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This paper is concerned with the formulation and discretisation of adjoint
equations when there are shocks in the underlying solution to the original
nonlinear hyperbolic p.d.e. For the model problem of a scalar unsteady one-
dimensional p.d.e. with a convex flux function, it is shown that the analytic
formulation of the adjoint equations requires the imposition of an interior
boundary condition along any shock. A ’discrete adjoint’ discretisation is
defined by requiring the adjoint equations to give the same value for the
linearised functional as a linearisation of the original nonlinear discretisation.
It is demonstrated that convergence requires increasing numerical smoothing
of any shocks. Without this, any consistent discretisation of the adjoint
equations without the inclusion of the shock boundary condition may yield
incorrect values for the adjoint solution.
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1 Introduction

In recent years there has been considerable research into the use of adjoint flow equa-
tions for design optimisation (e.g. [Jam95, AV99, GP00]) and error analysis (e.g. [JRB95,
MS98, PG00, BRO1]). In almost every case, the adjoint equations have been formulated
under the assumption that the original nonlinear flow solution is smooth. Since most
applications have been for incompressible or subsonic flow, this has been valid, how-
ever there is now increasing use of such techniques in transonic design applications for
which there are shocks. It is therefore of interest to investigate the formulation and
discretisation of adjoint equations when in the presence of shocks.

The reason that shocks present a problem is that the adjoint equations are defined
to be adjoint to the equations obtained by linearising the original nonlinear flow equa-
tions. Therefore, this raises the whole issue of linearised perturbations to the shock.
The analysis will show how the analytic treatment must correctly linearise the shock
jump equations which arise from conservation properties at the shock. However, for the
numerical approximation it is not clear whether the linearised shock capturing will yield
the correct results.

The validity of linearised shock capturing for harmonically oscillating shocks in flutter
analysis was investigated by Lindquist and Giles [LG94] who showed that the shock
capturing produces the correct prediction of integral quantities such as unsteady lift and
moment provided the shock is smeared over a number of grid points. One interpretation
of this is that it ensures the “viscous” shock profile remains invariant, to a very good
approximation, as the shock oscillates, and therefore the integral effect of the linearised
shock motion is correct. As a result, linearised shock capturing is now the standard
method of turbomachinery aeroelastic analysis [HCL94,SW98], benefitting from the
computational advantages of the linearised approach, without the many drawbacks of
shock fitting.

There has been very little prior research into adjoint equations for flows with shocks.
Giles and Pierce [GP01] have shown that the analytic derivation of the adjoint equations
for the steady quasi-one-dimensional Euler equations requires the specification of an
internal adjoint boundary condition at the shock. However, the numerical evidence
[GP98] is that the correct adjoint solution is obtained using either the “fully discrete”
approach (in which one linearises the discrete equations and uses the transpose) or the
“continuous” approach (in which one discretises the analytic adjoint equations). In the
case of the fully discrete approach, this is due to the second order accuracy of conservative
quasi-one-dimensional shock capturing [Gil96], whereas with the continuous approach
it is thought to be because the use of numerical smoothing automatically selects the
correct numerical solution which is smooth at the shock [GP98]. It is not clear though
that either approach will produce the correct results in two dimensions, for which there
is a similar adjoint boundary condition along a shock.

In this paper, which is an expanded version of [Gil02], we consider unsteady one-
dimensional hyperbolic equations with a convex scalar flux, and in particular obtain
numerical results for Burgers equation. Tadmor [Tad91] developed a Lip’ topology for
the formulation of adjoint equations for this problem, with application to linear post-



processing functionals. Building on this and the work of Bouchut and James [BJ98], Ul-
brich has very recently introduced the concept of shift-differentiability [Ulb02a, Ulh02b]
to handle nonlinear functionals of the type considered in this paper. However, in this
paper we will provide an alternative derivation of the analytic adjoint solution against
which the numerical solutions will be compared.

We start by deriving the analytic adjoint equations for the case when the underlying
solution is smooth, and then present the extension to handle the presence of a shock. It
is shown that the latter requires the imposition of an interior boundary condition along
any shock. The numerical discretisation is formulated by following the ’fully discrete’
approach, requiring the adjoint equations to give exactly the same value for the linearised
functional as a linearisation of the original nonlinear discretisation. It is demonstrated
that using consistent, conservative numerical Riemann flux function yields incorrect
values for the adjoint solution when there is a shock. However, a simpler Lax-Friedrichs
flux formulation with numerical smoothing yields convergent values if the shock is spread
over an increasing number of points.

2 Analytic formulation in the absence of shocks

Let u(z,t) be the solution of the scalar equation

ou N Of (u)

ot or

subject to initial conditions u(x,0) = wug(z). Numerical results will be presented later
for the Burgers equation for which f(u) = %u2, but here we consider a general convex

function f(u). If the solution u(z,t) is differentiable, then

=0, 0O<z<l, 0<t<T

ou df oOu
—+ = —=0.
ot * du Ox
It follows from this that u(x,t) is constant along straight characteristics defined by
de _df
dt  du’

We will assume that df/du>0 at =0 and df/du<0 at x=1, and therefore the value
of u(x,t) is specified on the two side boundaries.

We now consider a linear perturbation @. The linearised p.d.e. with the addition of
a perturbation source term s is

ouw  d [df
E—i_% <@ u> =s. (2.1)

If the boundary conditions are not perturbed, then =0 on t=0, =0 and z=1.
If one is interested in an output functional

() = /0 Glu(z, T)) da,



with G(u) being a function with a continuous derivative, then the linearised functional
perturbation is

J = /Olg(x) u(z, T) dz.

where g(x) = dG/du(z,T). Using integration by parts, this can be re-expressed using
any differentiable function v(x,t) as

j:/ g(z) @ dex—// ( <j£ )—s)dxdt
— /Ol(g(x)—v(xT)) (2,7) dx—i—// (a” jﬁ §$> d:r;dt—i—//gvsdxdt

If v is defined to satisfy the adjoint equation
ov df ov
-~ =0 2.2
ot T du 0z (2:2)
subject to the final condition v(z, T) = g(z), then this reduces to

J://Q vs dz dt, (2.3)

which can be evaluated without knowing u. This is the basis of the use of adjoint
solutions in both design optimisation and error analysis for specific output functionals.
In the specific case when s(z,t) is a Dirac delta function

s(x,t) = §(x—1x0) 6(t—to)
then we obtain .
J = U(xg, t[))

Thus, one interpretation of the adjoint solution v(xg, p) is that it is the linearised func-
tional obtained when the linearised equation are subject to a unit strength point source
at (xg,tp). For such a source term, the linear perturbation @ is zero except on the char-
acteristic passing through (x¢,ty). To determine the value along this characteristic, we
integrate equation (2.1) over Q and use the initial and boundary conditions to obtain

1
/ w(z, T)dz =1,
0

w(z,T) = d§(x—11),

where x; is the intersection point of the characteristic with the final boundary t =T
The corresponding perturbed functional is

v(zo,t0) = J = g(a1),

so this provides confirmation by this alternative derivation that the value of the adjoint
solution is propagated unchanged along the backward travelling characteristic.

and hence
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Figure 1: Characteristics with a shock forming along x=0.5.

3 Analytic formulation with a shock

What happens when there is a shock along a curve I' = (¢, z4(t)) from t=0 to t=T, as
illustrated in Figure 17
Firstly, the velocity of the shock is given by

dz,
] = [f(w)]

where [.] denotes the jump in the quantity across the shock [LeV92].

The linearised equation remains the same in the region Q\ T' omitting the shock
itself. In addition to this, one must linearise the shock velocity equation with respect to
changes in x,(t) as well as u(z,t), giving

T ] = (e o g

dt [u] dt dt O du du Oz

The linearised functional also needs to be modified to take into account the effect of
the displaced shock. Writing the nonlinear functional as

zs(T) 1
J:/O G(u(z,T)) da:—i—/(T) G(u(z,T)) dz,

it follows that

B zs(T) 1
J:/O o(z) i(, T) dx+/(T) g(e) i@, T) dz — (5.G1)],_.



Now, introducing a new variable v, for the linearised shock equation, and again
integrating by parts over Q \ T, gives

R zs(T) 1
j - / g(z) iz, T) d“/zm g(w) iz, T) dz — (7,[G])],_,
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Noting that dx = dz;/dt dt along T', all of the terms involving @ are either zero
or cancel out if v(z,t) is again defined to satisfy the adjoint equation (2.2) in Q\ T,
together with the same final conditions on =T, plus the additional constraint that on

I', v=w, on either side of the shock.
Applying integration by parts to the terms involving Z, yields

_ (G, [G])\t_T+/Fvs <ddit ]+ <z, {%} ; [iﬁ ZZD it
=~ @6 - )]+ [~ )+ S e |5 - o [ 2

o | du Ox
Since _
i[u]_@ dz [Ou| _ dfa“_,_d_x@
dt ot ds |[0x] du Ox ds |0z
it follows that these terms cancel if v, satisfies the equation
dvs 0
e

subject to the end condition vy = [G] / [u] on t=T.
Under all of these conditions, the linearised functional reduces finally to

j:// vs dz dt.
o\

Since v =w, on either side of the shock, the fact that v, is constant along the shock
means that the adjoint solution has a uniform value along all characteristics leading



backwards from the shock, as well as a constant value along each individual characteristic
coming backwards in time from t="T.

This result, and the value of the adjoint variables along the shock, can also be re-
derived by considering a unit strength point source term in the linearised equation. If a
source term S(z,t) is added to the original nonlinear equation, then integrating over
yields

/0 w(@, T) = u(z, 0) d:r;—i-/o Fu(1,8)) — F(u(0,1)) dt:/QS(x,t) dr dt.

Linearising this, taking account of the linearised shock displacement, gives

/()q;sd(x,T) d:r;+/msl i, T) do — (z, [u])],_, = /Qs(m,t) de dt.

Now, for a unit point source on a characteristic which leads to the shock, then the
resulting final linear perturbation @(z, T) is zero on both sides of the shock. Hence,

7,(T) = — [u] '] _;

and the corresponding functional perturbation is

J= - (:ES[G])‘t:T: %

t=T

Although the adjoint solution v(z,t) is continuous across the shock for ¢t < T', with
value equal to the shock adjoint variable vy(t), in general there is not continuity at the
final time 7. Defining u_ and u, to be the values of u(x,T) on either side of the shock,

then ws 4@
= —d
G / G

and therefore vy (T) = [G]/[u] is the average value of g(x) = dG/du over the range of
u spanned by the shock. Given the assumed continuity of dG/du, this means that the
value of vs(T) will approach the values of g(z) on either side of the shock in the limit
as the shock strength approaches zero.



4 Numerical discretisation

We consider a class of explicit finite volume discretisations of the form

1

—M (U™ —U™) + AF™ = 0.

Here U™ is the vector of solution values U?',0 < j < J at the nt timestep. M is a
diagonal mass matrix whose entries are

5(x1 — 20) J =0,
Mjj =< gz —zm)  0<j<J
s(xy —x1) J=4J,

Given a numerical flux F}j /o which is a function of both U; and Uj,, the flux difference
AF™ is defined as

172 — f(u(0,t)) J=0,

AF =4 Fiyp—Fyp 0<y<J

f(U(l,tn)) - F}L_l/g ] =J

Note that this uses a weak implementation of the Dirichlet boundary conditions, as
opposed to explicitly setting the values of U and U’}. This weak treatment is preferable
because it leads to the attractive conservation property

N-1

MUY —0) = At Y Fu(1 ) - F(u(0, )

n=0

and a cleaner formulation of the adjoint discretisation.
Having computed the numerical solution, the discrete form of the nonlinear output

functional is evaluated as
N
T=> M;GU).
J
The linearised equations with the inclusion of the source term can be written as

AitM (Un+1 _ Uﬂ) AT = M ST (4.1)

In addition, the linearised output functional is
. . ac\ N .
T N — N
J=g¢"MU :Z<£>‘ M;;UN.
j j

In formulating the discrete adjoint equations, we follow what is often termed the
“fully discrete” approach in which the goal is to define the adjoint equations in such



a way as to obtain exactly the same value for the discrete linearised functional. This
is in contrast to the “continuous adjoint” approach which directly discretises the ad-
joint differential equation, independently of the discretisation of the original nonlinear
equation.

Considering to begin with the case in which S™ = 0 for n > 0, the linear discrete
equations, (4.1), may be solved to obtain

J=At g"M (I - At MTTAVTY) (I — At MT'A%) (T — At M'A") S°.
This may be re-arranged as
J o= Atg"(I—AtAN MY (T - At APMY) (T - AtA'M ) MS°
= At (VHTMS°,
where V! is obtained by solving the discrete adjoint equation

1
MV = V) (AT v =, (4.2)
subject to the final condition VN = g.

Extending to the general case in which S™ is non-zero at all time levels, the definition
of the adjoint variables is unchanged and the resulting expression for the functional is

2

J = At UWHFMW

3
Il
)

Note that this is a discrete equivalent of equation (2.3).
Looking in detail at the elements of the matrix A", one finds that the discrete adjoint
equation for the j* node is

1 OF™ | OF"
g M (=) () ot = () v =
At 7 oU! i+ J oU! J J

To prove that this is a consistent approximation of the adjoint differential equation, (2.2),
we need to note that for consistency the original nonlinear flux function is required to
satisfy the condition

FT’+1/2(U]’?, U}Iﬂ) = f(u) when Uy =Uj,, = u.

j
Differentiating this yields

OF" OF" df
j+1/2 j+1/2 n
=— when U'=U}, =
our ooy du " A

j+1

and hence SFn OF™
J+1/2 i1/ _ 4f when U!, =U!=U}, =
our our  — du ’ '
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It therefore follows that the discrete adjoint equation is a consistent approximation of
equation (2.2) when the underlying flow solution is smooth.

We will continue to use the same adjoint discretisation when the flow solution con-
tains a shock. The question to be investigated is whether this will automatically capture
the correct adjoint solution in the limit of increasing grid resolution. As a prelude, we
note that only ¢ = dG/du enters into the adjoint calculation as initial data, not [G] and
so it is not clear that the adjoint calculation has the information necessary to correctly
predict the adjoint solution in the neighbourhood of the shock.

5 Numerical tests

The numerical tests are all performed with the Burgers equation for which f(u) = 1u?.
Most of the tests use the initial conditions
1, r < 0.25
u(z,0) =< 2—4z, 0.25 <z <0.75
-1, x>0.75
and boundary conditions u(0,¢) =1, u(1,¢) =—1. As shown in Figure 1, a stationary

shock forms at x=0.5 at time t=0.25. The analytic solution is

1, r < min(0.25+t¢,0.5)
— 0.5
u(z,0) = :—W min(0.25+t, 0.5) < = < max(0.75—¢, 0.5)
-1, x> max(0.75—¢,0.5)

To assess the degree to which the solutions are grid converged, numerical results are
obtained on two uniform grids with Az = 0.0025,0.005. The corresponding timesteps
are At=0.4Az giving a maximum CFL number of 0.4.

The output functional uses G(u) = u®—u. This gives g(x) =4 on either side of the
shock. Furthermore, the jump [G] across the shock is equal to zero, so the analytic
solution has v =0 for all backward travelling characteristics emanating from the shock.
Hence the complete adjoint solution is

4, © <t
v(z,t) =< 0, t<z<1—t
4, ©>1—t

In the results to be presented, one of the main points of interest will be the computed
values for v(z,t) on the characteristics coming from the shock.
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Figure 2: Characteristics with the formation of a slowly moving shock.

To investigate whether a moving shock produces different results, some additional
numerical tests use the initial conditions

1, <025
u(z,0) =4 2—4z, 0.25<zx<0.7
0.8, x>0.7

with boundary conditions u(0,t)=1, u(1l,t)=-0.8,
As illustrated in Figure 2, this results in a solution with a slowly moving shock.

1, r < min(0.25+¢,0.475+40.1¢)

—0.5
u(z,0) = :_ 035 min(0.25+4+¢,0.4754+0.1¢) < = < max(0.7—0.8¢,0.475+0.1¢)

—0.8, > max(0.7—0.8t,0.475+0.1¢)

Using the same functional as before, the corresponding adjoint solution is

4, z < 0.025+t
v(z,t) = —0.2624,  0.025+t < z < 0.925—0.8¢
1.048 x 0.8%, 2 > 0.925—0.8¢



12

S B N W b

-5 0 5 -5 0 5
j i
Figure 3: Nonlinear and adjoint solutions obtained with a Riemann flux, for t=0.1,0.4
in the upper plots, and ¢=0.5 in the lower plots.

5.1 Riemann flux
The first results use a first order Riemann numerical flux function [LeV92],

F(uy,ug) = %max ((max(0, uy))*, (min(0, U2))2) .

The upper two plots in Figure 3 show the nonlinear and adjoint solution at times
t = 0.1,0.4. There is very little difference between the solutions for the two grids.
However it is very clear that the adjoint solution is completely wrong in the region
emanating from the shock, where the computed value is approximately equal to —1.

The cause for this incorrect value can be seen in the lower two plots which show the
nonlinear and adjoint solutions at the final time ¢t = 0.5, plotted versus node number
relative to the central node at x = 0.5. It is seen that on both grids the nonlinear
solution has a single shock point at which v = 0. For this point the corresponding
adjoint value is ¢ = dG/du(0) = —1, and a detailed examination of the matrix A reveals
that this value is propagated backward in time along the length of the shock, and along
any characteristic which propagates out of the shock.
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Furthermore, a detailed examination of the matrix A shows that the central portion
is

—r T 0
—r r 0
-r 0 -r ,
0 r o —r
0 r o —r
with the transpose being
0O r —r
0 r —r
0O 0 0
—r 0
—r r 0

Thus the value —1 at the shock centre propagates backward in time along the length of
the shock, and along any characteristic which propagates out of the shock.

An even more dramatic example of incorrect behaviour would be obtained by using
an odd number of cells instead of an even number, so that the shock centre lies half-way
between two nodes. In that case, the final solution would have no interior shock point,
and so all of the elements of g would have the value 4, leading to the entire discrete
adjoint solution having value 4.

5.2 Lax-Friedrichs flux

The rest of the results all use a simple Lax-Friedrichs flux, combining a central average
flux with additional first order smoothing,

P, u2) = 5 (7 )+ () — p (=)

Figure 4 shows results for ©=0.25. The values computed on the two grids are almost
identical. In the vicinity of the shock, the nonlinear solution is very close to a self-similar
steady-state solution which depends solely on p and the grid ratio At/Az, and with this
level of smoothing there is again only one grid point in the middle of the shock. The
adjoint solution appears grid converged, but to a value which is incorrect.

Figure 5 shows results for 4=1.0. There are now many grid points across the shock,
and therefore fairly good resolution of the differing values of ¢ = dG/du for u ranging
from 1 on the left of the shock to —1 on the right of the shock. The numerical adjoint
solution now has a value very close to the analytic value of zero in the central part of
the domain.
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Figure 4: Nonlinear and adjoint solutions obtained with a Lax-Friedrichs flux with
smoothing ©=0.25, for t=0.1,0.4 in the upper plots, and £=0.5 in the lower plots.
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Figure 5: Nonlinear and adjoint solutions obtained with a Lax-Friedrichs flux with
smoothing ©=1.0, for t=0.1, 0.4 in the upper plots, and t=0.5 in the lower plots.
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Figure 6: Error in the computed value for v(0.5,0) as a function of the numerical smooth-
ing coefficient p.

N\ /S

O B N W

0.5 1 0 0.5 1

4
1
3
0.5
2
> 0 >
1
-0.5
0
-1
-1 4 v
0 0.5 1

0.5 1
X X

Figure 7: Solutions at t =0.1,0.4 using the Lax-Friedrichs flux with different levels of
smoothing in the nonlinear and adjoint calculations. Upper results: p(nonlinear) =
0.25, p(adjoint) = 1.0. Lower results: p(nonlinear) = 1.0, p(adjoint) = 0.25.
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Figure 8: Nonlinear and adjoint solutions for the moving shock testcase, using the Lax-
Friedrichs flux with smoothing 1=1.0, for t=0.1,0.4 in the upper plots, and t=0.5 in
the lower plots.

Figure 6 plots the error in the computed value for v(0.5,0) versus the value of the
smoothing coefficient u. It appears from these results that the error decreases exponen-
tially with the value of u and hence the number of grid points across the shock.

Figure 7 presents results obtained by using different values for g in the nonlinear
and adjoint calculations. The upper results use ;4 =0.25 for the nonlinear calculations,
and p=1.0 for the adjoint calculation. The higher value for i in the adjoint calculation
leads to rapid diffusion bringing into the shock region the larger values for the adjoint
solution v(z, t) on either side of the shock, leading to incorrect values in the shock region.
The lower results use p=1.0 for the nonlinear calculations, and p©=0.25 for the adjoint
calculation. The lower value for p in the adjoint calculation leads to very little diffusion,
and so the adjoint solution value ¢ = —1 at the centre of the smeared shock is convected
backwards in time leading to v(x,t) &~ —1 throughout the shock region. These results
show the importance of using the same value of 1 in both calculations, so that the adjoint
discretisation corresponds correctly to the linearisation of the nonlinear discretisation.

The final results in Figures 8 and 9 are for the moving shock testcase. The index j in
the lower plots in Figure 8 is relative to the node at the centre of the shock at the final
time. Figure 9 shows that there is again exponential convergence in the adjoint solution
v(0,5,0) as the smoothing is increased. Thus, this phenomenon does not depend on the
shock being stationary.
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Figure 9: Error in the computed value for v(0.5,0) for the moving shock testcase, as a
function of the numerical smoothing coefficient .

6 Discussion

One clear conclusion from these numerical results is that there must be consistency be-
tween the nonlinear and adjoint calculations regarding the level of numerical smoothing.
Also, for convergence it is necessary that as the grid resolution improves, the numerical
smoothing varies in a way which increases the number of points across the shock, while
at the same time the overall width of the shock decreases.

To understand why this latter point is fundamental, and not just a feature of the par-
ticular numerical experiments conducted, we need to consider the information supplied
to the adjoint code. The analytic solution has a value along the shock which depends on
the jump [G(u)] across the shock at the final time t=T. However, the end conditions for
the numerical adjoint solution are given by the values of dG/du for the final values of u
obtained from the nonlinear calculation. These means that the numerical solution must
implicitly evaluate [G(u)] by some process which effectively integrates dG/du across
the smeared shock. For this to be done accurately requires adequate resolution of the
variation in dG/du.

This point is illustrated in Figure 10. The smoother of the two curves is G(u) =u’—u,
the objective function in the numerical experiments. The symbols correspond to the
values of u at the final time ¢ =T in Figure 5. The second curve is G(u) = u®—u +
tanh 20(u —0.2). This function has almost identical gradient values at the indicated
sampling points, and therefore produces a numerical adjoint solution which is visually
indistinguishable from Figure 5. However, the analytic solution has a different jump in
G(u) across the shock, and so the analytic solution is quite different. This shows that
for any numerical discretisation with a fixed number of points across the shock, it is
easy to construct an objective function for which the numerical adjoint solution will not
converge.
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Figure 10: Two objective functions G(u).

Effectively, what the numerical computation is implicitly doing is to obtain the jump
[G(u)] through the integral of its gradient.

[G(u)]:/uwgdu:/oog%dx.

~ du oo

It is therefore interesting to note that the trapezoidal integration of a analytic function
w(x) which decays exponentially as || — oo has an error which decreases exponentially
with the reciprocal of the uniform mesh spacing [Ste81]. This may be related to the
exponential dependence of the adjoint error on the level of numerical smoothing, and
hence the number of points in the smeared shock.

A final observation concerns the magnitude of the errors likely to be encountered in
practical aerodynamic computations. At the end of section 3 it was noted that [G(u)]/[u]
represents the average value of dG /du across the shock, so in the case of weak shocks this
will be very close to the values of g(x) on either side of the shock. What can be considered
a ‘weak’ shock will depend on the variation in dG/du across the shock. However, for the
purposes of aeronautical design optimisation, which is one of the primary motivations
for this study, it seems likely that if the normal Mach number entering the shock is less
than 1.1, or even perhaps as much as 1.2, then the errors will not be significant. This
belief is based in part on the fact that adjoint methods have been used very successfully
for transonic design applications without observing any difficulties associated with the
shock.
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