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31 Introdu
tion1.1 Output fun
tionalsWhy do engineers perform CFD 
al
ulations? In the 
ase of a transport air
raft at
ruise 
onditions, a 
al
ulation might be performed to investigate whether there is anadverse pressure gradient near the leading edge of the wing, 
ausing boundary layerseparation and premature transition. Alternatively, one might be 
on
erned aboutwing/pylon/na
elle integration, in whi
h 
ase one might be looking to see if there areany sho
ks on the pylon, leading to una

eptable integration losses. In both of theseexamples, qualitative information is being obtained from the 
omputed 
ow �eld to un-derstand and interpret the impa
t of the phenomena on the quantitative outputs of most
on
ern to the aeronauti
al engineer, the lift and drag on the air
raft. The quality ofthe CFD 
al
ulation is judged, �rst and foremost, by the a

ura
y of the lift and dragpredi
tions. The details of the 
ow �eld are mu
h less important, and are used in a morequalitative manner to suggest ways in whi
h the design may be modi�ed to improve thelift or drag. This fo
us on a few output quantities is even 
learer in design optimisation,when one is trying to optimise a single obje
tive fun
tion, possibly subje
t to a numberof 
onstraints.This interest in integral outputs, also referred to as fun
tionals, arises in many ap-pli
ations of CFD. O

asionally, volume integrals are of importan
e. For example, theinfra-red signature of a military air
raft will depend in part on a volume integral of somefun
tion of the temperature in the thermal wake behind the air
raft. However, usuallyit is surfa
e integrals that are of most 
on
ern, as with lift and drag. Other aeronauti
alexamples in
lude: the roll moment produ
ed by aileron de
e
tion; the mass 
ow througha 
ompressor blade row; the out
ow 
ux of nitrous oxides from a 
ombustor; the totalheat 
ux into a high pressure turbine blade from the surrounding 
ow; average noiselevels on the ground due to an air
raft landing or taking o�.The idea of output fun
tionals is 
entral to these le
ture notes; they are 
on
ernedspe
i�
ally with the analysis of the numeri
al error in these fun
tionals, and a parti
ularmethod of 
orre
tion that very greatly redu
es the error, typi
ally doubling the order ofa

ura
y for the fun
tional relative to the underlying 
ow solution. This distinguishesthis kind of error analysis from other approa
hes that fo
us on the maximum, root-mean-square or some other measure of the error in the whole 
ow �eld. The problem withsu
h measures is that they 
an have little relation to the errors in the integral outputsof primary 
on
ern to the engineer.As an example, 
onsider the wake behind a wing. To adequately resolve the wakerequires a �ne grid lo
ally, but it is often the 
ase that the 
omputed wake a 
hord or twodownstream of the wing passes into a region in whi
h the grid resolution is rather 
oarse.Grid adaptation based on error estimates that look at the whole solution, possibly bylooking at the lo
al trun
ation error, would 
ause the grid to be further re�ned in thisregion. However, the in
uen
e of errors in this region on the 
omputed lift and dragwould be very small, and a mu
h greater redu
tion in the lift and drag errors 
ouldprobably be a
hieved by adding the grid re�nement 
loser to the wing, possibly near the



4leading and trailing edge where very small errors 
an have an enormous impa
t on thelift and drag.1.2 A priori and a posteriori error analysisThe adjoint error 
orre
tion te
hnique to be des
ribed later is applied as a post-pro
essingstep, and so it �ts into the framework of a posteriori error analysis. This is error analysisbased on the 
omputed 
ow solution, as opposed to a priori error analysis that is basedon some (usually limited) knowledge of the analyti
 solution without the bene�t of anynumeri
al solution.A priori error analysis leads to an error bound of the formError < 
hpwhere h is the representative grid spa
ing, and 
; p are positive 
onstants that do notdepend on h.The main point of a priori error analysis is �nding the value of p, whi
h determineshow rapidly the error redu
es as the 
omputational grid is re�ned, uniformly. For most�nite di�eren
e and �nite volume methods, the error in output fun
tionals is of the sameorder as the error in the 
ow solution, so it does not matter whi
h error is 
onsidered.On stru
tured grids with smooth 
ow solutions, the solution error is proportional to thetrun
ation error and its order 
an be relatively easily determined.The value of the other 
onstant 
 depends on the details of the analyti
 problembeing solved, the geometry of the 
omputational domain, the boundary 
onditions, et
.It is extremely diÆ
ult to get a good value for 
 for anything but the simplest problems.Ridi
ulously large values su
h as 1010 are not un
ommon in the literature. This makesthe error bound useless in any pra
ti
al sense, and as a 
onsequen
e there is often noattempt made to evaluate 
.One area in whi
h a priori error analysis is very helpful is appli
ations with singu-larities in the solution. For su
h problems, 
areful analysis 
an reveal the degree of lo
algrid re�nement that is required to re
over the order of a

ura
y (expressed as a fun
tionof the total number of grid points) that would be obtained for non-singular solutions.With a posteriori error analysis, ideally one would like a guaranteed error bound ofthe form Error < e(uh)where e(uh) is a 
omputable fun
tion of the numeri
al solution uh. If the error being
onsidered is the error in the lift from a CFD 
al
ulation, this would enable an engineerto perform a 
al
ulation and know, with 
omplete 
ertainty, that the true value for thelift lay within 
ertain limits.For su
h a bound to be of use, it needs to be tight. The eÆ
ien
y or tightness of thebound is measured by the ratio e(uh)=Error. A value of 1 is perfe
t. In the range 2{10,it is useful, but if it were more than 1000 then it would be fairly useless for pra
ti
alpurposes.



5Although guaranteed error bounds are the ideal, in pra
ti
e they are extremely diÆ-
ult to obtain for anything but the simplest of problems. Nonlinearity 
auses parti
ulardiÆ
ulties. Therefore, most a posteriori bounds are asymptoti
, so thatError < e(uh) for all h < h0The problem is that the value of h0 is not known. All that is known is that a positive h0does exist, below whi
h the asymptoti
 error bound will be valid. However, above thisvalue the error may ex
eed the error bound.As an example, if Error = 1:36 h2 + 0:77 h4;then 1:37 h2 is an asymptoti
 bound that is valid for h2 < 0:01=0:77, but ex
eeded whenh = 1.The distin
tion between guaranteed and asymptoti
 bounds is important. Withasymptoti
 bounds, a user must exer
ise their judgement to de
ide whether the gridis suÆ
iently �ne that the bound is likely to be valid. With 
omplex geometries and
omplex 
ow �elds, this is not easy, parti
ularly for a novi
e user. On the other hand,with a guaranteed bound one 
ould start with an extremely 
oarse grid, and then use theguaranteed error bounds to drive grid adaptation until it produ
es a numeri
al solutionwithin a user-spe
i�ed toleran
e. This would require no user judgement other than the
hoi
e of the error toleran
e.We 
on
lude this dis
ussion of error bounds with a 
omment on the issue of errorbounds versus error 
orre
tion. Error bounds based on adjoint solutions require a similarlevel of 
omputational e�ort to the adjoint error 
orre
tion to be dis
ussed in these notes.If one has a pre
ise estimate of the error, this 
ould be used to form a near-perfe
tasymptoti
 error bound, or it 
ould be used to 
orre
t the leading order terms in theerror and thereby obtain a solution with a higher order of a

ura
y. The latter approa
his the one that we follow.1.3 An introdu
tion to adjointsThe use of adjoints lies at the heart of error analysis for output fun
tionals. The maintheory will use adjoint di�erential equations, but here we introdu
e the ideas at analgebrai
 level.Suppose we want to 
al
ulate the value of a ve
tor s
alar produ
tgTu;where the ve
tor u is the solution of the system of linear equationsAu = f:An equivalent dual treatment is to evaluate the produ
tvTf;



6where the v is the solution of the adjoint (or dual) equationsATv = g;The equivalen
e of the two 
al
ulations 
omes from the simple identityvT (Au) = (ATv)Tu; (1.1)from whi
h it follows that vTf = gTu:So, to obtain a linear output fun
tional from the solution of a linear system ofequations, we 
an either solve the original equations (sometimes referred to as the primalequations) or solve the adjoint (dual) equations.This simple result is the basis for all that follows later. With di�erential equations,the ve
tor produ
t be
omes an integral inner produ
t, the transposed matrixAT be
omesthe adjoint di�erential operator, and the adjoint identity in
ludes 
ertain boundaryintegral terms, but in essen
e the equivalen
e is the same.When the output is desired for a single f and g, there is no bene�t in using theadjoint approa
h. Either method requires the solution of a linear system of equationsof the same dimension, with the same 
omputational 
ost. The bene�t arises when thevalue of the output is wanted for a single g but several di�erent ve
tors f . The dire
tapproa
h would require the solution of the primal equations for ea
h value of f , greatlyin
reasing the 
omputational 
ost, whereas the dual approa
h would still require justone adjoint 
al
ulation, to be followed by an inexpensive ve
tor produ
t vTf , for ea
hf . We are now going to look at how this result 
an be used in two di�erent 
ontexts:design optimisation and error analysis. The motivation for beginning with design opti-misation is that this is the primary reason why many resear
h groups within a
ademiaand industry are developing adjoint Euler and Navier-Stokes 
odes. Design optimisationhas a 
lear industrial \pay-o�", whereas the bene�ts of good error analysis are yet tobe appre
iated. For the same reason, design optimisation is also the most widely knownappli
ation for the use of adjoints.1.3.1 Design optimisationConsider design optimisation using the `dis
rete' algebrai
 approa
h [18, 17, 45, 1, 43, 20℄,as opposed to the `
ontinuous' di�erential approa
h [34, 39, 59, 5, 35, 37℄; see [22, 31℄ for adis
ussion of their relative merits and [46℄ for an ex
ellent review of resear
h on adjointdesign methods.The starting point of the dis
rete approa
h is that U , the 
ow variables at a dis
reteset of points with 
oordinates X, is the solution of a system of nonlinear equationsN(U;X) = 0;that 
ome from the dis
retisation of the Euler or Navier-Stokes equations, together withappropriate boundary 
onditions.



7Through the grid generation pro
ess, the grid 
oordinates depend on � whi
h repre-sents one or more geometri
 design variables. In wing design, for example, perturbationsto � might 
hange the thi
kness distribution and the 
amber of the wing. If there is onlyone design variable �, we 
an linearise about a 
ow solution for the baseline geometryto obtain Au = fwhere u is the sensitivity of the 
ow �eld to 
hanges in �,u � dUd� ;and A = �N�U ; f = ��N�X dXd� :The aim of design optimisation is to minimise some obje
tive fun
tion J(U;X) whi
h,for example, might be a dis
rete approximation to the drag. Linearising this fun
tiongives dJd� = gTu+ �J�X dXd� ;where gT = �J�U :In the adjoint approa
h, this sensitivity of the obje
tive fun
tion to 
hanges in � isobtained from dJd� = vTf + �J�X dXd� ;where v satis�es the adjoint equations ATv = g:If there are several design variables, ea
h has a di�erent f , but the same g, so the adjointapproa
h is mu
h 
heaper, requiring the solution of just one adjoint set of equations.1.3.2 Error analysisWe now return to the original problem of evaluating gTu with u being the solution ofthe linear equations Au = f:The 
orresponding dual problem whi
h is to evaluate vTf where v is the solution of theadjoint equations ATv = g:



8 Suppose we have approximate solutions ~u; ~v to ea
h of these equations. We 
an thenobtain the following result.gTu = gT ~u+ gT (u�~u)= gT ~u+ vTA (u�~u)= gT ~u+ ~vTA (u�~u) + (v�~v)TA (u�~u)= gT ~u� ~vT (A~u�f) + (v�~v)TA (u�~u): (1.2)The �rst of the three terms in the �nal result is the value of the fun
tional using theapproximate solution ~u. The se
ond term is also 
omputable sin
e it involves the knownapproximate solutions ~u and ~v.The third term is not 
omputable if the exa
t solutions u and v are not known.However, if ~u and ~v are 
lose approximations to u and v, respe
tively, then the third termwill be very small. Thus, the sum of the �rst two terms gives a very good approximationto the true value of gTu { a mu
h better approximation in general than gT ~u.Note the form of the se
ond term, whi
h we refer to as the adjoint error 
orre
tionterm. A~u�f is the residual error in solving the equations Au = f . The approximateadjoint solution ~v provides the appropriate weighting for the residual error, giving thee�e
t of the residual error on the output fun
tional of interest. This inner produ
t of aresidual error and an adjoint weighting will be repeated throughout these notes.To take it a step further, suppose now that we want to evaluate a nonlinear fun
tionJ(U), where U is the solution of the nonlinear equationsN(U) = 0:Given an approximate solution eU , we de�ne u to be the solution error,u = eU � U;and then linearise both the nonlinear equations and the fun
tional to obtainAu � f;where A = �N�U ; f = �N(eU ):and J(U) � J(eU) + gTu;where gT = �J�U :If v is de�ned to satisfy the adjoint equationATv = g;



9then we obtain J(U) � J(eU) + vTf � J(eU)� vTN(eU ):Hen
e, the quantity J(eU)� vTN(eU)is a more a

urate estimate for J(U) than J(eU) alone. Again note that the adjoint error
orre
tion term is a produ
t of an approximate adjoint solution and the residual errorfrom the original nonlinear equations.1.3.3 Automati
 di�erentiationAn introdu
tion to adjoints would not be 
omplete without a mention of Automati
Di�erentiation (AD). This is a te
hnique, implemented in a number of software pa
kages,that starts with a 
ode to 
ompute a nonlinear ve
tor fun
tion F (U), and automati
allygenerates 
odes to 
ompute either �F�U ~ufor any ~u (forward mode), or ��F�U�T�vfor any �v (reverse mode).The forward mode is relatively easy to understand. A 
omputer 
ode 
an be de
om-posed into a sequen
e of binary operations
 = op(a; b);where the operation is addition, subtra
tion, multipli
ation or division, plus a few uni-tary operations 
 = fn(a);where the fun
tion may be, for example, an exponential or a logarithm. If we treat uni-tary operations as a spe
ial 
ase of binary operations, then linearising a binary operationgives ~
 = �
�a ~a + �
�b ~b = ��
�a �
�b�� ~a~b � :The forward mode AD software inserts the instru
tions to 
ompute �
�a and �
�b andevaluate the output sensitivity ~
 given the sensitivities of the two inputs. Carrying thisout throughout the 
ode gives the linear sensitivity of the output of the whole 
ode toa spe
i�ed 
ombination of linear perturbations to the inputs.The reverse mode AD software performs a task that seems mu
h harder than theforward mode, but in fa
t it is only slightly harder. Looking again at the single binaryinstru
tion, suppose for simpli
ity that the variables a; b; 
 are used only on
e during



10the whole 
ode. Let �a;�b; �
 denote the sensitivity of the output of the whole 
ode toperturbations in a; b; 
. These are then related by the equation� �a�b � = ��
�a �
�b�T �
;whi
h is the transpose of the linear sensitivity equation. The tri
ky thing with thereverse mode is that the adjoint steps have to be performed in the reverse order to theoriginal nonlinear 
ode. Therefore the AD software has to generate temporary storagefor ea
h operation in whi
h to keep the linearisation 
oeÆ
ients su
h as �
�a and �
�b . Otherthan this, the 
omputational 
ost of reverse mode AD is similar to forward mode AD,typi
ally no more than a fa
tor 4 greater than the original nonlinear 
ode.The main AD pa
kages are ADIFOR [3℄, Odyss�ee [19℄ and TAMC [25℄. For furtherinformation, the reader is referred to the do
umentation for ea
h of these, and theex
ellent book by Griewank [32℄, one of the original developers of ADIFOR.The signi�
an
e of these pa
kages is that they 
an greatly simplify the task of writingan adjoint CFD 
ode. For examples of the use of AD to generate su
h 
odes see [43, 42,16℄. However, there are limitations to their ability to 
arry out automati
 di�erentiationof 
odes that use iterative solvers [24℄, so it is best to view them as aides rather than abla
k-box solution.1.4 A brief overview of the literatureHere we give a very brief overview of some of the main developments in the literature
on
erning the use of adjoints for error analysis.The subje
t begins in 1967 with the work of Aubin and Nits
he (see [55℄), who used asuitably de�ned adjoint problem to derive a priori optimal order proofs of L2 
onvergen
eof �nite element approximations of ellipti
 p.d.e.'s. In 1978, Babu�ska and Rheinboldt[11, 10℄ built on this to develop an a posteriori error analysis that they applied to �niteelement approximations of the Poisson and Cau
hy-Riemann equations.In 1984, Babu�ska and Miller [7, 8℄ were perhaps the �rst to fo
us attention on integralfun
tional outputs. Be
ause their primary interest was in point fun
tionals su
h as themaximum stress in stru
tural analysis appli
ations, they used \extra
tion fun
tions" to
onvert the point quantities into integrals. A key feature of these papers is the a priorianalysis of the super
onvergen
e of the �nite element approximations of the integralfun
tionals. This will be dis
ussed later in these le
ture notes, but the essen
e is thatthe adjoint error 
orre
tion term outlined previously is zero be
ause of a parti
ularfeature of Galerkin �nite element methods known as \Galerkin orthogonality". As aresult, the order of a

ura
y of the values for integral fun
tionals is roughly double thatof the underlying �nite element solution.In extending this work to the 
onve
tion-di�usion equation, Barrett and Elliott [4℄were the �rst to analyse a problem that is not self-adjoint, (i.e. one for whi
h the adjointdi�erential operator is not the same as the original di�erential operator). This step wasvital for CFD appli
ations, none of whi
h are self-adjoint.



11The late 1990's saw an explosion of interest and resear
h into a posteriori analysisof errors in integral fun
tionals and related methods for optimal grid adaptation. S�uli[26, 44, 58, 33℄, Johnson [36, 38℄ and Ranna
her and Be
ker [12, 13, 14, 54, 6, 15℄ have used�nite element methods that exhibit natural super
onvergen
e and have fo
ussed theirattention on using a posteriori error bounds to derive good grid adaptation indi
ators.In outline, their approa
hes are similar, but with signi�
ant di�eren
es in the details.Patera and Peraire [51, 53, 52℄ also fo
us on �nite element methods, but they usea 
ompletely di�erent a posteriori approa
h to derive error bounds for the fun
tional
omputed on a \truth mesh" that is de�ned to be suÆ
iently �ne that the dis
retisationerrors may be negle
ted. Yet another approa
h for bounding the errors in fun
tionaloutputs from �nite element methods is that of Oden and Prudhomme [47, 48℄.These le
ture notes 
over the adjoint error 
orre
tion ideas developed by Giles andPier
e [28, 29, 50, 23℄. One way in whi
h they may be viewed is that they extend to �nitevolume methods the super
onvergen
e that is natural for many �nite element methods.This is a
hieved through the expli
it evaluation of the adjoint 
orre
tion term whi
h isnon-zero be
ause of the la
k of \orthogonality". However, as will be shown later, it isalso possible to apply the te
hnique with �nite element solutions to obtain fun
tionalvalues that are even more a

urate than the super
onvergent values that arise naturallyfrom the �nite element 
omputation.Venditti & Darmofal [60, 61℄ have used an algebrai
 version of the adjoint error
orre
tion to 
orre
t the fun
tional errors 
omputed on a \truth mesh" using a solutioninterpolated from the original mesh. They have also used the approa
h to derive gridadaptation 
riteria. This will be dis
ussed later in these notes, and sample results willbe shown.



122 Linear adjoint error 
orre
tionIn this se
tion we develop the adjoint 
orre
tion theory for linear di�erential equations.We begin with a restri
ted version without boundary terms be
ause it has the greatestsimilarity to the algebrai
 error 
orre
tion presented in the previous se
tion.2.1 Theory without boundary termsLet u be the solution of the linear di�erential equationLu = f;on some domain 
, subje
t to homogeneous boundary 
onditions for whi
h the problemis well-posed when f 2 L2(
) (meaning that f is a square-integrable fun
tion).The adjoint di�erential operator L� and asso
iated homogeneous boundary 
ondi-tions are de�ned by the identity (v; Lu) = (L�v; u); (2.1)that must hold for all u, v satisfying the respe
tive boundary 
onditions. Here thenotation (:; :) denotes an integral inner produ
t over the domain 
, i.e.(v; Lu) � Z
 vTLu dV;allowing for the possibility that u, and hen
e v, may be a ve
tor fun
tion rather thanjust a s
alar.The appropriate de�nition for L� 
an be 
onstru
ted by integration by parts, startingfrom (v; Lu), until all of the derivatives are a
ting on v rather than u. In the pro
ess,the adjoint boundary 
onditions 
ome from the requirement that the boundary termsthat arise from the integration by parts must be zero. Examples of this will be givenlater.Suppose now that we are 
on
erned with the value of the fun
tional J=(g; u), for agiven fun
tion g 2 L2(
). An equivalent dual formulation of the problem is to evaluatethe fun
tional J=(v; f), where v satis�es the adjoint equationL�v = g;subje
t to the homogeneous adjoint boundary 
onditions. The equivalen
e of the twoforms of the problem follows immediately from the de�nition of the adjoint operator.(v; f) = (v; Lu) = (L�v; u) = (g; u):Suppose that uh and vh are approximations to u and v, respe
tively, and satisfythe homogeneous boundary 
onditions. The subs
ript h indi
ates that the approximatesolutions are derived from a numeri
al 
omputation using a grid with average spa
ingh. When using �nite di�eren
e or �nite volume methods, uh and vh might be 
reated



13by interpolation through 
omputed values at grid nodes. With �nite element solutions,one might simply use the �nite element solutions themselves, or one 
ould again useinterpolation through nodal values and thereby obtain approximate solutions that aresmoother than the �nite element solutions.It is assumed that uh and vh are suÆ
iently smooth that Luh and L�vh lie in L2(
).If uh and vh were equal to u and v, then the residual errors Luh�f and L�vh�g wouldbe zero. Thus, the magnitude of the residual errors is a 
omputable indi
ation of theextent to whi
h uh and vh are not the true solutions.Now, using the de�nitions and identities given above, we obtain the following ex-pression for the fun
tional:(g; u) = (g; uh)� (L�vh; uh�u) + (L�vh�g; uh�u)= (g; uh)� (vh; L(uh�u)) + (L�(vh�v); uh�u)= (g; uh)� (vh; Luh�f) + (vh�v; L(uh�u)): (2.2)The �rst term in the �nal expression is the value of the fun
tional obtained fromthe approximate solution uh. The se
ond term is an inner produ
t of the residual errorLuh�f and the approximate adjoint solution vh. The adjoint solution gives the weight-ing of the 
ontribution of the lo
al residual error to the overall error in the 
omputedfun
tional. Therefore, by evaluating and subtra
ting this adjoint error term we obtaina more a

urate value for the fun
tional.The third term is the remaining error after making the adjoint 
orre
tion. If Luh�f =L(uh�u) is of the same order of magnitude as uh�u then the remaining error has abound that is proportional to the produ
t kuh�uk kvh�vk (using L2 norms), and thusthe 
orre
ted fun
tional value is super
onvergent. For example, if the solution errorsuh�u and vh�v are both O(hp) then the error in the fun
tional is O(h2p).Furthermore, the remaining error term 
an be expressed as(vh�v; L(uh�u)) = �vh�v; LL�1(Luh�f)�= �L�(vh�v); L�1(Luh�f)�= �L�vh�g; L�1(Luh�f)� :This has the 
omputable a posteriori bound kL�1k kLuh�fk kL�vh�gk. The problemwith this bound is obtaining a value for the operator norm kL�1k. This 
an be 
al
ulatedanalyti
ally in the simplest 
ases, but for harder problems it may be ne
essary to estimateit numeri
ally.Note the similarity between this analysis and the algebrai
 version in the �rst se
tion.The adjoint identities (1.1) and (2.1) look almost identi
al, as do the expressions for thefun
tional, (1.2) and (2.2).



142.2 Galerkin �nite element methodsIf the approximate solutions uh and vh are the �nite element solutions from a Galerkin�nite element dis
retisation, then the 
orre
tion term(vh; Luh � f)is automati
ally zero, due to the requirement that the �nite element residual is orthog-onal to all members of the �nite element spa
e [55℄. Thus, the Galerkin �nite elementmethod gives naturally super
onvergent estimates for integral outputs, in the sense thata single order of a

ura
y improvement in the solution, through in
reasing the degree ofthe polynomials in the �nite element spa
e, leads to two orders of a

ura
y improvementin the value of the fun
tional.However, there is usually a loss of a

ura
y be
ause of a la
k of smoothness in the�nite element solution. Typi
ally, if the solution errors are O(hp), then the residualerror Luh�f is O(hp�m) where m is the degree of the di�erential operator, the degreeof the highest derivative in the operator. Hen
e, the remaining error in the fun
tionalis O(h2p�m).If one takes the �nite element solution and re
onstru
ts smoother solutions uh andvh, then there is the possibility of re
overing O(h2p) a

ura
y for the fun
tional, at the
ost of 
arrying out an adjoint 
al
ulation to evaluate the adjoint error 
orre
tion. Thiswill be demonstrated in the se
ond of the two examples to follow.2.3 First example: 1D Poisson equationThe �rst example is the one-dimensional Poisson equation,d2udx2 = f;on the unit interval [0; 1℄ subje
t to the homogeneous boundary 
onditions u(0)=u(1)=0. The dual problem is the Poisson equation,d2vdx2 = g;subje
t to the same homogeneous boundary 
onditions. The adjoint identity is easilyveri�ed, taking into a

ount that u and v are zero at ea
h end.Z 10 v d2udx2 dx = � Z 10 dvdx dudx dx = Z 10 d2vd2x u dx:The Poisson equation is approximated numeri
ally on a uniform grid, with spa
ingh, using a se
ond order �nite di�eren
e dis
retisation,h�2Æ2xuj = f(xj):
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17The approximate solution uh(x) is then de�ned by 
ubi
 spline interpolation throughthe nodal values uj. The adjoint solution vh is obtained in exa
tly the same manner.Numeri
al results have been obtained for the 
asef = x3(1�x)3; g = sin(�x):Figure 1 shows the residual error Luh�f when h = 132 , as well as the three Gaussianquadrature points on ea
h sub-interval that are used in the numeri
al integration ofthe inner produ
t (vh; Luh�f). Sin
e uh is a 
ubi
 spline, fh� d2uhdx2 is 
ontinuous andpie
ewise linear. The best pie
ewise linear approximation to f has an approximationerror whose dominant term is quadrati
 on ea
h sub-interval; this explains the s
allopedshape of the residual error. Figure 2 shows the approximate adjoint solution vh, whi
hsimply illustrates that the residual error in the 
enter of the domain 
ontributes mostto the overall error in the fun
tional.Figure 3 is a log-log plot of three quantities versus the number of 
ells: the error inthe base value of the fun
tional (g; uh); the remaining error after subtra
ting the adjoint
orre
tion term (vh; Luh�f); the a posteriori error bound kL�1k kLuh�fk kL�vh�gk.The superimposed lines have slopes of �2 and �4, 
on�rming that the base solution isse
ond order a

urate while the error in the 
orre
ted fun
tional and the error boundare both fourth order. It is also worth noting that on a grid with 16 
ells, whi
h mightbe a reasonable 
hoi
e for pra
ti
al 
omputations, the error in the 
orre
ted value of thefun
tional is over 200 times smaller than the un
orre
ted error.2.4 Se
ond example: 2D Poisson equationThe se
ond example is the two-dimensional Poisson equation,r2u = f;on the unit square [0; 1℄� [0; 1℄ subje
t to homogeneous Diri
hlet boundary 
onditions.The dual problem is r2v = g;with the same boundary 
onditions, and the adjoint identity is again easily veri�ed,Z
 v r2u dA = � Z
rv �ru dA = Z
r2v u dA:For this example, the equations are approximated using a Galerkin �nite elementmethod with pie
ewise bilinear elements on a uniform Cartesian grid. Finite elementerror analysis reveals that the solution error for the primal problem, and the error in the
omputed fun
tional using the �nite element solution are both O(h2). However, usingbi-
ubi
 spline interpolation through the 
omputed nodal values, one 
an re
onstru
tan improved approximate solution uh(x; y) with an error that is still O(h2), but mu
hsmoother, so that the residual error is also O(h2). Using a similarly re
onstru
tedapproximate adjoint solution vh(x; y), one 
an then 
ompute the adjoint error 
orre
tion



18term resulting in a 
orre
ted fun
tional whose a

ura
y is O(h4). All inner produ
tintegrals are approximated by 3�3 Gaussian quadrature on ea
h square 
ell to ensurethat the numeri
al quadrature errors are of a higher order.Figure 4 shows the numeri
al results obtained for the fun
tionsf(x; y) = x(1�x)y(1�y); g(x; y) = sin(�x) sin(�y):The ordinate is the log of the number of 
ells in ea
h dimension, and lines of slope�2 and �4 are again superimposed. As predi
ted by the analysis, the base error inthe fun
tional is 
learly se
ond order whereas the error in the 
orre
ted value of thefun
tional as well as the error bound are again fourth order.2.5 Theory with boundary termsWe now extend the theory to in
lude inhomogeneous boundary 
onditions for the primaland dual problems, and boundary integrals in their output fun
tionals.Let u be the solution of the linear di�erential equationLu = f;in the domain 
, subje
t to the linear boundary 
onditionsBu = e;on the boundary �
. In general, the dimension of the operator B may be di�erenton di�erent parts of the boundary (e.g. in
ow and out
ow se
tions for the 
onve
tionp.d.e.).The output fun
tional of interest is taken to beJ = (g; u) + (h; Cu)�
;where (:; :)�
 represents an integral inner produ
t over the boundary �
. The boundaryoperator C may be algebrai
 (e.g. Cu � u) or di�erential (e.g. Cu � �u�n), but musthave the same dimension as the adjoint boundary 
ondition operator B� to be de�nedshortly. Note that the 
omponents of h may be set to zero if the fun
tional does nothave a boundary integral 
ontribution.The 
orresponding linear adjoint problem isL�v = g;in 
, subje
t to the boundary 
onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the boundaryoperator C� is (v; Lu) + (C�v; Bu)�
 = (L�v; u) + (B�v; Cu)�
; (2.3)



19for all u; v. This identity is obtained by integration by parts. Examples will be givenlater, but see also [27℄ for the 
onstru
tion of the appropriate adjoint operators for thelinearised Euler and Navier-Stokes equations.Using the adjoint identity, one immediately obtains the equivalent dual form of theoutput fun
tional, J = (v; f) + (C�v; e)�
:Given approximate solutions uh; vh, we obtain the following result for the fun
tional.(g; u) + (h; Cu)�
 = (g; uh) + (h; Cuh)�
�(L�vh; uh�u)� (B�vh; C(uh�u))�
+(L�vh�g; uh�u) + (B�vh�h; C(uh�u))�
= (g; uh) + (h; Cuh)�
�(vh; L(uh�u))� (C�vh; B(uh�u))�
+(L�(vh�v); uh�u) + (B�(vh�v); C(uh�u))�
= (g; uh) + (h; Cuh)�
�(vh; Luh�f)� (C�vh; Buh�e)�
+(vh�v; L(uh�u)) + (C�(vh�v); B(uh�u))�
:In the �nal result, the �rst line is the fun
tional based on the approximate solutionuh. The se
ond line is the 
omputable adjoint error 
orre
tion that now in
ludes a termrelated to the residual error in satisfying the primal boundary 
onditions. The third lineis the remaining error. In prin
iple, an a posteriori error bound for this 
an again befound, but the main point is that ea
h of the terms involves an inner produ
t of two smallquantities, so we again have the result that the 
orre
ted fun
tional is super
onvergentrelative to the underlying solutions to the primal and adjoint problems.2.6 Example: 2D Lapla
e equationFor the 2D Lapla
e equation r2u = 0;with Diri
hlet boundary 
onditions u = e, and fun
tionalJ = Z�
 h�u�n ds;we have the operators Lu = r2u; Bu = u; Cu = �u�n:Integrating by parts givesZ
 v Lu dA = � Z
rv � ru dA+ Z�
 v �u�n ds= Z
r2v u dA+ Z�
�v �u�n � �u�n v� ds;



20so the adjoint identity is satis�ed for all u; v if we de�neL�v = r2v; B�v = v; C�v = �v�n:To 
onstru
t an analyti
 test
ase with 
urved boundaries and a singularity in thesolution, we use a 
onformal mapping. We start by de�ning the domain in a 
omplexZ-plane to be the region between two 
ir
les 
entered at (X; Y ) = (�0:1; 0) with radiiof R1 = 1:1 and R2 = 3:0. Appli
ation of the Joukowski mappingz = Z + 1Z ;then produ
es a 
omputational domain between a 
usped airfoil (�
z1) and a smoothouter boundary (�
z2). Using 
ylindri
al 
oordinates R; � de�ned byX + 0:1 = R 
os �; Y = R sin �;the fun
tion U(X; Y ) = R2 � R21R sin �;is a solution of the Lapla
e equation in the Z-plane. Furthermore, by a well-knownfeature of 
onformal mappings, the fun
tion u(x; y) = U(X; Y ) is also a solution of theLapla
e equation in the z-plane.Evaluating u(x; y) on the inner and outer boundaries gives the Diri
hlet boundary
ondition for the test problem. As illustrated in Figure 5, the solution 
orresponds to thestream fun
tion for in
ompressible invis
id 
ow around the airfoil, with zero 
ir
ulation.The fun
tional, expressed in the Z-plane, is 
hosen to beZ 2�0 sin � �U�n ����R=R1 d�:Its analyti
 value is �2�. When mapped into the z-plane, the 
orresponding expressionfor the fun
tional is �h; �u�n��
 ;where h = R�11 sin �; on the inner boundary �
z1, and h = 0 on the outer boundary.Hen
e the dual problem is the Lapla
e equation subje
t to the Diri
hlet boundary 
on-ditions v=h. As seen in Figure 5, the gradient of the adjoint solution is singular at the
usped trailing edge of the airfoil.The numeri
al results for both the primal and dual problems are 
al
ulated using thebilinear Galerkin �nite element method. The grid points in the z-plane are generated bythe 
onformal mapping of a regular polar grid in the Z-plane, but the use of isoparametri
elements in the z-plane means the 
ells in the z-plane are quadrilaterals, and do not have
urved edges.
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orre
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ond order a

urate whereas the 
orre
tedvalue for the fun
tional is fourth order a

urate. This improvement is a
hieved despitethe presen
e of the singularity at the trailing edge, and the added 
ompli
ations of the
urved boundaries and the boundary fun
tional.



233 Linear defe
t error 
orre
tionAdjoint error 
orre
tion is not the only means of improving the a

ura
y of numeri
al
al
ulations. In this se
tion, based on Referen
e [23℄, we look at the use of defe
t
orre
tion [9, 40, 56, 57℄, and show that it 
an be extremely e�e
tive in redu
ing theerrors in a model 1D Helmholtz problem; the 
ombination of defe
t and adjoint error
orre
tion is even better.The primary motivation for this investigation is the need for high order a

ura
yfor aeroa
ousti
 and ele
tromagneti
s 
al
ulations. In steady CFD 
al
ulations, gridadaptation 
an be used to provide high grid resolution in the limited areas that requireit. However, using standard se
ond order a

urate methods, the wave-like nature ofaeroa
ousti
 and ele
tromagneti
 solutions would lead to grid re�nement throughoutthe 
omputational domain in order to redu
e the wave dispersion and dissipation toa

eptable levels. The preferable alternative is to use higher order methods, allowingone to use fewer points per wavelength, whi
h 
an lead to a very substantial redu
tionin the total number of grid points for 3D 
al
ulations. The diÆ
ulty with this is thatone often wants to use unstru
tured grids be
ause of their geometri
 
exibility, and the
onstru
tion of higher order approximations on unstru
tured grids is 
ompli
ated and
omputationally expensive.3.1 Problem des
ription and Galerkin methodThe model problem to be solved is the 1D Helmholtz equationu00 + �2u = 0; 0 < x < 10;subje
t to the Diri
hlet boundary 
ondition u=1 at x=0 and the radiation boundary
ondition u0�i�u=0 at x=10. The analyti
 solution is u= exp(i�x) and the domain
ontains pre
isely �ve wavelengths. The output fun
tional of interest is the value u(10)at the right hand boundary. This 
an be viewed as a model of a far-�eld boundaryintegral giving the radiated a
ousti
 energy in aeroa
ousti
s, or the radar 
ross-se
tionin ele
tromagneti
s [44℄.Integrating by parts, the weak form of the inhomogeneous equationu00 + �2u = f; 0 < x < 10;subje
t to the same boundary 
onditions is�(w0; u0) + �2(w; u) + i�w�(10) u(10) = (w; f);for any di�erentiable w(x) with w(0) = 0. One important feature of this Helmholtzproblem is that the solution is 
omplex. Therefore the inner produ
t (w; u) is de�ned as(w; u) � Z 100 w�u dx;



24with w� denoting the 
omplex 
onjugate of w.The Galerkin solution on the irregular grid xj; j = 0; 1; 2; : : : ; N , is de�ned asU(x) = NXj=0 Uj�j(x)where the �j(x) are the usual pie
ewise linear `hat' fun
tions for whi
h �j(xi) = Æij.The value U0 is given by the Diri
hlet boundary 
ondition. The values of the other
oeÆ
ients Uj for j>0 are obtained from the equations�(�0i; U 0) + �2(�i; U) + i��i(10)U(10) = 0; i = 1; 2; : : : ; N:It is well established that this dis
retisation is se
ond order a

urate, produ
ing disper-sion but no dissipation on a uniform grid.3.2 Defe
t 
orre
tionThe �rst step in the defe
t 
orre
tion is to de�ne a new approximate solution uh(x) by
ubi
 spline interpolation of the nodal values Uj. The 
hoi
e of end 
onditions for the
ubi
 spline is very important. A natural 
ubi
 spline would have u00h=0 at both ends,but this would introdu
e small errors at ea
h end sin
e u00 6=0 for the analyti
 solution.Instead, at x = 10 we require the splined solution to satisfy the analyti
 boundary
ondition by imposing u0h � i�uh = 0. At x = 0, the analyti
 boundary 
ondition isalready imposed through having the 
orre
t value for the end point U(0). Therefore,here we require that u00h + �2uh = 0 so the splined solution satis�es the o.d.e. at theboundary.The solution error, e = u(x)�uh(x) satis�es the inhomogeneous Helmholtz equatione00 + �2e = �(u00h+�2uh); 0 < x < 10;the right-hand-side of whi
h is the residual error of the approximation uh(x). Given thehomogeneous Diri
hlet boundary 
ondition at x=0, and the same radiation boundary
ondition at x=10, the Galerkin approximation to the error is given by the equations�(�0i; E 0) + �2(�i; E) + i��i(10)E(10) = �(�i; u00h+�2uh); i = 1; 2; : : : ; N:Adding the nodal 
orre
tions Ej to the original nodal values Uj gives a 
orre
ted solution.The whole pro
edure 
an then be repeated to improve the a

ura
y. This follows thepro
edure des
ribed by Barrett et al who also showed that it 
onverges to a solution ofan appropriately de�ned Petrov-Galerkin dis
retisation, with the trial spa
e being thespa
e of 
ubi
 splines, while the test spa
e is the spa
e of pie
ewise linear fun
tions [9℄.3.3 Adjoint error 
orre
tionTo apply the linear theory to the Helmholtz problem, the �rst step is to 
onstru
t theappropriate adjoint problem. Integration by parts reveals that the Helmholtz equationis self-adjoint, so L�v � v00 + �2v;



25and (v; Lu)� (L�v; u) = h~vH ~A~ui100 ;where ~u = � ududx � ; ~v = � vdvdx � ;and ~A = � 0 1�1 0 � :At x = 10 we have Bu � u0 � i�u � ~B~u; ~B = (�i� 1) ;and Cu � u � ~C~u; ~C = (1 0) :To satisfy the adjoint identity (2.3) we require ~B� and ~C� su
h that~A =  � ~C�~B� !H  ~B~C ! :Solving this gives  � ~C�~B� ! =  ~B~C !�H~AH = � 1 0�i� �1 �and hen
e B�v � �v0 � i�v and C�v � �v. Similarly, at x=0, we obtain B�v = v andC�v = v0.Now, noting that in our appli
ation f = g=0, and h has value 0 at x=0 and 1 atx=10, then the full spe
i�
ation of the adjoint problem isv00 + �2v = 0; 0 < x < 10;with v=0 at x=0 and �v0 � i�v = 1 at x=10.Let vh be an approximate solution of this problem, obtained by the same Galerkin and
ubi
 spline re
onstru
tion approa
h as uh, with or without defe
t 
orre
tion. Notingthat the 
ubi
 spline re
onstru
tion ensures that the boundary 
onditions are satis�edexa
tly, the 
orre
ted approximation to the value u(10) isuh(10)� (vh; u00h+�2uh):The theory gives the error in this 
orre
ted fun
tional as being(vh � v; u00h+�2uh):In the absen
e of defe
t 
orre
tion, both terms in this inner produ
t are se
ond orderin the average grid spa
ing and so the error is fourth order. With defe
t 
orre
tion, the�rst term is fourth order while the se
ond term remains se
ond order. Therefore, theerror remaining after the adjoint error 
orre
tion is sixth order.



263.4 Numeri
al resultsNumeri
al results have been obtained for grids with 4, 8, 16, 32, 64 and 128 points perwavelength. To test the ability to 
ope with irregular grids, the 
oordinates for the gridwith N intervals are de�ned asx0 = 0; xN = 10; xj = 10N (j + �j) ; 0<j<N;where �j is a uniformly distributed random variable in the range [�0:3; 0:3℄.Figure 1 shows the L2 norm of the error in the re
onstru
ted 
ubi
 spline solutionbefore and after defe
t 
orre
tion. Without defe
t 
orre
tion, the error is se
ond order,while with defe
t 
orre
tion it is fourth order. Note that a se
ond appli
ation of defe
t
orre
tion makes a signi�
ant redu
tion in the error even though it remains fourth order.This is be
ause one appli
ation of the defe
t 
orre
tion pro
edure gives a 
orre
tion thatis se
ond order in magnitude, with a 
orresponding error that is se
ond order in relativemagnitude and therefore fourth order in absolute magnitude. It is this error that is
orre
ted by a se
ond appli
ation of the defe
t 
orre
tion pro
edure.Figure 2 shows the error in the numeri
al value for the output fun
tional u(10).Without any 
orre
tion, the error is se
ond order. Using either defe
t 
orre
tion oradjoint error 
orre
tion on their own in
reases the order of a

ura
y to fourth order, butusing them both in
reases the a

ura
y to sixth order. Note that the 
al
ulation with 8points per wavelength plus both defe
t and adjoint error 
orre
tion gives an error whi
his approximately 2� 10�3. This is more a

urate than the 
al
ulation with 128 pointsper wavelength and no 
orre
tions, and 
omparable to the results using 14 points anddefe
t 
orre
tion, or 30 points with adjoint error 
orre
tion.In 3D, the 
omputational 
ost is proportional to the 
ube of the number of points perwavelength, so this indi
ates the potentially huge savings o�ered by the 
ombination ofdefe
t and adjoint error 
orre
tion. The 
ost of 
omputing the 
orre
tions is �ve timesthe 
ost of the original 
al
ulation, due to the additional two 
al
ulations for the defe
t
orre
tion, and the one adjoint 
al
ulation plus its two defe
t 
orre
tions. In pra
ti
e, these
ond defe
t 
orre
tion for the primal and adjoint 
al
ulations make negligible di�eren
eto the value obtained after the adjoint error 
orre
tion, so these 
an be omitted, redu
ingthe 
ost of the 
orre
tions to just three times the 
ost of the original 
al
ulation.
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284 Nonlinear adjoint error 
orre
tionThis se
tion looks at the extension from the linear theory to handle nonlinear problems.It begins with some preliminaries that address the key issues in linearising nonlinearfun
tions and operators.4.1 PreliminariesIf u is a s
alar variable and f(u) is a nonlinear s
alar fun
tion then a standard Taylorseries expansion givesf(u2) = f(u1) + f 0(u1) (u2�u1) +O((u2�u1)2):However, one 
an obtain an exa
t expression without any remainder terms by startingfrom dd� f (u1+�(u2�u1)) = f 0 (u1+�(u2�u1)) (u2 � u1);and then integrating this from �=0 to �=1 to obtainf(u2)� f(u1) = f 0(u1;u2) (u2 � u1);where f 0(u1;u2) � Z 10 f 0 (u1+�(u2�u1)) d�:If u and f are ve
tors, we need to de�ne the Ja
obian matrixAu = �f�u ����u ;with the subs
ript u denoting the fa
t that the value of the Ja
obian matrix depends onthe value of u around whi
h f(u) is linearised. We then obtaindd� f (u1+�(u2�u1)) = Au1+�(u2�u1) (u2�u1)so integrating over � gives f(u2)� f(u1) = A(u1;u2) (u2�u1);where A(u1;u2) = Z 10 �f�u ����u1+�(u2�u1) d�:The next step is to 
onsider a nonlinear operator N(u). The linearised operator Luis 
alled a Fr�e
het derivative, and it is formally de�ned byLu~u � lim"!0 N(u+ "~u)�N(u)"



29Again the subs
ript u denotes the fa
t that the linear operator matrix depends on thevalue of u around whi
h N(u) is linearised. For example, ifN(u) = ��x �12u2�� � �2u�x2then Lu~u = ��x (u ~u)� � �2~u�x2The �nal step in these preliminaries is to start fromdd� N (u1+�(u2�u1)) = Lu1+�(u2�u1) (u2�u1)and then integrate over � to obtainN(u2)�N(u1) = L(u1;u2) (u2�u1);where L(u1;u2) = Z 10 Lju1+�(u2�u1) d�:Thus L(u1;u2) is the average value of the linear operator Lu over the \path" from u1 tou2.4.2 Nonlinear theoryLet u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subje
t to the nonlinear boundary 
onditionsD(u) = 0;on the boundary �
.The linear di�erential operators Lu and Bu are de�ned to be the Fr�e
het derivativesof N and D, respe
tively, Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear fun
tional of interest, J(u), has a Fr�e
het derivativeof the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h; Cu~u)�
:



30Here the dimension of the operator Cu (whi
h may be di�erential) is required to equalthe dimension of the adjoint boundary operator B�u, to be de�ned shortly.The 
orresponding linear adjoint problem isL�uv = g(u)in 
, subje
t to the boundary 
onditionsB�uv = hon the boundary �
. The adjoint identity de�ning L�u, B�u and the boundary operatorC�u is (v; Lu~u) + (C�uv; Bu~u)�
 = (L�uv; ~u) + (B�uv; Cu~u)�
; (4.1)for all ~u; v.We now 
onsider approximate solutions uh; vh of the primal and dual problems,respe
tively. The analysis will use the quantitiesL�uhvh; B�uhvh; C�uhvh:Note that these 
an be evaluated sin
e uh and vh are both known, whereas we wouldnot be able to evaluate the Fr�e
het derivatives based on the unknown analyti
 solutionu. The analysis also requires averaged Fr�e
het derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;so that, as explained in the preliminaries,N(uh)�N(u) = L(u;uh) (uh�u);D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
:



31We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:In the �nal result, the �rst line is the adjoint 
orre
tion term taking into a

ountthe residual errors in satisfying both the p.d.e. and the boundary 
onditions. The otherlines are the remaining errors, whi
h in
lude the 
onsequen
es of nonlinearity in L;B;Cand g as well as residual errors in approximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linear adjoint problemare of the same order, and they are both suÆ
iently smooth that the 
orrespondingresidual errors are also of the same order, then the order of a

ura
y of the fun
tionalapproximation after making the adjoint 
orre
tion is twi
e the order of the primal andadjoint solutions. However, rigorous a priori and a posteriori analysis of the remainingerrors is mu
h harder than in the linear 
ase [49℄ and pra
ti
al a posteriori error boundshave yet to be obtained for the quasi-1D and 2D Euler equations.



324.3 Quasi-1D Euler equationsThe steady quasi-1D Euler equations for the 
ow of an ideal 
ompressible 
uid in avariable area du
t are ddx(AF )� dAdx P = 0;where A(x) is the 
ross-se
tional area of the du
t and U , F and P are de�ned asU = 0� ��q�E 1A ; F = 0� �q�q2 + p�qH 1A ; P = 0� 0p0 1A :Here � is the density, q is the velo
ity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is 
losed by the equation of state for an ideal gas.The fun
tional of interest is the `lift'J = Z p dx:The Fr�e
het derivative operator isLu~u � ddx �A �F�u ~u�� dAdx �P�u ~u;and therefore the 
orresponding adjoint equations areL�uv � �A��F�u�T dvdx � dAdx ��P�u�Tv = ��p�u�T :The equations are approximated using a standard se
ond order �nite volume methodwith 
hara
teristi
 smoothing on a uniform 
omputational grid. The linear adjointproblem is approximated by the so-
alled `
ontinuous' method, in whi
h one dis
retisesthe analyti
 adjoint equations on the same uniform grid as the 
ow solution [2, 35℄. In thealternative `dis
rete' approa
h, one starts with the dis
retised nonlinear 
ow equations,linearises them and then uses the transpose of the linear matrix as the dis
rete adjointoperator [18℄. Previous resear
h has shown that both approa
hes produ
e approximatesolutions whi
h 
onverge to the analyti
 adjoint solution, whi
h has been determined in
losed form for the quasi-1D Euler equations [30℄.The approximate solution uh(x) is 
onstru
ted from the dis
rete 
ow solution by
ubi
 spline interpolation of the nodal values of the three 
omponents of the state ve
torU . Similarly, the approximate adjoint solution vh(x) is obtained by 
ubi
 spline inter-polation of the nodal values of the three 
omponents of the dis
rete adjoint solution.The integrals that form the base value for the fun
tional and the adjoint 
orre
tion areapproximated by 3-point Gaussian quadrature.
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Figure 9: Ma
h number distributions for quasi-1D Euler equation test 
ases.4.3.1 Subsoni
 
owThe �rst 
ase is smooth subsoni
 
ow in a 
onverging-diverging du
t 
orresponding to theMa
h number distribution depi
ted in Figure 9. Figure 10 shows the error 
onvergen
efor the 
omputed fun
tional. The superimposed lines of slope �2 and �4 show that thebase error is se
ond order whereas the error in the 
orre
ted fun
tional is fourth order.This is in agreement with an a priori error analysis [49℄ that proves that uh�u, vh�vand their �rst derivatives are all O(h2) for the parti
ular �nite volume s
heme that isused, and hen
e the error in the 
orre
ted fun
tional is O(h4).4.3.2 Isentropi
 transoni
 
owFigure 11 shows the error 
onvergen
e for a transoni
 
ow in a 
onverging-divergingdu
t 
orresponding to the Ma
h number distribution of Figure 9. The 
ow is subsoni
at the in
ow boundary and upstream of the throat (lo
ated at x= 0), and supersoni
downstream of the throat and at the out
ow boundary. Again the results show that thebase error is se
ond order while the remaining error after the adjoint 
orre
tion is fourthorder, even though there is logarithmi
 singularity in the adjoint solution at the throat[30℄.
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354.4 Nonlinear thermal di�usionThe 
omputational domain for this problem is the 
ir
ular annulus 1 � r � 3, and thep.d.e. is the nonlinear di�usion equationr � (uru) = 0;subje
t to the requirement that u is positive. Diri
hlet boundary 
onditions are spe
i�edat the inner and outer boundaries so as to agree with the analyti
 solutionu(r; �) = �1 + �r4 � 1r� 
os ��1=2 :The fun
tional of interest is J(u) = Z 2�0 �u�n ����r=1 d�;and the 
orresponding dual problem isL�uv � ur2v = 0;with Diri
hlet boundary 
onditions of 1=u and 0 on the inner and outer boundaries,respe
tively.The primal and dual solutions shown in Figure 12 are obtained by a bi-linear Galerkin�nite element formulation using 3�3 Gaussian quadrature to evaluate the mass andsti�ness matri
es. The nonlinear equations are solved using a full approximation s
hememultigrid method. Bi-
ubi
 spline interpolation and 3�3 Gaussian quadrature are thenused to 
al
ulate the fun
tional with and without the adjoint 
orre
tion.The error in the fun
tional is shown in Figure 13 on a log-log plot versus the squareroot of the total number of 
ells; this is a measure of h�1, the inverse of the averagemesh spa
ing. The superimposed lines of slopes �2 and �4 show se
ond order a

ura
yfor the basi
 �nite element solution and fourth order a

ura
y after the in
lusion of theadjoint error 
orre
tion. For a 128�32 mesh, the error de
reases by a fa
tor of morethan 105.
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385 Optimal grid adaptationIn this se
tion we very brie
y outline a number of possible strategies for grid adaptationbased on a posteriori error estimates for output fun
tionals. In ea
h 
ase we expressreservations about the justi�
ation of using the strategy, while re
ognising that in theend an a

eptable justi�
ation may be that it provides a robust re�nement 
riterion inpra
ti
e.5.1 Option 1: magnitude of 
orre
tion termFor nonlinear adjoint error 
orre
tion, the dominant 
orre
tion term is the interior inte-gral inner produ
t (vh; N(uh)), whi
h 
an be expressed as a sum of 
ontributions fromea
h 
ell in the domain (vh; N(uh)) �X� (vh; N(uh))�:One adaptive strategy is to subdivide those 
ells for whi
h(vh; N(uh))�is bigger than some toleran
e.M�uller and Giles have tried this approa
h for subsoni
 and transoni
 airfoil 
al
ula-tions [41℄, but the results are little better than using an ad ho
 method based on pressuredi�eren
es a
ross ea
h 
ell.One questionable aspe
t of this strategy is that the purpose of the adjoint error
orre
tion is to evaluate and 
orre
t for this term, so what is the justi�
ation for tryingto make it small? Is it not better to try to make the remaining error small?5.2 Option 2: estimated remaining error termAfter making the adjoint error 
orre
tion, the main remaining error term 
an be ex-pressed as (v�vh; N(uh)) :The diÆ
ulty with this expression is that the analyti
 adjoint solution v is not known.One option therefore is to estimate it and then adapt those 
ells in whi
h(v�vh; N(uh))�is greater than some toleran
e.The problem is how to estimate v. Ranna
her et al [12, 15℄ use a quadrati
 re-
onstru
tion to estimate v, having used a pie
ewise linear �nite element solution forvh. However, if the quadrati
 re
onstru
tion is a better approximation to v than thepie
ewise linear one, might it not be better to use the quadrati
 re
onstru
tion as theapproximate solution vh and thereby get a more a

urate adjoint error 
orre
tion?It might appear that another possible 
riti
ism of this approa
h is that it assumesthat the solution error v�vh is primarily a lo
al interpolation error, whereas it may be



39due to trun
ation errors in an entirely di�erent part of the grid. However, for a Galerkin�nite element method, be
ause of orthogonality the quantity(v�vh; N(uh))has the same value for any vh in the appropriate �nite element spa
e. Therefore, it ispermissible to 
onsider a di�erent vh whi
h is an interpolant of v, so v�vh is then aninterpolation error whi
h 
an be estimated using the 
omputed adjoint solution.The approa
h used by Venditti & Darmofal [61℄ is an extension of that used byRanna
her et al. An alternative, approximately equivalent form for the dominant partof the remaining error is (Rh; u�uh);where Rh � L�uhvh�g(uh) is the residual error in satisfying the adjoint p.d.e. Therefore,they adapt any 
ell in whi
h the sumj(v�vh; N(uh))j� + j(Rh; u�uh)j�is greater than some threshold. The analyti
 solutions u and v are again approximatedby a higher order re
onstru
tion. Be
ause they use a �nite volume method to 
al
ulateuh and vh, the repla
ement of v�vh by a lo
al interpolation error does not have thesame theoreti
al justi�
ation as with the Galerkin method. On the other hand, it doesseem an ex
ellent idea to take into a

ount the residual errors of the adjoint problem,and they do use the more a

urate re
onstru
tion of the approximate solution to obtainthe 
orre
tion to the value of the fun
tional. The numeri
al results they obtain are verygood; Figure 14, taken from [61℄, illustrates the results they obtain for a three-elementairfoil 
al
ulation. It shows the adapted grid obtained using their re�nement 
riterion, aswell as the improved a

ura
y of the lift predi
tion with and without adjoint 
orre
tion,
ompared to a sequen
e of uniformly-re�ned grids.5.3 Option 3: 
oarse grid error estimatesUsing the residual errors from both the original and adjoint problems, the dominantremaining error 
an be expressed as�L�uh�1Rh; N(uh)� � �Rh; L�1uhN(uh)�The problem with using this in an adaptive approa
h is that L�1uh is a global operator.However, it might be possible to use a 
oarse grid to approximately evaluate L�1uhN(uh)and L�uh�1Rh, and then adapt in any 
ell � for whi
h�� �L�uh�1Rh; N(uh)����+ �� �Rh; L�1uhN(uh)����is bigger than some toleran
e. This approa
h may also give a useful a posteriori boundon the total remaining error.The 
riti
ism that 
an be levelled at this idea is that it requires the 
al
ulation of thequantity L�1uhN(uh) whi
h is essentially a defe
t 
orre
tion. In that 
ase, is it not better
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41to use this to further improve the a

ura
y of the solution and hen
e the fun
tional,rather than bound the remaining error?Yet again, it appears there is a 
hoi
e to be made between improved a

ura
y or atight bound. If we 
hoose the improved a

ura
y then we 
an still use the suggestedmeasure as a re�nement 
riterion, but we are re�ning based on the estimated magni-tude of one part of the 
orre
ted error, rather than on the estimated remaining error.It may still prove to be a useful adaptation 
riterion, but its rational basis has been
ompromised.5.4 Multiple fun
tionalsA last 
omment 
on
erns the situation in whi
h there are several di�erent fun
tionals of
on
ern, su
h as lift, drag and pit
hing moment. How should all of these be in
orporatedinto the adaptation 
riterion?One 
ould perform a separate adjoint 
al
ulation for ea
h. This would be ne
essaryif one wished to perform an adjoint error 
orre
tion to improve the a

ura
y of ea
h ofthe output fun
tionals. Alternatively, following options 1 and 2 above, one 
ould adaptwhenever V Z� jN(uh)j� dAex
eeds some threshold, with V representing the magnitude of the typi
al adjoint so-lution (big near the airfoil, tending to zero far away) if following option 1, or a 
orre-sponding interpolation error estimate for option 2.



426 Future resear
h dire
tionsIn this 
on
luding se
tion, we o�er some thoughts about dire
tions for future resear
h.Some of these are spe
i�
 to adjoint error 
orre
tion, but most apply more generally tothe subje
t of a posteriori error analysis and grid adaptation for fun
tional outputs.6.1 Grid adaptationAs indi
ated in the previous se
tion, grid adaptation remains a topi
 for future resear
h.Being pra
ti
al, there is no need for a \perfe
t" adaptive strategy, even if one 
ouldde�ne what that would be. The important 
riterion for su

ess is that the strategyshould be robust and produ
e 
onsistently good results for a wide variety of problems.It is also important that for problems with singularities, for whi
h it is known that thestandard order of a

ura
y (expressed in terms of the number of nodes/
ells used) 
anbe re
overed with the appropriate degree of lo
al grid resolution, the adaptive strategyshould automati
ally a

omplish this.Two other adaptation issues to be addressed are anisotropi
 re�nement and grid re-distribution. Currently, most adaptive strategies use grid re�nement, adding additionalnodes/
ells through an isotropi
 re�nement pro
ess that lo
ally re�nes equally in ea
hdire
tion, giving 
ells with a bounded aspe
t ratio. This is good for many appli
ations,but far from ideal for others.One example is the invis
id 
ow around a wing. Here the grid resolution normal to theleading edge needs to be mu
h �ner than the spanwise resolution. In this 
ase, anisotropi
re�nement is probably the best solution. This means adding nodes in su
h a way thatthe resolution normal to the leading edge is greater than in the spanwise resolution.The question this poses is how to de
ide whi
h dire
tion requires additional resolution?There are already ad ho
 re�nement methods that address this. The 
hallenge will be toextend the a posteriori adjoint-based re�nement indi
ators to give a more quantitativeanswer to this question.Another more extreme example of the need for anisotropi
 resolution is a boundarylayer on a wing, where there is 
learly a need for mu
h better resolution a
ross theboundary layer than in the other two dire
tions. In this 
ase, the best solution may wellbe grid redistribution, moving existing grid nodes to provide the resolution where it isneeded. Again there are good existing ad ho
 methods for doing this and the 
hallengeis how to develop new methods using a posteriori error estimates.



436.2 Asymptoti
 error boundsIdeally, we would like to have our 
ake and eat it too! We would like to use smoothre
onstru
tion and adjoint error 
orre
tion to generate extremely a

urate fun
tionalvalues, and at the same time still be able to bound the remaining error with boundsthat are at least asymptoti
ally valid and fairly tight.As suggested in the previous se
tion, this may be una
hievable. There may bea 
hoi
e to be made between using smooth re
onstru
ted solutions for defe
t and/oradjoint error 
orre
tion, or for tight error bounds. If so, then our preferen
e would befor the in
reased a

ura
y. However, this de�nitely merits further resear
h.6.3 Smooth re
onstru
tion on unstru
tured gridsOne key issue is going to be the smooth re
onstru
tion of approximate solutions in mul-tiple dimensions on unstru
tured grids. On a stru
tured grid, 
ubi
 spline interpolation
an be used in ea
h dire
tion, but on an unstru
tured grid there is a need for a suit-able generalisation of 
ubi
 spline interpolation to produ
e a re
onstru
ted solution ofsuÆ
ient smoothness.Venditti & Darmofal have a
hieved some su

ess with a pie
ewise quadrati
 re
on-stru
tion using least squares minimization in the H1 Sobolev norm [61℄. In unpublishedresear
h, this lo
al approximation has been suÆ
ient for them to obtain results dou-bling the order of a

ura
y of fun
tional outputs from a Galerkin approximation of a
onve
tion-di�usion equation.However, there is reason to believe that in general the solution at the nodes of anunstru
tured grid may not be very smooth. In parti
ular, the solution error,ei = ui � u(xi)may not be very smooth, and therefore even if ei = O(h2), any interpolation may leadto a re
onstru
tion error e(x) = uh(x)� u(x)for whi
h re = O(h). This loss of a

ura
y be
ause of the loss of smoothness would
ompletely negate the ability of the adjoint error 
orre
tion to improve upon the a

ura
yof �nite element solutions.To avoid this, it seems likely that it will be ne
essary to use some form of smoothedspline re
onstru
tion, in whi
h the spline does not interpolate the nodal values, butinstead 
ompromises between the twin obje
tives of mat
hing the 
omputed data andmaintaining smoothness. For example, if Uh is a se
ond order a

urate pie
ewise linear�nite element solution, then the re
onstru
tion uh 
ould be de�ned by some suitableapproximation to the equationh2r2(r2uh) + uh � Uh = 0:The purpose of the bi-harmoni
 term is to ensure the smoothness of the solution. Theh2 weighting ensures that this is not a
hieved at the expense of sa
ri�
ing the se
ondorder a

ura
y of the underlying solution.



446.4 Sho
ksOne last 
hallenge we wish to highlight is the problem of sho
ks and other dis
ontinuities.With the quasi-1D Euler equations, it 
an be proved that with an appropriate 
on-servative formulation, and a numeri
al dis
retisation that is se
ond order a

urate whenthe solution is smooth, the a

ura
y of output fun
tionals su
h as the integrated pres-sure is also se
ond order [21℄. However, numeri
al eviden
e suggests this is not the 
asein multiple dimensions, and instead there is a error in quantities su
h as the lift on atransoni
 airfoil that is proportional to the lo
al grid spa
ing at the sho
k. Thus, to geteven se
ond order a

ura
y would require anisotropi
 grid adaptation so that the gridspa
ing at the sho
k is O(h2), with h here being the average grid spa
ing in the rest ofthe grid.Appli
ation of adjoint error 
orre
tion ideas raises another problem. The re
on-stru
ted solution will be 
ontinuous, whereas the true solution is dis
ontinuous. There-fore, it is unavoidable that there is an O(1) error in the approximate solution at thesho
k. This violates the whole basis for the adjoint error 
orre
tion sin
e it relies on alinearisation of the nonlinear equations that is valid only for small perturbations.We are 
urrently working on this problem. Our approa
h is to numeri
ally ap-proximate a \vis
ous" sho
k with the level of vis
osity being O(h2). The adjoint error
orre
tion then has to 
orre
t for the numeri
al error in approximating the vis
ous sho
k,plus the analyti
 error in using the vis
ous sho
k problem to approximate the invis
idsho
k problem. This latter part requires the use of mat
hed asymptoti
 expansions tounderstand that to leading order there is a linear dependen
e of integral fun
tionals onthe level of vis
osity. This error 
an be 
ompensated for by using the vis
ous adjoint togive the sensitivity of the lift to a 
hange in the level of the vis
osity.A
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