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1 Introduction

There is a long history of the use of adjoint equations in optimal control theory [26].
In fluid dynamics, the first use of adjoint equations for design was by Pironneau [33],
but within the field of aeronautical computational fluid dynamics, the use of adjoint
equations for design optimisation has been pioneered by Jameson [19,20,22] for the
potential flow, Euler and Navier-Stokes equations. The complexity of the applications
within these papers has also progressed from 2D airfoil optimisation, to 3D wing design
and finally to complete aircraft configurations [21,34,35]. A number of other research
groups have also developed adjoint CFD codes [24, 39, 4, 3, 8] using the same ‘continuous’
approach in which the first step is to linearise the original partial differential equations.
The adjoint p.d.e. and appropriate boundary conditions are then formulated, and finally
the equations are discretised. While this minimises the memory requirements and the
CPU cost per iteration, it requires one to develop an appropriate iterative solution
procedure, and this may not give as good a convergence rate as the original nonlinear
code. In addition, the debugging and validation of the adjoint code is complicated by
the lack of a suite of benchmark testcases.

The alternative ‘discrete’ approach, which we use, takes a discretisation of the Navier-
Stokes equations, linearises the discrete equations and then uses the transpose of the
linear operator to form the adjoint problem. This approach has been developed by Elliott
[11,10], Anderson [32,1], Mohammadi [29] and Kim [23]. The main advantage of this
approach, in our opinion, is that the code development becomes a more straightforward
process. The linearisation of the nonlinear discrete equations can either be performed
manually or by automatic differentiation software and the linear code can be validated by
direct comparison with the nonlinear code. Similarly, since the adjoint code is obtained
by transposing the linear operator, it must yield exactly the same values for the linearised
objective function, and so can be validated against the linear code.

For an excellent review of research on both continuous and discrete adjoint design
methods, see the paper by Newman et al [31].

In this paper we contribute to the development and understanding of discrete adjoint
methods in five respects:

e Discussion of the implementation of the adjoint code in a way which minimises the
memory and CPU requirements, and can be automated using automatic differen-
tiation tools;

e Development of an adjoint multigrid iteration procedure with preconditioned timestep-
ping which maintains exact equivalence between the linear and adjoint codes at
all times during the evolution of their respective solutions;

e A detailed discussion of the imposition of strong boundary conditions and the
inclusion of viscous stresses in objective functions and the consequence for the
formulation of the adjoint code;

e Development of a harmonic adjoint code which is the counterpart of a linear un-
steady code for a single frequency of unsteadiness, and which has applications in



turbomachinery blade design for reduced vibration due to forced response;

e A numerical investigation indicating the potential for problems with strong shocks.

This research forms part of the development of the HYDRA suite of codes. The
foundation is a nonlinear code which approximates the Reynolds-averaged Navier-Stokes
equations on unstructured hybrid grids, using an edge-based discretisation. The solution
procedure uses Runge-Kutta time-marching accelerated by Jacobi preconditioning and
multigrid [30], with dual-timestepping for unsteady flows.

The second code in the suite is for the linear analysis of unsteady flows. This is
based on a linearisation of the unsteady flow equations around the steady-state flow
conditions calculated by the nonlinear code. Due to linearity, unsteady periodic flows
can be decomposed into a sum of harmonic terms, each of which can be computed
independently. Thus, the linear harmonic code considers just one particular frequency
of unsteadiness, resulting in a formulation in which the purpose is to compute a complex
flow solution which represents the amplitude and phase of the unsteady flow. This is
explained in greater detail later in this paper.

The third code is the steady adjoint code, which again is based on a linearisation of
the flow equations around the nonlinear steady-state flow conditions. The fourth code,
which is an extension of the third, is the adjoint counterpart of the linear harmonic code.
It is the development of these codes that is the subject of this paper.

2 Discrete adjoint formulation

We start by considering the discrete nonlinear Euler equations with a weak imposition of
boundary conditions on solid walls through the specification of zero mass flux through
faces on the surface. If the far-field boundary conditions are also imposed through
far-field fluxes then the discrete system of equations which is solved is of the form

R(U,a) = 0.

Here U is the vector of flow field variables, a: represents one or more design variables
which control the geometry of the airfoil or wing (and hence the grid coordinates) and
R(U) represents the discrete flux residuals which are driven to zero by the iterative
solution process.

If there is just one design variable, then linearising the steady-state equations with
respect to a change in that design variable yields

Lu = f,
where OR dU OR
L=— = — = ——.
ou” " da’ / O
The corresponding perturbation in a nonlinear objective function J(U, «) is
~ 0J
J=g"u+—
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where

=50
In the adjoint approach, this same quantity can be obtained by evaluating

[
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where the adjoint solution v satisfies the equation
LTy =yg.
The equivalence of this formulation comes from the following identity.
vl f =0T Lu = (LTv)Tu = ¢ u.

If there are many design variables (each giving rise to a different vector f) and only
one objective (yielding a single vector g), then the benefit of the adjoint approach is that
the objective sensitivity .J can be obtained following a single evaluation of v instead of
separate evaluations of u for each f.

3 Implementation of adjoint discretisation
In the implementation, the linear operator L is split into two parts,
Lu=Cu+ Du. (3.1)

The first part represents the convective fluxes due to a Galerkin finite element discreti-
sation. The second part represents the smoothing fluxes (to which the viscous fluxes
are added later for the Navier-Stokes equations). The operator D can be further broken
down into the product of two operators,

Du=V_Gu,

where G computes the gradient and a pseudo-Laplacian of v at each node, in addition
to u itself.
The corresponding adjoint operator is

LTy = CTv+ DT,
with
D"y =G" VT,
indicating that the adjoint gradient routine is applied after the adjoint smoothing rou-
tine, which at first seems counter-intuitive.

At an even more detailed level, the action of each of the operators C', V and G is
computed by a loop over all edges in the unstructured grid. Therefore, taking C'u as



an example, we can express it as a sum of elemental edge matrices whose only non-zero
entries corresponds to the two nodes at either end of the edge,

Cu= Z C.u.
The adjoint version of this is simply

CTy = Z CTy,

corresponding to a similar loop over all edges.

For the convective fluxes, it is easy to compute the edge product CTv directly without
explicitly forming the matrix C,. The transposed gradient operator G is also easily for-
mulated. The product Vv presents greater difficulties. Elliott [11,10] precomputed and
stored the non-zero entries in the elemental matrices V., and then evaluated the matrix-
vector products V."v. However, the storage of these matrices for each edge requires a
substantial amount of memory. Anderson [1] avoided the memory cost by recomputing
the matrices during each iteration, but this greatly increases the CPU cost.

To minimise both the memory and CPU requirements, it is necessary to calculate the
edge product V."'v directly, as with C"v. The difficulty is in working out how best to do
this. One approach is to use AD (Automatic Differentiation) software such as Odyssée
[12], ADIFOR [5,7] or TAMC [13]. In forward mode, AD software takes the original
nonlinear code and then uses the basic rules of linearisation to construct the code to
evaluate V,u. In reverse mode, it produces the code to calculate V.Iv; it may seem
that this is a much harder task but in fact it is not. Furthermore, there are theoretical
results which guarantee that the number of floating point operations is no more than
three times that of the original nonlinear code [16].

Mohammadi used Odyssée to generate much of his adjoint code [29] but a lot of hand-
coding was still required. In our work we have written the adjoint code manually, but
following many of the techniques of automatic differentiation. To simplify the expressions
for the partial derivatives, we chose to use the primitive variables (density, velocity and
pressure) as our working variables, rather than the usual conservative variables. The
equations are still in conservative form so this choice of working variables has no effect
on the final solution.

The memory requirements for the adjoint code are 20-30% greater than for the non-
linear code, depending on the grid that is used. The CPU cost per iteration is only
10-20% greater than for the nonlinear code, with the increased cost of evaluating the
adjoint residuals partially offset by the fact that the Jacobian for the preconditioning
remains fixed.

Another important point concerns the evaluation of the term f, which is the source
term for the linear perturbation equations, and also appears in the linearised objective
function in the adjoint approach. Again, forward mode AD software could be used, but
a very much simpler alternative is to use the complex Taylor series expansion method
[37] used by Anderson and co-workers [2]. The essence of the idea is that
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In this equation, R(U,«) has been taken to be a complex analytic function, and the
notation Z{...} denotes the imaginary part of a complex quantity. The equation itself
is an immediate consequence of a Taylor series expansion. The convergence to the
limiting value is second order in € so numerical evaluation with e < 1078 yields double
precision accuracy. In practice, we use € = 10720, Unlike the usual finite difference
approximation of a linear sensitivity, there is no cancellation effect from the subtraction
of two quantities of similar magnitude, and therefore no unacceptable loss of accuracy due
to machine rounding error. Applying this technique to a FORTRAN code requires little
more than replacing all REAL*8 declarations by COMPLEX*16, and defining appropriate
complex analytic versions of the intrinsic functions min,max, abs.

We have also found this complex variable method to be extremely helpful during
program development. Because we have also written a linear perturbation code, we
have used it verify that each of the linear flux subroutines is consistent with the original
nonlinear flux subroutines, by checking the identity

Lu = lim TZ{R(U +ieu, a)},
e—0 €

for arbitrary choices of u. The l.h.s. is computed by the linear flux routines, and the
r.h.s. is computed by applying the complex variable method to the nonlinear flux rou-
tines. Having performed these checks, we then verified that the adjoint flux routines
were consistent with the linear routines by checking that the identity v” (L"v) = v" (Lu)
holds for any u, v.

If one were developing an adjoint code without first writing a linear perturbation
code, then these two steps could be combined into one to compare the adjoint routines
to the nonlinear flux routines to check for consistency.

4 Adjoint Solution Procedure

An important issue is how best to solve the adjoint equations. The eigenvalues of the
adjoint matrix LT are the same as those of the linear matrix L, and therefore one
is guaranteed to get the same convergence rate when using Krylov subspace iteration
methods such as GMRES, as used by Anderson [32,1]. On the other hand, if one uses
standard time-marching methods with multigrid, as are commonly used to solve the
nonlinear equations, it is not necessarily the case that the iterative convergence rate for
the adjoint solver will match that of the linear solver.

We have analysed this for our time-marching method which uses Jacobi precondi-
tioning with partial updates of the numerical smoothing fluxes (and the viscous fluxes
for the Navier-Stokes equations) at selected stages in the Runge-Kutta iteration [19].



One full step of the M-stage procedure for the linear equations can be expressed as

u® = n

d™ = BpDul™ ™ 4 (1= B,,) d™
u™ =4 4 q,,P (f - Culm=b — d(m))
un—l—l — U(M)

where 8 =a, =1, P is the Jacobi preconditioning matrix and C' and D are again the
convective and diffusive matrices whose sum is the linear matrix L, as in Equation (3.1).

The outcome of this analysis [14] is that if the adjoint equations are solved using the
following M-stage iterative procedure,

M) = pH (g — L7 v")

dOD — _q, 500

Hm) — pH (_aerlCHﬂ(erl) 4 BerlDHci(erl))

) = g 5 (1= ) d0HD)
M
=" 4 Z a,, 0™
m=1

then the value of the linearised objective function from the linear and adjoint codes is
not only identical once they have each converged to the final steady state, but it is also
identical after each Runge-Kutta timestep. Note that this iteration uses the transpose
of the Jacobi preconditioning matrix, and works “backwards” from m =M to m = 1.
If partial updating of the dissipative fluxes is not used, then it can be shown that this
reduces to the standard Runge-Kutta method, but with the transposed preconditioner.
However, with the use of partial updating, which is commonly employed to lower the
CPU cost, it requires quite a lengthy analysis to determine this form for the adjoint
iteration.

Furthermore, the analysis also extends to the use of multigrid, and shows that the
key here is that the restriction operator for the adjoint code must be the transpose
of the prolongation operator for the linear code, and wice versa, and the number of
pre-smoothing iterations for the adjoint code must equal the number of post-smoothing
iterations for the linear code, and vice versa. Provided these two conditions are satisfied,
the linear and adjoint codes produce identical values for the functional after the same
number of multigrid cycles.

This result is important for two reasons. The first is that it guarantees that the
adjoint code converges, and that it does so with the same rate of convergence as the
linear code, which is itself equal to the asymptotic rate of convergence of the nonlinear
code. Thus the adjoint code benefits from the wealth of experience and fine tuning of
iterative procedures for nonlinear codes. The second reason is that it provides another
validation check on the correct implementation of the adjoint code. If the linear and



adjoint codes do not produce identical values for the functional after one timestep, it
indicates a programming error.

5 Strong boundary conditions

Although it is possible to solve the Euler equations with solid wall boundary conditions
imposed weakly by specifying zero mass flux through the wall faces, it is more common
when there are grid nodes on the wall to use strong boundary conditions and force
the normal component of the velocity at surface nodes to be zero. In doing so, the
normal component of the momentum equation flux residual is discarded. Similarly, in
discretising the Navier-Stokes equations, the entire velocity at the surface nodes is set to
zero, and all components of the momentum residual are discarded. Thus in both cases
the equations which are solved are actually of the form

(I-B) R(U) =0,
BU =0.

Here I is the identity matrix and B is a projection matrix which in the case of the Euler
equations extracts the normal component of the boundary velocity, and in the case of
the Navier-Stokes equations extracts the entire boundary velocity. The presence of the
term (I — B) reflects the discarding of the appropriate flux residual components, to be
replaced by the strong boundary conditions BU = 0.

When considering linear perturbations to these equations, we obtain

(I-B)(Lu—f) =0,
Bu=b,

where b is a boundary velocity which is zero for the Navier-Stokes equations but non-zero
for the Euler equations due to a rotation in the surface normal.
These two equations can be combined to form

(I-B)L+ B)u= (I-B)f +b, (5.1)

and the appropriate adjoint equation is then found by transposing the linear operator,
noting that B is symmetric, to obtain

(L"(I-B)+ B)v=g. (5.2)

At this point it is convenient to decompose both v and ¢ into orthogonal components
as

v=(I-B)v+ Bv =y +uvy,
9=U=B)g+Bg=g+9.
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Pre-multiplying Equation (5.2) by (/—B) shows that v satisfies the adjoint equations

(I-B)L"v = g,
B U” = 0.

These are the equations which are solved iteratively by the adjoint code. Then, once v
has been computed, v is calculated in a post-processing step using an equation obtained
by pre-multiplying Equation (5.2) by B:

v, =g —BL"y,. (5.3)
Having computed v, and v, the linearised functional is given by

~ 0.J
J:UT((I—B)f—i-b)—l-a—a

= v{ f+vib+ g—i.
This shows that v, gives the sensitivity of the functional to the boundary condition b
which arises from the rotation of the boundary normal in the case of inviscid flows.
Note that v, does not correspond to the normal momentum component of the ana-
lytic adjoint solution at the boundary. Hence for visualisation purposes, it is desirable
to replace v, by the analytic boundary condition,

Uinalytlc —

whcih would normally be employed using a “continuous” formulation. Here h is zero
everywhere except on the solid wall, where it corresponds to the sensitivity of the func-
tional to the addition of momentum on the surface. In the case of a lift functional, for
example, the element of A at a surface node n is

0
hn = I )
0
with 7" being the unit vector in the lift direction.

6 Residual contributions to the functional

If the functional of interest is a force, such as lift or drag, we have to include the surface
momentum residuals, which are discarded in imposing the strong boundary conditions,
in order to have a complete force balance. Indeed, for viscous calculations, it is the
tangential component of these residuals which corresponds to the viscous shear stress.
i.e. one defines the surface shear stress to have the value which is necessary to make the
tangential momentum residual equal to zero.
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Figure 1: Variation in third adjoint component in y-direction for a subsonic NACA(0012
test case, with and without residual contributions to the functional

The nonlinear functional is thus of the form
J=J,(U)+h"BR(U), (6.1)

where J, corresponds to the force due to the pressure distribution on the body and h
is again the vector which takes the component of the discarded momentum residuals in
the selected force direction (e.g. the direction normal to the freestream in the case of
lift).

The corresponding linearised functional is

~ oJ
T T
J=g,u+h BLU+8_a’ (6.2)
where 57
r—=-"p 6.3
gp aU ) ( )
and so we obtain
g=g,+ L"Bh. (6.4)

Fortunately, the second term in this equation can be computed in a pre-processing step
using the adjoint flux routines.

The inclusion of the extra term makes a dramatic improvement to the quality of the
adjoint solution near the surface, as illustrated in Figure 1 for a subsonic NACA(0012
test case to be discussed later in more detail. To understand why it makes such a
difference, it is important to remember that the adjoint variables correspond to the
linearised effect of mass, momentum and energy sources on the functional of interest.
Therefore, it is helpful to consider what happens in the linearised flow calculation when
normal momentum is added close to a wall, as shown in Figure 2.

The effect of the momentum addition on the far field flow solution will be negligi-
ble. Therefore, with a conservative treatment, through the inclusion of the discarded
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Figure 2: Diagram showing three possible locations of momentum injection close to a
wall.

momentum residuals, the linear code will correctly predict that the change in the lift
is equal and opposite to the addition of normal momentum, regardless of the location
of the momentum addition. On the other hand, without the inclusion of the discarded
residuals, the addition of momentum at point A, right next to the wall, will have zero
effect on the functional because it will contribute solely to the momentum residuals at
surface nodes. Similarly, addition at point B will have some effect on the residuals at
nearby surface points; if these are not included in the functional then the influence on
the functional must be incorrect. Only at point C, well away from the surface, will
the effect on the surface residuals be very small and so the effect on the functional is
correctly captured without the inclusion of the discarded residuals.

7 Harmonic adjoint

In analysing unsteady flow in turbomachinery, it is now common to use linearised Euler
and Navier-Stokes methods which treat the unsteadiness as a linear perturbation to a
nonlinear mean flow [17,28, 27, 38, 18|.

For forced response problems, in which the unsteadiness is due to periodic unsteady
inflow or outflow boundary conditions, the original nonlinear unsteady discrete equations

may be written as

dU
M—+R({U) =0

where M is a block-diagonal mass matrix. Expressing U(t) as the sum of a steady part
plus a small amplitude perturbation

Ut) =U+u(t), |[[ull<|U]

and linearising the equations gives

du o~
M—+ Lu =
where OR
L=—

oU’
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and fis zero except at the inflow and outflow boundary nodes where it gives the residual
perturbations due to the incoming disturbances. B
By the principle of linear superposition, the periodic input f(¢) can be decomposed
into the sum of a number of harmonic terms each of which can be written as the real
part of a complex quantity of the form
ity =r{F}.
Making a similar decomposition for the response u(t) yields the complex harmonic equa-
tions R
(iwM+ L)u = f.
In the case of unsteadiness due to the periodic vibration of the blades, the grid nodes
all oscillate with the blades. Therefore, the nonlinear equations are best written as

M (x) v + R(U,z,%) =0,
dt
to emphasise that the mass matrix and residuals depend on the grid coordinates, and
the cell residual has additional flux terms due to the motion of the grid. Performing the
same steps of linearisation and harmonic substitution then yields the same equations as
before, with M and L being based on the undisturbed grid coordinates and flow, but

with fdeﬁned as
~ OR_ . OR_
f= oy L T lw®
due to the linearised motion of the grid.

One important engineering concern is the level of vibration caused by the incom-
ing wakes. To determine this, one needs to compute a surface integral known as the
“worksum”. Following the theory of Lagrangian mechanics, this is the virtual work as-
sociated with the displacement of a particular natural mode of vibration of the blade.

Numerically, it requires the computation of an inner product of the form

9",
where the superscript H denotes the complex conjugate transpose. The vector ¢ is non-
zero everywhere except at the grid nodes on the surface of the blade where it corresponds
to the vibration mode being considered.
The adjoint alternative is to evaluate the inner product

ot
where the adjoint variables v satisfy the adjoint equation
(iwM + L)" 5 = 7.

The implementation of this harmonic adjoint analysis is extremely similar to the
usual steady adjoint analysis. The main differences are the coupled computation of the
real and imaginary components of the complex variables v, and the use of phase-lagged
periodic boundary conditions [9].



14

0.2

0.151

v

0.05¢

cl

-0.05

0 02 04 06 08 1 1.2
angle of attack

Figure 3: () vs. angle of attack for a NACA 0012 profile at M = 0.68.

8 Validation cases

8.1 Inviscid flow over NACA 0012 airfoil

The first two test cases consider steady inviscid flow over a NACA 0012 airfoil. The
circles in Figure 3 show the lift coefficient obtained from the nonlinear code plotted
against angle of attack at a freestream Mach number of 0.68. The angle of attack
variation is achieved by rotating the airfoil as well as the points on and near the airfoil
surface. Doing this in a linearised sense gives the geometric perturbations required for
the source terms in the linear code and the functional in the adjoint code. The lines in
Figure 3 are the lift slope obtained from the linear and adjoint codes, with the base flow
in each case being the nonlinear flow conditions at the angle of attack at the mid-point
of the line. The agreement between the nonlinear and linear/adjoint results looks quite
good. To quantify this, Table 1 shows the nonlinear, linear and adjoint sensitivities at
0° angle of attack. The different nonlinear sensitivities are obtained by finite difference
approximation over different intervals. There is perfect agreement between the linear
and adjoint sensitivities, and the agreement with the nonlinear sensitivities is within the
range one would expect give the errors inherent in finite difference approximation of the
nonlinear sensitivities.

An interesting situation arises at higher Mach numbers at which there are strong
shocks. Figure 4 shows the Mach contours for the NACA 0012 at an angle of attack of
1° and an increased Mach number of 0.85. There are now two shocks, with the maximum
local Mach number reaching approximately 1.45 on the supersonic side of the suction
surface shock. The circles in Figure 5 show the nonlinear lift coefficients over a limited
range of angles of attack. The line in this figure is a linear regression least-square fit of
the nonlinear data. The results indicate a peculiar lack of smoothness in the nonlinear
data; this is shown more clearly in Figure 6 which plots the difference between the
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« Jcr, [0
nonlinear | 0.0-0.1 | 0.17778
0.0-0.2 | 0.176174
0.0-0.5 | 0.1760996
0.0-1.0 | 0.1764888
linear 0.0 0.1756657
adjoint 0.0 0.1756657

Table 1: Sensitivity of the lift to angle of attack for a NACA 0012 profile at M = 0.68
around 0° angle of attack.

Figure 4: Mach contours for NACA 0012 at M = 0.85.

nonlinear data and the linear regression.

The key point is that there is no physical justification for the loss of smoothness. It
appears to be a purely numerical artifact that is probably related to the displacement
of the shock as the angle of attack changes. Therefore, the slope of the linear regression
line is probably the best representation of the true lift slope. However, the linear/adjoint
codes give lift slopes that correspond to the local derivative of the nonlinear data. Fig-
ure 7 plots the difference between the linear/adjoint slopes and the slope of the linear
regression, showing a large discrepancy around 1.17° where the local derivative of the
nonlinear data differs significantly from the linear regression value. Figure 8 plots the
number of multigrid cycles required to converge the nonlinear code to a very tight tol-
erance. Interestingly, the number of cycles increases substantially around 1.17°. This
suggests that the linearisation matrix may be almost singular, which could be related
to the fact that small changes in the angle of attack produce larger changes in the lift
than one would otherwise expect.

This observation of limitations with the application of linear methods to flows with
strong shocks may be primarily of academic interest, and not of engineering concern.



16

0.4

0.39r

0.381 4

0.37r

cl

0.361

0.35¢

0.341

0.95 1 1.05 1.1 1.15 1.2
angle of attack

Figure 5: C} vs. angle of attack for NACA 0012 at M = 0.85.
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o dey, [0
nonlinear | 1.40-2.40 | 0.1815048
1.90-2.40 | 0.1772154
2.15-2.40 | 0.1742684
2.40-2.65 | 0.1713676
2.40-2.90 | 0.1644908
2.40-3.40 | 0.1398736
linear 2.40 0.1680554
adjoint 2.40 0.1680554

Table 2: Sensitivity of the lift for a RAE 2822 profile at M = 0.725, Re = 6.5x 10°
around 2.4° angle of attack.

Most aeronautical applications do not have such strong normal shocks, and with weaker
shocks with a peak normal Mach number of less than 1.3 we have not observed a similar
phenomenon. However, it may be necessary to look more closely at the issue of linearised
shock displacement, and to use more numerical smoothing at shocks to obtain the correct
linear sensitivity [25].

8.2 Turbulent flow over RAE 2822 airfoil

Figure 9 presents the Mach contours for the Reynolds-averaged flow over the RAE 2822
airfoil at angle of attack a = 2.4°, freestream Mach number M = 0.725 and Reynolds
number Re = 6.5 x 105 The turbulence is modeled using a Spalart-Allmaras single
equation model. The circles in Figure 10 show the sensitivity of the variation in the lift
coefficient with changes in the angle of attack. The lines correspond to the lift slopes
computed by the linear and adjoint codes, which are again in perfect agreement with each
other. There is no evidence of any lack of smoothness in the nonlinear lift predictions,
and the linear/adjoint codes give lift slopes which are in very good agreement with the
nonlinear results. This is quantified in Table 2 using finite differences to estimate the
nonlinear lift slope at a = 2.4°.

Figure 11 shows the convergence histories for the non-linear, linear and adjoint codes
for the RAE 2822 testcase at o = 2.4°. As expected, they all exhibit the same asymptotic
convergence rate.

8.3 Turbomachinery wake interaction

The linear harmonic code has been validated against a number of test cases. Figure 12
shows results for unsteady wake interaction with a 2D cascade of flat plate airfoils. Real
and imaginary components of the complex pressure jump across one blade are compared
with the results from the LINSUB [40] which implements the analytic theory of Smith
[36].



Figure 9: Mach contours for a RAE 2822 profile at M = 0.725, Re = 6.5x105.
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Figure 10: Lift vs. angle of attack for a RAE 2822 profile at M = 0.725, Re = 6.5x 10°.
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Figure 11: Convergence histories for the nonlinear, linear and adjoint codes for a RAE
2822 profile at M = 0.725, Re = 6.5 x 105,

Figure 13 demonstrates the variation in the bending mode worksum as the wake
pitch is changed (representing modifications both the inter-blade phase angle and the
frequency of the unsteadiness). The results show that the linear harmonic and adjoint
harmonic codes produce identical values for the worksum, and these are in good agree-
ment with the analytic values produced by LINSUB.

For further validation cases, and an example of the usefulness of the adjoint method
for design of blades with reduced forced response, see Duta et al [9, 6].

9 Conclusions

In this paper we have presented a number of algorithm developments concerned with
the formulation and solution of adjoint FEuler and Navier-Stokes equations using the
discrete approach. These include the treatment of strong boundary conditions and the
associated adjoint boundary conditions for lift and drag functionals, as well as a Runge-
Kutta time-marching scheme that ensures exact equivalence with a linear perturbation
code throughout the convergence process. This property guarantees the same asymptotic
convergence rate for nonlinear, linear and adjoint solvers, as well as being very useful
during code validation.
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