at theAD2000 Conferene in Nie, Frane on June 19-23, 2000.)Key words and phrases: Adjoint, Runge-Kutta, multigrid, designThis researh was supported by EPSRC researh grant GR/L95700.Oxford University Computing LaboratoryNumerial Analysis GroupWolfson BuildingParks RoadOxford, England OX1 3QDhttp: //www.omlab.ox.a.ukemail: giles�omlab.oxford.a.uk June, 2000



21 IntrodutionIn CFD analysis, it is ommon to use Runge-Kutta time-marhing with loaltimesteps and/or loal preonditioning to solve the steady ow equations [11℄.The use of multigrid, obtaining �ne grid orretions by transferring residuals intoa oarser grid and solving the oarse grid equations to obtain a orreetion whihis interpolated onto the �ne grid, provides even greater iterative onvergene ratesand is used extensively in CFD [10℄. It is natural then to use similar tehniquesto solve the steady adjoint ow equations whih arise in the ontext of optimaldesign and error analysis [7℄.In formulating the adjoint equations, if one follows the disrete adjoint ap-proah in whih the adjoint operator is the transpose of the orresponding linearoperator [1, 5℄ then the de�nition and onstrution of the spatial part of theoperator is lear [7℄. The implementation of the adjoint ode an be aided sig-ni�antly by the use of Automati Di�erentation software (suh as ADJIFOR[2℄ or Odyssee [6℄) whih will generate adjoint ode for the spatial disretisation,given the nonlinear ode as input.However, it is not so lear how one should treat the iterative solution pro-edure if one wants a proedure whih is truly adjoint, in the sense that 1000iterations of the adjoint solver will give a linear funtional whih is equal to thatgiven by 1000 iterations of the linearised diret solver. Although not a neessity,sine it is only the steady adjoint solution whih is needed, it is neverthelessvery desirable beause it means that the asymptoti rate of onvergene of theadjoint solver must be exatly the same as the linear diret solver, and it is thisguaranteed suess of the disrete adjoint approah whih is one of its strengths.It is also very helpful as a hek on the orret implementation of the adjointsolver. By ontrast, if one follows the so-alled `ontinuous' adjoint approahin whih one disretises the adjoint p.d.e. [9℄, then it is often very diÆult tofully validate the programming implementation given the lak of test ases withanalyti adjoint solutions.The purpose of this paper therefore is to investigate the onstrution of aproper adjoint treatment of Runge-Kutta time-marhing to obtain a steady-statesolution. The theory is �rst derived for equations whih are ontinuous in time,and then for a lass of methods whih inludes Runge-Kutta time-marhing.The analysis allows for the possibility of partial updating of some terms, asommonly used by Jameson [8℄ and others in not updating the visous uxes ateah stage, as well as the use of matrix preonditioning, as in blok-Jaobi [10℄or low Mah number preonditioning [11℄. The analysis also overs the use ofmultigrid, showing that the restrition operator for the adjoint solver must bethe transpose of the prolongation operator for the linear solver, and vie versa.The paper onludes with a simple Matlab program whih illustrates the pro-gramming of the diret and adjoint methods and produes results whih supportthe onlusion that the adjoint Runge-Kutta time-marhing is a true adjoint in



3the sense de�ned above. The theoretial results are also supported by numer-ial tests with odes whih approximate the linear and adjoint Navier-Stokesequations, using both blok-Jaobi preonditioning and multigrid.The analysis is related to the work of Christianson [3, 4℄ on �xed point itera-tion for solving the diret and adjoint equations. However, the present work dif-fers from that of Christianson in restriting attention to linear iterative methods(exluding other methods suh as onjugate gradient algorithms) and problemsin whih the adjoint variables have the same dimension as the primal variables.As a onsequene, it is possible to formulate the adjoint iteration using workingvariables whih onverge to the steady adjoint variables. This is not possiblein Christianson's more general approah. The present work also di�ers fromChristianson's in onsidering in detail the appliation of the general theory topreonditioned Runge-Kutta time-marhing and multigrid.2 Continuous equationsIn the steady problem, the funtional to be evaluated is the inner produtI = (g; u);where u is the solution of the linear equationsLu = f:In steady design problems, f; g; u are all real vetors and L is a real matrix.However, in this paper we want to also allow for the ase of omplex vetors andmatries, as arises in the adjoint harmoni unsteady equations, and therefore theinner produt notation denotes (g; u) � gHu:where gH is the Hermitian, the omplex onjugate transpose, of g.The funtional an be re-written asI = (g; u)� (v; L u� f) = (v; f)� (LHv � g; u) = (v; f);where v is the solution of the adjoint equationsLHv = g:In the orresponding unsteady problem with the same steady vetors f; g, theunsteady u(t) is given by the di�erential equationdudt = P (f�Lu);



4for some onstant matrix P , subjet to the initial onditions u(0) = 0, and thefuntional is the inner produt I = (g; u(T ));at the �nal time T whih is hosen to be suÆiently large that dudt is very smalland therefore u(T ) is very lose to being the solution of the steady equations.The unsteady adjoint problem is given byI = (g; u(T ))� Z T0 (w; dudt + P (Lu� f)) dt= (g; u(T ))� Z T0 (�dwdt + LHPHw; u)� (PHw; f) dt� (w(T ); u(T ))= Z T0 (PHw; f) dt;where w is the solution of the di�erential equationdwdt = LHPHw;whih is solved bakwards in time subjet to the �nal ondition w(T ) = g.To obtain the link with the steady adjoint equation, we de�nev(t) = Z Tt PHw dtso that the funtional is I = (v(0); f)and v(t) satis�es the di�erential equation�dvdt = PHw(t)= PH  g � Z Tt dwdt dt!= PH  g � Z Tt LHPHw dt!= PH �g � LHv� ;subjet to the �nal ondition v(T ) = 0. In this form, v(t) is seen to orrespondto an unsteady evolution towards the solution of the steady adjoint equation,and if T is very large then v(0) will be very lose to the steady adjoint solution.



53 Disrete equationsThe disrete unsteady equations using the general lass of one-step methods(whih inludes the generalised Runge-Kutta time-marhing methods to be dis-ussed in the next setion) an be expressed asun+1 = un +R (f�Lun);where R is a matrix whih depends on the details of the one-step method, in-luding the timestep and whether or not any preonditioning is used. Writingthe iterative equations in this form emphasises the point that the solution of thesteady-state equations is also a steady solution of the unsteady disrete equations.It will be assumed that the iterative proedure is stable, and hene un onvergesexponentially towards the steady-state solution from the initial ondition u0 = 0.The funtional is evaluated using the �nal value uN , whih givesI = (g; uN):Proeeding as before to �nd the disrete adjoint formulation yieldsI = (g; uN)� N�1Xn=0(wn+1; un+1 � un �R (f � Lun))= (g; uN)� (wN ; uN)� N�1Xn=0 n(�(wn+1�wn); un) + (LHRHwn+1; un)� (RHwn+1; f)o= (g�wN ; uN) + N�1Xn=0 n(wn+1�wn � LHRHwn+1; un) + (RHwn+1; f)o ;in whih we have used the following identity whih is the disrete equivalent ofintegration by parts,N�1Xn=0 an+1 (bn+1�bn) = aNbN � a0b0 � N�1Xn=0(an+1�an) bn:Consequently, if w satis�es the di�erene equationwn = wn+1 � LHRHwn+1;subjet to the �nal ondition wN = g, then the funtional isI = N�1Xn=0(RHwn+1; f):The above desription of the disrete adjoint problem orresponds to whatwould be generated by Automati Di�erentiation, using Odysee or ADJIFOR,



6but as with the ontinuous equations it is preferable to ast the problem as time-marhing towards the solution of the steady disrete adjoint equations. To dothis we de�ne the variable vn asvn = N�1Xm=nRHwm+1; n < Nwith vN = 0, so that the funtional an be expressed asI = (v0; f):Finally, the di�erene equation for vn omes fromvn � vn+1 = RHwn+1= RH 0�g � N�1Xm=n+1(wm+1�wm)1A= RH 0�g � N�1Xm=n+1LHRHwm+11A= RH �g � LHvn+1�showing that vn evolves towards the solution of the steady adjoint equations, withexatly the same rate of exponential onvergene as the linear diret solution.4 General Runge-Kutta shemesIn this setion we onsider a quite general lass of Runge-Kutta methods whih isused extensively in CFD, and inludes both preonditioning and partial updatesfor visous and smoothing uxes. The aim is to �rst ast the methods into theform used above, �nding an expression for the operator R, and hene determineRH for the adjoint iterative sheme.Splitting the linear operator L into two partsLu � C u+Du;where Cu represents the invisid ux terms and Du represents the visous andsmoothing uxes, a preonditioned version of the partial-updateM -stage Runge-



7Kutta sheme used by Jameson [8℄ and others an be expressed asd(0) = 0u(0) = und(m) = �mDu(m�1) + (1��m) d(m�1)u(m) = u(0) + �mP �f � C u(m�1) � d(m)�un+1 = u(M) 9>=>; m = 1; 2; : : : ;M
(4.1)where �1 = �M = 1, and P is a preonditioning matrix whih in the simplestase is just the identity matrix saled by a loal timestep.De�ning r to be the residual at the beginning of the step,r = f � Lun;and de�ning the perturbation quantities~d(m) � d(m) �Dun; ~u(m) � u(m) � un;the algorithm an be re-expressed as~d(0) = �Dun~u(0) = 0~d(m) = �mD ~u(m�1) + (1��m) ~d(m�1)~u(m) = �mP �r � C ~u(m�1) � ~d(m)�un+1 = un + ~u(M) 9>=>; m = 1; 2; : : : ;M (4.2)

The advantage of this form is that it makes it lear that the algorithm �ts intothe standard form un+1 = un +R (f � Lun);analysed earlier, with the matrix R de�ned impliitly by the system of simulta-neous equations B0BBBBBBBBBBB�
~u(1)~d(2)~u(2)::~d(M)~u(M)

1CCCCCCCCCCCA = 0BBBBBBBBBBB�
�1P0�2P::0�MP

1CCCCCCCCCCCA (f � Lun)



8where
B = 0BBBBBBBBBBBBB�

I��2D I�2PC �2P I: : :: : :�(1��M) ��MD I�MPC �MP I
1CCCCCCCCCCCCCA ;from whih it follows that

R = � 0 0 0 : : 0 I � B�1 0BBBBBBBBBBB�
�1P0�2P::0�MP

1CCCCCCCCCCCA :Therefore,
RH = � �1PH 0 �2PH : : 0 �MPH � �BH��1 0BBBBBBBBBBB�

000::0I
1CCCCCCCCCCCA ;and so the adjoint time-marhing proedure is given byvn = vn+1 + MXm=1�mPH ~w(m)where the quantities ~w(m) are de�ned by

BH 0BBBBBBBBBBB�
~w(1)~d(2)~w(2)::~d(M)~w(M)

1CCCCCCCCCCCA = 0BBBBBBBBBBB�
000::0I
1CCCCCCCCCCCA�g � LH vn+1� ;



9whih in turn gives the algorithm~w(M) = g � LH vn+1~d(M) = ��MPH ~w(M)~w(m) = ��m+1CHPH ~w(m+1) + �m+1DH ~d(m+1)~d(m) = ��mPH ~w(m) + (1��m+1) ~d(m+1)vn = vn+1 + MXm=1�mPH ~w(m)
9>=>; m =M�1; : : : ; 2; 1:

(4.3)Changing variables to ~v(m) = PH ~w(m) gives the �nal form of the algorithm,~v(M) = PH �g � LH vn+1�~d(M) = ��M ~v(M)~v(m) = PH ���m+1CH~v(m+1) + �m+1DH ~d(m+1)�~d(m) = ��m~v(m) + (1��m+1) ~d(m+1)vn = vn+1 + MXm=1�m~v(m)
9>=>; m = M�1; : : : ; 2; 1:

(4.4)5 MultigridThe general analysis in Setion 3 is also appliable to the use of preonditionedmultigrid [10℄. In this ase, the operator R for the updating of the solution onthe �nest grid using alulations on the oarser grids an be expressed asR � P E T;where T represents the transfer (or restrition) of the �ne grid residual onto theoarser grid, E represents the evolution of the orretion on the oarser grid(whih may itself involves the use of even oarser grids) and P represents thetransfer (or prolongation) of the oarse grid hanges onto the �ne grid.For the adjoint iterative proess, one therefore hasRH = TH EH PH :The key observation here is that the restrition for the adjoint equations is thetranspose of the prolongation for the diret equations, and vie versa.



106 Numerial resultsAppendix A ontains a MATLAB program whih solves either a simple salaro.d.e. or an upwind approximation to the onvetion equation with a harmonisoure term, depending on the value of the parameter iase. In either ase, thediret problem is solved with two di�erent but mathematially equivalent forms ofthe diret solver, orresponding to Equations (4.1) and (4.2), and two equivalentforms of the adjoint solver, orresponding to Equations (4.3) and (4.4). In allases, the numerial results on�rm that the diret and adjoint solvers produethe same value for the funtional after the same number of iterations.The theory in this paper has also been tested with two FORTRAN programs,one of whih solves the linearised Navier-Stokes equations with a harmoni soureterm, and the other of whih solves the orresponding disrete adjoint equations.It proved to be an invaluable aid in debugging the two odes; one the bugs hadbeen �xed, idential values (to within mahine auray) for the funtional wereobtained after equal number of iterations of eah ode.7 Disussion and ConlusionsIn this paper we have developed an iterative proedure for solving disrete ad-joint equations. It is a true adjoint of a ommonly-used preonditioned Runge-Kutta time-marhing algorithm for the iterative solution of the original nonlinearequations, in the sense that one obtains exatly the same funtional after equalnumber of iterations of either the adjoint ode or the linearised ode on whih itis based. This guarantees that the iterative onvergene rate of the adjoint odeis idential to that of the linear ode, and the asymptoti onvergene rate of theoriginal nonlinear ode.It is hoped that, in onjuntion with Automati Di�erentiation tehniques,this will help the development of adjoint odes for a variety of design optimisationproblems whih require iterative solvers.AknowledgmentsMihai Duta ontributed greatly to the programming of the adjoint Navier-Stokesode and arried out most of the veri�ation of its equivalene to the linearisedNavier-Stokes ode.
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12 AppendixA MATLAB programnstep = 5;alfas(1) = 0.25;alfas(2) = 0.166666666667;alfas(3) = 0.375;alfas(4) = 0.5;alfas(5) = 1.0;betas(1) = 1.0;betas(2) = 0.0;betas(3) = 0.56;betas(4) = 0.0;betas(5) = 0.44;iase = input('enter iase value');if iase == 1niter = 2;D = 1;C = i;P = 2.0;f = 1;g = 1;elseif iase == 2niter = 5;N = 10;h = 1/N;omega = 0.1;e = ones(N,1);D = spdiags([-e 2*e -e℄, -1 : 1, N, N) * 0.5/h;C = spdiags([-e e℄, -1:2:1, N, N) * 0.5/h ...+ spdiags([ e ℄, 0 , N, N) * omega*i;D(N,N) = 0.5*D(N,N);C(N,N) = - C(N,N-1);P = 2.0*h + 0.01*i;f = ones(N,1);g = ones(N,1);endzero = zeros(size(f));



13%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% diret -- usual %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%u = zero;for it = 1:niteru0 = u;d = zero;for n = 1:nstepd = (1-betas(n))*d + betas(n)*D*u;u = u0 + alfas(n)*P*(f - C*u - d);endendg'*u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% diret -- new %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%u = zero;for it = 1:niterdu = zero;dd = zero;r = f - (C+D)*u;for n = 1:nstepdd = (1-betas(n))*dd + betas(n)*D*du;du = alfas(n)*P*(r - C*du - dd);end;u = u + du;endg'*u



14%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% adjoint -- new %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%v = zero;for it = 1:niterd = zero;r = g - (C+D)'*v;for n = nstep:-1:1d = d - alfas(n)*P'*r;v = v + alfas(n)*P'*r;r = - alfas(n)*C'*P'*r + betas(n)*D'*d;d = (1-betas(n))*d;end;end;v'*f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% adjoint -- new (re-arranged) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%v = zero;dd = zero;betas(nstep+1) = 1;for it = 1:niterfor n = nstep:-1:1if n == nstepdv = P'*(g-(C+D)'*v);elsedv = P'*(-alfas(n+1)*C'*dv + betas(n+1)*D'*dd);enddd = (1-betas(n+1))*dd - alfas(n)*dv;v = v + alfas(n)*dv;end;end;v'*f


