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21 Introdu
tionIn re
ent years there has been 
onsiderable resear
h into the use of adjoint 
ow equa-tions for design optimisation (e.g. [Jam95,AV99,GP00℄) and error analysis (e.g. [JRB95,MS98, PG00,BR01℄). In almost every 
ase, the adjoint equations have been formulatedunder the assumption that the original nonlinear 
ow solution is smooth. Sin
e mostappli
ations have been for in
ompressible or subsoni
 
ow, this has been valid, how-ever there is now in
reasing use of su
h te
hniques in transoni
 design appli
ations forwhi
h there are sho
ks. It is therefore of interest to investigate the formulation anddis
retisation of adjoint equations when in the presen
e of sho
ks.The reason that sho
ks present a problem is that the adjoint equations are de�nedto be adjoint to the equations obtained by linearising the original nonlinear 
ow equa-tions. Therefore, this raises the whole issue of linearised perturbations to the sho
k.The analysis will show how the analyti
 treatment must 
orre
tly linearise the sho
kjump equations whi
h arise from 
onservation properties at the sho
k. However, for thenumeri
al approximation it is not 
lear whether the linearised sho
k 
apturing will yieldthe 
orre
t results.The validity of linearised sho
k 
apturing for harmoni
ally os
illating sho
ks in 
utteranalysis was investigated by Lindquist and Giles [LG94℄ who showed that the sho
k
apturing produ
es the 
orre
t predi
tion of integral quantities su
h as unsteady lift andmoment provided the sho
k is smeared over a number of grid points. One interpretationof this is that it ensures the \vis
ous" sho
k pro�le remains invariant, to a very goodapproximation, as the sho
k os
illates, and therefore the integral e�e
t of the linearisedsho
k motion is 
orre
t. As a result, linearised sho
k 
apturing is now the standardmethod of turboma
hinery aeroelasti
 analysis [HCL94, SW98℄, bene�tting from the
omputational advantages of the linearised approa
h, without the many drawba
ks ofsho
k �tting.There has been very little prior resear
h into adjoint equations for 
ows with sho
ks.Giles and Pier
e [GP01℄ have shown that the analyti
 derivation of the adjoint equationsfor the steady quasi-one-dimensional Euler equations requires the spe
i�
ation of aninternal adjoint boundary 
ondition at the sho
k. However, the numeri
al eviden
e[GP98℄ is that the 
orre
t adjoint solution is obtained using either the \fully dis
rete"approa
h (in whi
h one linearises the dis
rete equations and uses the transpose) or the\
ontinuous" approa
h (in whi
h one dis
retises the analyti
 adjoint equations). In the
ase of the fully dis
rete approa
h, this is due to the se
ond order a

ura
y of 
onservativequasi-one-dimensional sho
k 
apturing [Gil96℄, whereas with the 
ontinuous approa
hit is thought to be be
ause the use of numeri
al smoothing automati
ally sele
ts the
orre
t numeri
al solution whi
h is smooth at the sho
k [GP98℄. It is not 
lear thoughthat either approa
h will produ
e the 
orre
t results in two dimensions, for whi
h thereis a similar adjoint boundary 
ondition along a sho
k.In this paper, whi
h is an expanded version of [Gil02℄, we 
onsider unsteady one-dimensional hyperboli
 equations with a 
onvex s
alar 
ux, and in parti
ular obtainnumeri
al results for Burgers equation. Tadmor [Tad91℄ developed a Lip' topology forthe formulation of adjoint equations for this problem, with appli
ation to linear post-



3pro
essing fun
tionals. Building on this and the work of Bou
hut and James [BJ98℄, Ul-bri
h has very re
ently introdu
ed the 
on
ept of shift-di�erentiability [Ulb02a,Ulb02b℄to handle nonlinear fun
tionals of the type 
onsidered in this paper. However, in thispaper we will provide an alternative derivation of the analyti
 adjoint solution againstwhi
h the numeri
al solutions will be 
ompared.We start by deriving the analyti
 adjoint equations for the 
ase when the underlyingsolution is smooth, and then present the extension to handle the presen
e of a sho
k. Itis shown that the latter requires the imposition of an interior boundary 
ondition alongany sho
k. The numeri
al dis
retisation is formulated by following the 'fully dis
rete'approa
h, requiring the adjoint equations to give exa
tly the same value for the linearisedfun
tional as a linearisation of the original nonlinear dis
retisation. It is demonstratedthat using 
onsistent, 
onservative numeri
al Riemann 
ux fun
tion yields in
orre
tvalues for the adjoint solution when there is a sho
k. However, a simpler Lax-Friedri
hs
ux formulation with numeri
al smoothing yields 
onvergent values if the sho
k is spreadover an in
reasing number of points.2 Analyti
 formulation in the absen
e of sho
ksLet u(x; t) be the solution of the s
alar equation�u�t + �f(u)�x = 0; 0<x<1; 0<t<Tsubje
t to initial 
onditions u(x; 0) = u0(x). Numeri
al results will be presented laterfor the Burgers equation for whi
h f(u) � 12u2, but here we 
onsider a general 
onvexfun
tion f(u). If the solution u(x; t) is di�erentiable, then�u�t + dfdu �u�x = 0:It follows from this that u(x; t) is 
onstant along straight 
hara
teristi
s de�ned bydxdt = dfdu:We will assume that df=du>0 at x=0 and df=du<0 at x=1, and therefore the valueof u(x; t) is spe
i�ed on the two side boundaries.We now 
onsider a linear perturbation ~u. The linearised p.d.e. with the addition ofa perturbation sour
e term s is �~u�t + ��x �dfdu ~u� = s: (2.1)If the boundary 
onditions are not perturbed, then ~u=0 on t=0, x=0 and x=1.If one is interested in an output fun
tionalJ(u) = Z 10 G(u(x; T )) dx;



4with G(u) being a fun
tion with a 
ontinuous derivative, then the linearised fun
tionalperturbation is ~J = Z 10 g(x) ~u(x; T ) dx:where g(x) = dG=du(x; T ). Using integration by parts, this 
an be re-expressed usingany di�erentiable fun
tion v(x; t) as~J = Z 10 g(x) ~u(x; T ) dx� Z Z
 v��~u�t + ��x �dfdu ~u�� s� dx dt= Z 10 (g(x)� v(x; T )) ~u(x; T ) dx + Z Z
��v�t + dfdu �v�x� ~u dx dt+ Z Z
 vs dx dtIf v is de�ned to satisfy the adjoint equation�v�t + dfdu �v�x = 0; (2.2)subje
t to the �nal 
ondition v(x; T ) = g(x), then this redu
es to~J = Z Z
 vs dx dt; (2.3)whi
h 
an be evaluated without knowing ~u. This is the basis of the use of adjointsolutions in both design optimisation and error analysis for spe
i�
 output fun
tionals.In the spe
i�
 
ase when s(x; t) is a Dira
 delta fun
tions(x; t) = Æ(x�x0) Æ(t�t0)then we obtain ~J = v(x0; t0):Thus, one interpretation of the adjoint solution v(x0; t0) is that it is the linearised fun
-tional obtained when the linearised equation are subje
t to a unit strength point sour
eat (x0; t0). For su
h a sour
e term, the linear perturbation ~u is zero ex
ept on the 
har-a
teristi
 passing through (x0; t0). To determine the value along this 
hara
teristi
, weintegrate equation (2.1) over 
 and use the initial and boundary 
onditions to obtainZ 10 ~u(x; T ) dx = 1;and hen
e ~u(x; T ) = Æ(x�x1);where x1 is the interse
tion point of the 
hara
teristi
 with the �nal boundary t = T .The 
orresponding perturbed fun
tional isv(x0; t0) � ~J = g(x1);so this provides 
on�rmation by this alternative derivation that the value of the adjointsolution is propagated un
hanged along the ba
kward travelling 
hara
teristi
.
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Figure 1: Chara
teristi
s with a sho
k forming along x=0:5.3 Analyti
 formulation with a sho
kWhat happens when there is a sho
k along a 
urve � = (t; xs(t)) from t=0 to t=T , asillustrated in Figure 1?Firstly, the velo
ity of the sho
k is given bydxsdt [u℄ = [f(u)℄ ;where [:℄ denotes the jump in the quantity a
ross the sho
k [LeV92℄.The linearised equation remains the same in the region 
 n � omitting the sho
kitself. In addition to this, one must linearise the sho
k velo
ity equation with respe
t to
hanges in xs(t) as well as u(x; t), givingd~xsdt [u℄ + dxsdt [~u℄ + dxsdt ~xs ��u�x� = �dfdu ~u�+ ~xs �dfdu �u�x� :The linearised fun
tional also needs to be modi�ed to take into a

ount the e�e
t ofthe displa
ed sho
k. Writing the nonlinear fun
tional asJ = Z xs(T )0 G(u(x; T )) dx + Z 1xs(T ) G(u(x; T )) dx;it follows that~J = Z xs(T )0 g(x) ~u(x; T ) dx + Z 1xs(T ) g(x) ~u(x; T ) dx � �~xs [G℄ ���t=T :



6 Now, introdu
ing a new variable vs for the linearised sho
k equation, and againintegrating by parts over 
 n �, gives~J = Z xs(T )0 g(x) ~u(x; T ) dx+ Z 1xs(T ) g(x) ~u(x; T ) dx � �~xs [G℄ ���t=T� Z Z
n� v��~u�t + ��x �dfdu ~u�� s� dx dt+ Z� vs�d~xsdt [u℄ + dxsdt [~u℄ + dxsdt ~xs ��u�x�� �dfdu ~u�� ~xs �dfdu �u�x�� dt= Z xs(T )0 (g(x)�v(x; T )) ~u(x; T ) dx+ Z 1xs(T ) (g(x)�v(x; T )) ~u(x; T ) dx� �~xs [G℄ ���t=T + Z Z
n���v�t + dfdu �v�x� ~u + vs dx dt� Z� [v~u℄ dx� �v dfdu ~u� dt+ Z T0 vs�d~xsdt [u℄ + dxsdt [~u℄ + dxsdt ~xs ��u�x�� �dfdu ~u�� ~xs �dfdu �u�x�� dtNoting that dx = dxs=dt dt along �, all of the terms involving ~u are either zeroor 
an
el out if v(x; t) is again de�ned to satisfy the adjoint equation (2.2) in 
 n �,together with the same �nal 
onditions on t=T , plus the additional 
onstraint that on�, v=vs on either side of the sho
k.Applying integration by parts to the terms involving ~xs yields� �~xs [G℄ ���t=T + Z� vs�d~xsdt [u℄ + dxsdt ~xs ��u�x�� ~xs �dfdu �u�x�� dt= � �~xs [G℄� vs [u℄ ���t=T + Z��~xs ddt (vs [u℄) + dxsdt ~xsvs ��u�x�� ~xsvs �dfdu �u�x� dtSin
e ddt [u℄ = ��u�t �+ dxds ��u�x� = � �dfdu �u�x�+ dxds ��u�x�it follows that these terms 
an
el if vs satis�es the equationdvsdt = 0;subje
t to the end 
ondition vs = [G℄ = [u℄ on t=T .Under all of these 
onditions, the linearised fun
tional redu
es �nally to~J = Z Z
n� vs dx dt:Sin
e v=vs on either side of the sho
k, the fa
t that vs is 
onstant along the sho
kmeans that the adjoint solution has a uniform value along all 
hara
teristi
s leading



7ba
kwards from the sho
k, as well as a 
onstant value along ea
h individual 
hara
teristi

oming ba
kwards in time from t=T .This result, and the value of the adjoint variables along the sho
k, 
an also be re-derived by 
onsidering a unit strength point sour
e term in the linearised equation. If asour
e term S(x; t) is added to the original nonlinear equation, then integrating over 
yields Z 10 u(x; T )� u(x; 0) dx+ Z T0 f(u(1; t))� f(u(0; t)) dt = Z
 S(x; t) dx dt:Linearising this, taking a

ount of the linearised sho
k displa
ement, givesZ xs0 ~u(x; T ) dx + Z 1xs ~u(x; T ) dx� �xs [u℄���t=T = Z
 s(x; t) dx dt:Now, for a unit point sour
e on a 
hara
teristi
 whi
h leads to the sho
k, then theresulting �nal linear perturbation ~u(x; T ) is zero on both sides of the sho
k. Hen
e,~xs(T ) = � [u℄�1��t=Tand the 
orresponding fun
tional perturbation is~J = � �~xs [G℄ ���t=T = [G℄[u℄ ������t=T :Although the adjoint solution v(x; t) is 
ontinuous a
ross the sho
k for t < T , withvalue equal to the sho
k adjoint variable vs(t), in general there is not 
ontinuity at the�nal time T . De�ning u� and u+ to be the values of u(x; T ) on either side of the sho
k,then [G℄ = Z u+u� dGdu du;and therefore vs(T ) = [G℄=[u℄ is the average value of g(x) � dG=du over the range ofu spanned by the sho
k. Given the assumed 
ontinuity of dG=du, this means that thevalue of vs(T ) will approa
h the values of g(x) on either side of the sho
k in the limitas the sho
k strength approa
hes zero.



84 Numeri
al dis
retisationWe 
onsider a 
lass of expli
it �nite volume dis
retisations of the form1�tM �Un+1 � Un�+�F n = 0:Here Un is the ve
tor of solution values Unj ; 0 � j � J at the nth timestep. M is adiagonal mass matrix whose entries areMjj = 8>><>>: 12(x1 � x0) j = 0;12(xj+1 � xj�1) 0 < j < J12(xJ � xJ�1) j = J;Given a numeri
al 
ux Fj+1=2 whi
h is a fun
tion of both Uj and Uj+1, the 
ux di�eren
e�F n is de�ned as �F nj = 8>><>>: F n1=2 � f(u(0; tn)) j = 0;F nj+1=2 � F nj�1=2 0 < j < Jf(u(1; tn))� F nJ�1=2 j = J:Note that this uses a weak implementation of the Diri
hlet boundary 
onditions, asopposed to expli
itly setting the values of Un0 and UnJ . This weak treatment is preferablebe
ause it leads to the attra
tive 
onservation propertyM �UN � U0� = �t N�1Xn=0 f(u(1; tn))� f(u(0; tn))and a 
leaner formulation of the adjoint dis
retisation.Having 
omputed the numeri
al solution, the dis
rete form of the nonlinear outputfun
tional is evaluated as J =Xj MjjG(UNj ):The linearised equations with the in
lusion of the sour
e term 
an be written as1�tM � ~Un+1 � ~Un� + An ~Un =M Sn: (4.1)In addition, the linearised output fun
tional is~J = gTM ~UN �Xj �dGdu�Nj Mjj ~UNj :In formulating the dis
rete adjoint equations, we follow what is often termed the\fully dis
rete" approa
h in whi
h the goal is to de�ne the adjoint equations in su
h



9a way as to obtain exa
tly the same value for the dis
rete linearised fun
tional. Thisis in 
ontrast to the \
ontinuous adjoint" approa
h whi
h dire
tly dis
retises the ad-joint di�erential equation, independently of the dis
retisation of the original nonlinearequation.Considering to begin with the 
ase in whi
h Sn = 0 for n > 0, the linear dis
reteequations, (4.1), may be solved to obtain~J = �t gTM �I ��tM�1AN�1� : : : �I ��tM�1A2� �I ��tM�1A1�S0:This may be re-arranged as~J = �t gT �I ��t AN�1M�1� : : : �I ��t A2M�1� �I ��t A1M�1�MS0= �t (V 1)TMS0;where V 1 is obtained by solving the dis
rete adjoint equation1�t M �V n+1 � V n�+ (An)T V n+1 = 0; (4.2)subje
t to the �nal 
ondition V N = g.Extending to the general 
ase in whi
h Sn is non-zero at all time levels, the de�nitionof the adjoint variables is un
hanged and the resulting expression for the fun
tional is~J = �t N�1Xn=0(V n+1)TMSn:Note that this is a dis
rete equivalent of equation (2.3).Looking in detail at the elements of the matrix An, one �nds that the dis
rete adjointequation for the jth node is1�t Mjj �V n+1j � V nj �+ ��F nj+1=2�Unj � (V n+1j+1 � V nj ) + ��F nj�1=2�Unj � (V n+1j � V nj�1) = 0:To prove that this is a 
onsistent approximation of the adjoint di�erential equation, (2.2),we need to note that for 
onsisten
y the original nonlinear 
ux fun
tion is required tosatisfy the 
onditionF nj+1=2(Unj ; Unj+1) = f(u) when Unj = Unj+1 = u:Di�erentiating this yields�F nj+1=2�Unj + �F nj+1=2�Unj+1 = dfdu when Unj = Unj+1 = u;and hen
e �F nj+1=2�Unj + �F nj�1=2�Unj = dfdu when Unj�1 = Unj = Unj+1 = u:



10It therefore follows that the dis
rete adjoint equation is a 
onsistent approximation ofequation (2.2) when the underlying 
ow solution is smooth.We will 
ontinue to use the same adjoint dis
retisation when the 
ow solution 
on-tains a sho
k. The question to be investigated is whether this will automati
ally 
apturethe 
orre
t adjoint solution in the limit of in
reasing grid resolution. As a prelude, wenote that only g � dG=du enters into the adjoint 
al
ulation as initial data, not [G℄ andso it is not 
lear that the adjoint 
al
ulation has the information ne
essary to 
orre
tlypredi
t the adjoint solution in the neighbourhood of the sho
k.5 Numeri
al testsThe numeri
al tests are all performed with the Burgers equation for whi
h f(u) � 12u2.Most of the tests use the initial 
onditionsu(x; 0) = 8><>: 1; x < 0:252� 4x; 0:25 � x � 0:75�1; x > 0:75and boundary 
onditions u(0; t) = 1; u(1; t) =�1. As shown in Figure 1, a stationarysho
k forms at x=0:5 at time t=0:25. The analyti
 solution isu(x; 0) = 8>><>>: 1; x < min(0:25+t; 0:5)x� 0:5t� 0:25 ; min(0:25+t; 0:5) < x < max(0:75�t; 0:5)�1; x > max(0:75�t; 0:5)To assess the degree to whi
h the solutions are grid 
onverged, numeri
al results areobtained on two uniform grids with �x = 0:0025; 0:005. The 
orresponding timestepsare �t=0:4�x giving a maximum CFL number of 0:4.The output fun
tional uses G(u) = u5�u. This gives g(x)= 4 on either side of thesho
k. Furthermore, the jump [G℄ a
ross the sho
k is equal to zero, so the analyti
solution has v=0 for all ba
kward travelling 
hara
teristi
s emanating from the sho
k.Hen
e the 
omplete adjoint solution isv(x; t) = 8><>: 4; x < t0; t < x < 1�t4; x > 1�tIn the results to be presented, one of the main points of interest will be the 
omputedvalues for v(x; t) on the 
hara
teristi
s 
oming from the sho
k.
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Figure 2: Chara
teristi
s with the formation of a slowly moving sho
k.To investigate whether a moving sho
k produ
es di�erent results, some additionalnumeri
al tests use the initial 
onditionsu(x; 0) = 8><>: 1; x < 0:252� 4x; 0:25 � x � 0:7�0:8; x > 0:7with boundary 
onditions u(0; t)=1; u(1; t)=�0:8,As illustrated in Figure 2, this results in a solution with a slowly moving sho
k.u(x; 0) = 8>><>>: 1; x < min(0:25+t; 0:475+0:1t)x� 0:5t� 0:25 ; min(0:25+t; 0:475+0:1t) < x < max(0:7�0:8t; 0:475+0:1t)�0:8; x > max(0:7�0:8t; 0:475+0:1t)Using the same fun
tional as before, the 
orresponding adjoint solution isv(x; t) = 8><>: 4; x < 0:025+t�0:2624; 0:025+t < x < 0:925�0:8t1:048� 0:84; x > 0:925�0:8t
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Figure 3: Nonlinear and adjoint solutions obtained with a Riemann 
ux, for t=0:1; 0:4in the upper plots, and t=0:5 in the lower plots.5.1 Riemann 
uxThe �rst results use a �rst order Riemann numeri
al 
ux fun
tion [LeV92℄,F (u1; u2) = 12 max �(max(0; u1))2 ; (min(0; u2))2� :The upper two plots in Figure 3 show the nonlinear and adjoint solution at timest = 0:1; 0:4. There is very little di�eren
e between the solutions for the two grids.However it is very 
lear that the adjoint solution is 
ompletely wrong in the regionemanating from the sho
k, where the 
omputed value is approximately equal to �1.The 
ause for this in
orre
t value 
an be seen in the lower two plots whi
h show thenonlinear and adjoint solutions at the �nal time t = 0:5, plotted versus node numberrelative to the 
entral node at x = 0:5. It is seen that on both grids the nonlinearsolution has a single sho
k point at whi
h u = 0. For this point the 
orrespondingadjoint value is g = dG=du(0) = �1, and a detailed examination of the matrix A revealsthat this value is propagated ba
kward in time along the length of the sho
k, and alongany 
hara
teristi
 whi
h propagates out of the sho
k.



13Furthermore, a detailed examination of the matrix A shows that the 
entral portionis 0BBBBBBBB�
: : : : : : : : :�r r 0�r r 0�r 0 �r0 r �r0 r �r: : : : : : : : :

1CCCCCCCCA ;
with the transpose being0BBBBBBBB�

: : : : : : : : :0 r �r0 r �r0 0 0�r r 0�r r 0: : : : : : : : :
1CCCCCCCCA :

Thus the value �1 at the sho
k 
entre propagates ba
kward in time along the length ofthe sho
k, and along any 
hara
teristi
 whi
h propagates out of the sho
k.An even more dramati
 example of in
orre
t behaviour would be obtained by usingan odd number of 
ells instead of an even number, so that the sho
k 
entre lies half-waybetween two nodes. In that 
ase, the �nal solution would have no interior sho
k point,and so all of the elements of g would have the value 4, leading to the entire dis
reteadjoint solution having value 4.5.2 Lax-Friedri
hs 
uxThe rest of the results all use a simple Lax-Friedri
hs 
ux, 
ombining a 
entral average
ux with additional �rst order smoothing,F (u1; u2) = 12 (f(u2)+f(u1))� � (u2�u1) :Figure 4 shows results for �=0:25. The values 
omputed on the two grids are almostidenti
al. In the vi
inity of the sho
k, the nonlinear solution is very 
lose to a self-similarsteady-state solution whi
h depends solely on � and the grid ratio �t=�x, and with thislevel of smoothing there is again only one grid point in the middle of the sho
k. Theadjoint solution appears grid 
onverged, but to a value whi
h is in
orre
t.Figure 5 shows results for �=1:0. There are now many grid points a
ross the sho
k,and therefore fairly good resolution of the di�ering values of g = dG=du for u rangingfrom 1 on the left of the sho
k to �1 on the right of the sho
k. The numeri
al adjointsolution now has a value very 
lose to the analyti
 value of zero in the 
entral part ofthe domain.
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Figure 4: Nonlinear and adjoint solutions obtained with a Lax-Friedri
hs 
ux withsmoothing �=0:25, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Figure 5: Nonlinear and adjoint solutions obtained with a Lax-Friedri
hs 
ux withsmoothing �=1:0, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Figure 6: Error in the 
omputed value for v(0:5; 0) as a fun
tion of the numeri
al smooth-ing 
oeÆ
ient �.
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Figure 7: Solutions at t= 0:1; 0:4 using the Lax-Friedri
hs 
ux with di�erent levels ofsmoothing in the nonlinear and adjoint 
al
ulations. Upper results: �(nonlinear) =0:25; �(adjoint) = 1:0. Lower results: �(nonlinear) = 1:0; �(adjoint) = 0:25.
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Figure 8: Nonlinear and adjoint solutions for the moving sho
k test
ase, using the Lax-Friedri
hs 
ux with smoothing �=1:0, for t=0:1; 0:4 in the upper plots, and t=0:5 inthe lower plots.Figure 6 plots the error in the 
omputed value for v(0:5; 0) versus the value of thesmoothing 
oeÆ
ient �. It appears from these results that the error de
reases exponen-tially with the value of � and hen
e the number of grid points a
ross the sho
k.Figure 7 presents results obtained by using di�erent values for � in the nonlinearand adjoint 
al
ulations. The upper results use �=0:25 for the nonlinear 
al
ulations,and �=1:0 for the adjoint 
al
ulation. The higher value for � in the adjoint 
al
ulationleads to rapid di�usion bringing into the sho
k region the larger values for the adjointsolution v(x; t) on either side of the sho
k, leading to in
orre
t values in the sho
k region.The lower results use �=1:0 for the nonlinear 
al
ulations, and �=0:25 for the adjoint
al
ulation. The lower value for � in the adjoint 
al
ulation leads to very little di�usion,and so the adjoint solution value g = �1 at the 
entre of the smeared sho
k is 
onve
tedba
kwards in time leading to v(x; t) � �1 throughout the sho
k region. These resultsshow the importan
e of using the same value of � in both 
al
ulations, so that the adjointdis
retisation 
orresponds 
orre
tly to the linearisation of the nonlinear dis
retisation.The �nal results in Figures 8 and 9 are for the moving sho
k test
ase. The index j inthe lower plots in Figure 8 is relative to the node at the 
entre of the sho
k at the �naltime. Figure 9 shows that there is again exponential 
onvergen
e in the adjoint solutionv(0; 5; 0) as the smoothing is in
reased. Thus, this phenomenon does not depend on thesho
k being stationary.
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Figure 9: Error in the 
omputed value for v(0:5; 0) for the moving sho
k test
ase, as afun
tion of the numeri
al smoothing 
oeÆ
ient �.6 Dis
ussionOne 
lear 
on
lusion from these numeri
al results is that there must be 
onsisten
y be-tween the nonlinear and adjoint 
al
ulations regarding the level of numeri
al smoothing.Also, for 
onvergen
e it is ne
essary that as the grid resolution improves, the numeri
alsmoothing varies in a way whi
h in
reases the number of points a
ross the sho
k, whileat the same time the overall width of the sho
k de
reases.To understand why this latter point is fundamental, and not just a feature of the par-ti
ular numeri
al experiments 
ondu
ted, we need to 
onsider the information suppliedto the adjoint 
ode. The analyti
 solution has a value along the sho
k whi
h depends onthe jump [G(u)℄ a
ross the sho
k at the �nal time t=T . However, the end 
onditions forthe numeri
al adjoint solution are given by the values of dG=du for the �nal values of uobtained from the nonlinear 
al
ulation. These means that the numeri
al solution mustimpli
itly evaluate [G(u)℄ by some pro
ess whi
h e�e
tively integrates dG=du a
rossthe smeared sho
k. For this to be done a

urately requires adequate resolution of thevariation in dG=du.This point is illustrated in Figure 10. The smoother of the two 
urves is G(u)=u5�u,the obje
tive fun
tion in the numeri
al experiments. The symbols 
orrespond to thevalues of u at the �nal time t = T in Figure 5. The se
ond 
urve is G(u) = u5�u +tanh 20(u�0:2). This fun
tion has almost identi
al gradient values at the indi
atedsampling points, and therefore produ
es a numeri
al adjoint solution whi
h is visuallyindistinguishable from Figure 5. However, the analyti
 solution has a di�erent jump inG(u) a
ross the sho
k, and so the analyti
 solution is quite di�erent. This shows thatfor any numeri
al dis
retisation with a �xed number of points a
ross the sho
k, it iseasy to 
onstru
t an obje
tive fun
tion for whi
h the numeri
al adjoint solution will not
onverge.
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Figure 10: Two obje
tive fun
tions G(u).E�e
tively, what the numeri
al 
omputation is impli
itly doing is to obtain the jump[G(u)℄ through the integral of its gradient.[G(u)℄ = Z u+u� dGdu du = Z 1�1 dGdu �u�x dx:It is therefore interesting to note that the trapezoidal integration of a analyti
 fun
tionw(x) whi
h de
ays exponentially as jxj ! 1 has an error whi
h de
reases exponentiallywith the re
ipro
al of the uniform mesh spa
ing [Ste81℄. This may be related to theexponential dependen
e of the adjoint error on the level of numeri
al smoothing, andhen
e the number of points in the smeared sho
k.A �nal observation 
on
erns the magnitude of the errors likely to be en
ountered inpra
ti
al aerodynami
 
omputations. At the end of se
tion 3 it was noted that [G(u)℄=[u℄represents the average value of dG=du a
ross the sho
k, so in the 
ase of weak sho
ks thiswill be very 
lose to the values of g(x) on either side of the sho
k. What 
an be 
onsidereda `weak' sho
k will depend on the variation in dG=du a
ross the sho
k. However, for thepurposes of aeronauti
al design optimisation, whi
h is one of the primary motivationsfor this study, it seems likely that if the normal Ma
h number entering the sho
k is lessthan 1.1, or even perhaps as mu
h as 1.2, then the errors will not be signi�
ant. Thisbelief is based in part on the fa
t that adjoint methods have been used very su

essfullyfor transoni
 design appli
ations without observing any diÆ
ulties asso
iated with thesho
k.
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