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This paper analyses the numerical stability of coupling procedures
in modelling the thermal diffusion in a solid and fluid with continu-
ity of temperature and heat flux at the interface. A simple one-
dimensional model is employed with uniform material properties and
grid density in each domain. A number of different explicit and im-
plicit algorithms are considered for both the interior equations and
the boundary conditions. The analysis shows that, in general, these
are stable provided Dirichlet boundary conditions are imposed on the
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each case, the imposed values are obtained from the other domain.
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1 Introduction

This analysis is motivated by interest in numerical procedures for coupling sepa-
rate computations of thermal diffusion in a solid and a fluid. A typical example
application is the computation of heat transfer to a blade in a gas turbine. The
surrounding air in a high pressure turbine is on average at a much higher tem-
perature and therefore there is a significant heat flux from the fluid into the
turbine blade. In steady-state, this is matched by a corresponding heat transfer
from the blade to relatively cold air flowing through internal cooling passages.
One approach to the numerical approximation of the above situation would be
the use of a single consistent, fully-coupled discretisation modelling both the
solid and the fluid, plus the boundary conditions at the interfaces [5]. How-
ever, for the solid it is the scalar unsteady parabolic p.d.e. which describes the
thermal diffusion, while for the fluid the appropriate equations are the Navier-
Stokes equations, with suitable turbulence modelling. Therefore, the production
of a single fully-coupled code for the combined diffusion application can be as
much work as writing the individual programs for the separate solid and fluid
applications. Since there are existing codes which accurately and efficiently solve
these individual problems, a more practical approach in many circumstances is
to investigate how best to couple such codes together to analyse coupled prob-
lems. Both CFD codes and thermal analysis codes usually have the capability
to specify either the temperature or the heat flux at boundaries. The natural
choice therefore for coupling these codes is to specify the surface temperature at
the interface in one code, taking the value from the other code, and specify the
boundary heat flux in the second code, taking its value from the first code [1,2].
A concern is whether there is any possibility that the coupling procedure will in-
troduce a numerical instability which does not exist for the uncoupled problems.
This is the issue that is addressed in this study.

The general theory for the analysis of numerical interface or boundary condi-
tion instabilities is well-established but can be complicated to apply in practice.
In this paper we simplify the analysis for this diffusion problem by restricting
attention to a simple 1D model problem, with a uniform grid on either side of
the interface. It is usually true that in 2D and 3D computations, any instability
due to an interface condition will first occur with a purely 1D eigenmode with a
spatial variation in the direction normal to the interface but no variation along
the interface. Therefore, the restriction of the analysis to 1D is felt to be well
justified. Furthermore, in 2D and 3D flows there is no velocity component nor-
mal to the solid boundary of the blade and so in the 1D model problem it is
appropriate to omit any convection term.



2 Analytic problem

The parabolic p.d.e. describing unsteady thermal diffusion is

ca—T = —@, q= —ka—T (2.1)
ot ox ox

Here T'(z,t) is the temperature, ¢(x,t) is the heat flux, ¢(x) is the heat capacity
and k(x) is the conductivity. These equations are valid for arbitrary, piecewise
continuous positive functions ¢(z), k(x). At any interface at which ¢ and/or k
are discontinuous, the equations are augmented by the requirement that 7" and ¢
must be continuous. The physical requirement that 7" is continuous is clear. The
requirement that ¢ is continuous follows from the integral version of the diffusion

equation which is
x

d 1" 7 7 2.2
G ear=—fagz 22

If 1 and x5 are taken on either side of the interface, then in the limit as 1 — x5,
both sides of the above equation must approach zero.
Defining

Tnaz(t) = max T(x,t),  Thpin(t) = min T(x,t), (2.3)

an important property of solutions of the unsteady diffusion equation is that for
any non-uniform initial conditions 7'(x,0) and for all £ > 0,

dTmaz <0 dTmm
dt ’ dt

and Tin(t) = Tnee(t) as t — co.

Although the above theory is given for general ¢(x), k(z), in this paper we
will now restrict attention to a single interface at x = 0 with ¢ and k having
uniform values ¢_,k_ for x <0, and ¢, , k, for x > 0. The boundary conditions
as * — oo are that the temperature approaches a uniform state and so the
heat flux tends to zero. The integral version of the thermal diffusion equation
will play a central role in the formulation of the discretisations, especially at the
interface. Also, the behaviour of the maximum and minimum temperature will
be important in defining the numerical stability of the coupled system.

> 0, (2.4)

3 Fully-coupled discretisation

In this section we examine the stability of fully-coupled discretisations of the
model problem. The theory for this is well established since it is simply a special
case of the more general problem of the discretisation of a parabolic p.d.e. with
spatially varying diffusivity [3,6]. There are several reasons for doing this anal-
ysis even though it is believed that the fully-coupled approach is not the most



practical approach to real coupled applications. The first is to show that in a
good fully-coupled discretisation there are no instabilities associated with the
interface treatment, that stability of the discretisation on the uniform mesh on
either side of the interface is a necessary and sufficient for stability of the fully-
coupled discretisation. The second is to have a benchmark against which to
compare the ‘weakly-coupled’ discretisations in the next section. These will be
shown to have interface instabilities under certain conditions, and it is informa-
tive to see how these are related to differences in the interface treatment relative
to the fully-coupled discretisation.

Using a computational grid with uniform spacing Az for x <0 and uniform
spacing Az for x>0, the location of grid nodes is given by

_{jAe, j<0
xﬂ_{jAm, j>0 (3.1)

Associated with each grid node is the discrete temperature variable T} which is
to approximate the analytic solution T'(z,t) at x=xz;, t=nAt.

3.1 An explicit algorithm

Using forward Euler time differencing and conservative spatial differencing based
on the integral form of the unsteady diffusion equation on the interval z;_ 1 <
r<m, +1 gives the following explicit algorithm,

Cj (TjnH_Tjn) - _(q;LJr%_q;L—%)’ q;LJr% - _Kj+§(77+1_77) (3.2)
where
( c_Ax_ ]
At J<0
c_Ar_ i Ax .
=4 t(S5m+ 55, i=0 (3.3)
A
| o i>0
and
Al‘_’ .] 2
Kit =9 (34)
+ .
1>0
Az, Jt3

Note that the equation for 7 =0 involves the conductivity and heat capacity on
both sides of the interface. In particular, At Cy is the heat capacity of the whole

computational cell extending from r_1tox, 1.



For 7 <0, the difference equation reduces to

n+1l _ mn n n n
TP =T 4+ d_ (T],, - 207 + T ) (3.5)
where b Ay
d_ = — 3.6
c. Ax? (3:6)
The Fourier mode
T} = 2" exp(ij0) (3.7)

with the superscript in 2" being a true exponent not an index denoting the
iteration level, is a solution of this difference equation provided that

z=1—4d_sin® 1. (3.8)

Fourier stability requires that |z| < 1 for all real values of 6; this is satisfied
provided d_ < 1.

Similarly, Fourier stability of the constant coefficient difference equation in
J > 0 requires that d; < 1, where

k. At

d —
+

(3.9)

We will now prove that if the requirements of Fourier stability are satisfied
on each side of the interface, then the fully-coupled discretisation is stable in the
sense that

Tz < Tazr T = Tins (3.10)
where
U B— max T,  Thpip =minT}. (3.11)
J

We begin by noting that if d_ < 1 and d; < 1, then for any positive value r

d_+rdy
d_+rd, <i(1+7) :%S% (3.12)

r

In particular, we will use this result with r as the ratio of the heat capacities of
the computational cells on either side of the interface,
C+A.T+

r= (3.13)

The next step is to re-write the full difference equation as

T+ = (1—a;—b;) TP + ;T

it bjTjnq (3.14)



where

aj:bj:d_, ]<0
2d_ _2T‘d+
1+r % 147
aj:bj:d+, ]>0

(3.15)

ay =

0<d_ <1iand 0<d;y<i,soforall j, a;,b; and 1—a;—0b; are positive quantities
and thus T"Jrl is a posmve weighted average of T7',,, T/", T}" ;. Hence,

Triw < min(T,,T7,Tr,) < T/ < max(?}"H,T”,]T_l) < 7T7.. (3.16)

min max

This is true for all j, and so taking the maximum over all j, and the minimum
over all j, gives the desired result, Eq.(3.10).

3.2 An implicit algorithm

Replacing the forward Euler time differencing with backward Euler time differ-
encing gives the following implicit algorithm.

CTPT =T = —(qffi—4i™)) iy = —K; (TR =177, (3.17)

with Cj, K| 11 as defined before. Fourier stability analysis of the discretisation
on elther 51de of the interface yields

2= (1+4dusin’ 10) . (3.18)

In both cases, |z| < 1 for all values of d and 6, giving unconditional Fourier
stability for the separate constant coefficient discretisations.

Furthermore, the fully-coupled discretisation is also unconditionally stable in
the same sense as before that

T < T TrEL > T (3.19)

mar — max? mwn — min*

To prove this, the difference equation is re-written as

Tl = (1—a;—b) TP + a;THE + oI (3.20)
where
a; = K. _|_K]+.%1 +C
itz i3 J
K s
b = K 1+ K;_l +C; (8.21)
C.
Lo =b = K. +Ié_l +C;



It is clear that a;, b; and 1—a;—b; are positive quantities, for all 5. We now choose
J such that 77" = T+l Subtracting T7%F! from both sides of the difference
equation gives

(L—ay—by) (T} =T + ag(TH — TR + by (T3 =TI =0 (3.22)

max maxr max

Because 774!, T} < T4l and az, by, 1—a;—b; are all positive, either 77 > Tt

or T% = T} = T7H = Trtl In the first case, we immediately get the result

max *

that 7" > T"*l In the second case, we can repeat the argument with j =

maxr mazx *

J £ 1. By further repetition if necessary, we conclude that either 7.2, > Tot!
or TP =T+ =Tnel for all j, in which case T, = Tnit.
Exactly the same argument can be used to prove that 77, < T™t! with

equality occurring only in the trivial case in which T} is constant.

4 Loosely-coupled discretisation

In the loosely-coupled discretisation, each half of the domain is solved separately
with boundary conditions containing information from the other. The natural
boundary conditions for a diffusion problem are either Dirichlet (the specification
of the boundary temperature) or Neumann (the specification of the boundary
heat flux). Therefore we will consider a loosely-coupled procedure in which the
calculation for z > 0 uses Dirichlet data obtained from the solution for z < 0,
while the calculation for £ < 0 uses Neumann data obtained from the solution
for z > 0.

4.1 An explicit algorithm

Given existing solutions at time level n in both halves of the domain, the simplest
and most natural explicit numerical algorithm for determining Tj’”rl for j <0 is

Cfo* n n k* n n n -
At (T’] +1_T’j ) = Ax_ (T'j-i-l - 27—1] +T’j—1)7 J < 0
c.Ax_ " ko
IAt (TO +1_TO ) = —quw — A—QL(TO _T_l), (41)

where ¢, is the heat flux specified as the interface boundary condition. The
simplest consistent equation for determining this from the data in j > 0 is

A:U+

The corresponding explicit numerical algorithm for simultaneously determin-
ing 77" for j>0 is

Gw = (1" = T5'). (4.2)

Cyp Al‘+
At

k.
A:U+

(Tj"+1 _T]?l) = (T

T - 2TPHT ). (43)



The equation for 7 =1 requires the variable 7 and this is set by the Dirichlet
boundary condition
Ty = T, (4.4)

where T), is the interface temperature. The obvious value for this is simply 7§
from the computation for j <0.

To summarise the communication between the two calculations for j < 0
and j >0, at each timestep there is an exchange of data, with the program or
subroutine performing the calculation for j <0 supplying the value of T, to the
other program or subroutine performing the calculation for 7 >0, while the latter
sends ¢, to the former. It is then possible that the computations for the two
halves could proceed in parallel (perhaps using separate processes on separate
workstations) until they again exchange data before the next timestep.

By comparing Equations (4.1,4.3) with Equation (3.2), it can be seen that
the only difference is the omission of the term

C+A¢T+
2At

in the equation for j = 0. If ¢, Az, < ¢ Ax_ , then this omitted term is
negligible compared to the retained term

c_Ax_
2At

and so it seems likely that no instability will be introduced by its omission.
On the other hand, if ¢, Ax, > ¢ Ax_, then the omitted term may be very
significant. This indicates very simply that a key parameter in the following
analysis will be the variable r, defined earlier in Equation (3.13) as the ratio of
these two quantities.

For the purposes of analysis it is more convenient to consolidate and simplify
the equations into the following form,

n+1 n n n n .
T = T vd (T 2T+ T), <0
T = Ty —2d_ (T = T7) + 2rdy (T = T3), (4.5)
T = TP, (Tfh — 2T + Tf”_1) . ji>0
where d4 and r are as defined previously.

In applying the stability theory of Godunov and Ryabenkii [4,7], the task is
to investigate the existence of separable normal modes of the form

J

The discretisation is unstable if the difference equation admits such solutions
which satisfy the far-field boundary conditions, |f; — f;—1| = 0 as j — £o0, and



have |z| > 1, giving exponential growth in time. The form of the solution is very
similar to the assumed Fourier modes, except that the spatial variation is not of
the form exp(ijf). In fact, for this application the normal mode must be of the

form )
{ 2k, 5 <0

T" = _ .
R, >0

J

(4.7)
The difference equations, Equation (4.5) are satisfied provided the three variables
2, k_, Kk satisfy the following equations.

z = 14+d (k- —2+x""

z = 1+4+2d_(k2'=1) + 2rd (k. —1) (4.8)

z = 1+dy(ky—2+k7")

Solving the first of these equations to obtain k=' gives

1—2 4d_
=1 14+4/1— . 4.
- 2d_ ( l—z) (4.9)

To satisfy the far-field boundary conditions as j — —oo it is necessary to choose

the negative square root when the argument is real and positive. When it is

complex, the choice of root is defined by the requirement that |x~'| < 1.
Similarly, solving the third of the equations gives

1—2 4d+
T PRy . 4.1
i 2, ( 1—2) (4.10)

Substituting these into the second equation gives the following nonlinear equa-

tion for z.
4d_ 4d
1—-— - 1—4/l———] = 4.11
1—2 r( 1—z> 0 ( )

There is no simple closed form solution to this, giving z as an explicit function
of the parameters d_,d,,r. Instead, we consider asymptotic solutions under
different assumptions.

When d_,d, < 1, the square root terms can be expanded to give the following
approximate equation and solution.

2d_ 2T‘d+
1—2z 1—2z

1 ~0, = za~1-2d_—2rd,. (4.12)

The requirement for stability is |z| < 1. The solution z(r) lies inside |z| =1 for

sufficiently small values of r, but then crosses it at z=—1 when r=-~. Thus for

dy -
d_,d, <1 the stability requirement is 0 < r < i.
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Expanding the analysis to consider arbitrary values for d_,d,, we begin by
considering the asymptotic behaviour when » < 1 and r > 1.
When r < 1 the asymptotic solution is

4d_
,/1—%%0, s aml-dd (4.13)
—Z

Since d_ must satisfy 0 < d_ <1 for the discretisation to be stable according
to Fourier stability analysis, it follows that |z| < 1. Thus, there is no coupled
instability when r < 1.

When r > 1, the asymptotic solution is given by

[ 4d Ad
1—y/1-——~0, = T x0 = |z|>1 (4.14)
1—=2 1—2

Given that |z| > 1, an approximate value can then be obtained from

[ 4d 1 4d 2
l—yf1-—F - —= —x> — zx1-2rd, (4.15)
1—2 r 11—z r

Thus for fixed d, and sufficiently large r, there is a instability with z being
large, real and negative. The corresponding values of x=! and s, will be small,
real and negative, so the instability will appear as a ‘sawtooth’ oscillation mode,
both spatially and in time, with an amplitude which decays exponentially away
from the interface, but grows exponentially in time.

Since the loosely coupled system is stable for » < 1 and unstable for r > 1
the remaining question is the value of r at which the instability begins. This
corresponds to the lowest positive real value of r for which |z| = 1. Because of
the requirement that r is real, it can be shown from Equation (4.11) that this
again requires z = —1, in which case

N
TR (4.16)

r =
Thus the condition for stability is

0<r<

JT =320
[Eie=—rn (4.17)

A typical calculation using a timestep close to the Fourier stability limit might
have d_ = d, = 0.45, for which the coupled stability limit is approximately
0 < r < 0.46. The key to obtaining stability in practical computations is the
correct choice of which half of the domain uses the Dirichlet boundary conditions
and which half uses the Neumann boundary conditions. The usual practice
for the coupled blade/air computations discussed in the Introduction is to use
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Neumann boundary conditions for the solid computation, and Dirichlet boundary

conditions for the fluid computation. For this choice, the corresponding value of

r is given by

_ Auid A fluid (4.18)
Csolid A solid

Given typical values for the parameters involved, r is usually very small and so

this is stable.

If, on the other hand, one were to use Dirichlet boundary conditions for the
solid computation and Neumann boundary conditions for the fluid computation,
then the appropriate value for r would be the inverse of the above quantity, which
would be very large. In this case the coupled calculation would almost certainly
be unstable.

r

4.2 A hybrid algorithm

The next algorithm to consider is a hybrid one, in which the computation is
unaltered for j >0, but the algorithm for j < 0 is replaced by the corresponding
implicit method based on a backward Fuler time discretisation.

c_Ax_ . koo . ; _
a TET = g T -2, <0

c_Ax_ . koo ;
IAL (TO Jrl_T'[] ) = —Quw— A—L(TO 1 _T,fl)- (419)

The boundary heat flux ¢, is again defined explicitly by

AII/’+

G = (17 = T7)). (4.20)
The difference equations for j >0 are unchanged, as is the communication of
data between the calculations for 7 <0 and 5 >0.
The consolidated, simplified form of the equations is

T = TP bd (TR 2Tt TR), <0
Tt = Ty —2d Tyt = T + 2rdy (T7 = T3, (4.21)

T = T+ (T.”

P —2TP+TR), >0

and the normal mode is again of the form

2k, <0
T" = . (4.22)
>0
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The difference equations, Equation (4.21) are satisfied provided the three vari-
ables z, k_, k, satisfy the following equations.

1 = 27 ' +d_(k_—2+rKZ"
1 = z'+2d (k'=1)+2rd 2 (K —1) (4.23)
z = 1+ d+(/<;+—2+/<,jrl)

The third of these equations requires that s, depends on z in exactly the
same way as for the purely explicit algorithm. Solving the first of these equations
subject to the far-field boundary conditions gives

-1
m:1:1+1;dz (1— 1+%). (4.24)
Substituting these into the second equation gives
1+ idz‘_l — 7 (1 —/1— fi) =0 (4.25)
When r < 1 the asymptotic solution is
1+ 14—dz1 ~0, = z~(1+4d )" (4.26)

|z| <1 for all values of d_ and so the discretisation is stable.
When r > 1, the asymptotic solution is given by

[ 4d 4d
1—y/1-——~0, = T x0 = 2> (4.27)
1—2 1—z

Given that |z| > 1, an approximate value can then be obtained from

4y VI+4dd-

1 — 4/1 ~ —
1—2 r
4d 24/1 +4d_
1—2 r
2rd
— o~ 1o (4.28)

V144d-

Thus for fixed d_, d, the coupled discretisation is still unstable for sufficiently
large values of r.
The cross-over from stability to instability again occurs when z=—1, giving

VI F2d_ (4.29)
1—I—2d, '

r =
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Thus the condition for stability is

VIF2d
1—1-2d,

Comparing this result with the corresponding result for the purely explicit algo-
rithm, it can be seen that the new stability region is greater except when d_ < 1.
This has a physical interpretation; when d_ is not small, the strong implicit cou-
pling of the computational cells for j <0 increases the effective thermal capacity
of the cells affected in one timestep by the interface heat flux.

0<r< (4.30)

4.3 An implicit algorithm

We now consider a fully implicit algorithm, but with explicit updating of the data
used for the interface boundary conditions. The implicit numerical algorithm for
j <0 is again

_Ax_ k-
¢ Af (T =17) = (T =2 T, <0
IAL (T0—+1_T0—) = Gy — Az (TO_—i—l_T_Tl)- (431)
with ¢, defined explicitly by
k+ n n
v (17 = T3,). (4.32)

An important point in the above equations is the distinction between 77" , the
value of T™ at j=0 as calculated for the domain j <0, and 7§, the value of T"
at j =0 for the domain 7 > 0. In the previous discretisations these two values
have been identical but this will not be true in this case.

The corresponding implicit numerical algorithm for simultaneously determin-
ing T/ for j>0 is

ke
Al‘+

cr Ay
At

(Tjn+1 _T]n) — (Tgn-:_ll — 2]}.""’14-]”9”_“'11), (4.33)

The equation for j=1 requires the variable Tg"" L'and this is set by the Dirichlet
boundary condition
TOan—l = Ty, (434)

where T, is the interface temperature. Using explicit updating of boundary data,
Ty, =Ty, (4.35)

Ty, lags Ty— by one iteration.
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The pattern of communication between the calculations for j <0 and j7 >0
is exactly the same as for the explicit algorithm. They exchange the values of
T, and ¢, at the beginning of the timestep, perform the timestep calculations
independently (possibly in parallel on separate workstations) and then repeat
the process for the next timestep.

For the purposes of analysis it is again more convenient to consolidate and
simplify the equations into the following form,

T = TP do (TR - 20 T <0

Tt = T —2d (Tp - T 4 2rd, (TP -TYL), (4.36)
TP = TP dy (TRE = 2T 4 TP, >0

o = 13

The form of the normal mode solution for this case is
2K j=0——-1,-2,-3,...
. (4.37)
2L =04, 41, 42,43, ...

The fourth equation in Equation (4.36) is automatically satisfied by the above
choice of normal mode. The other three equations require that the variables
2, k_, Kk satisfy the following equations.

1 = z'+d (k=241
1 = z7'+2d (kZ'=1) + 2rd, 2% (k, —1) (4.38)
1 = 2" +di(k—2+r7")

Solution of the first and third of these equations, subject to the far-field
boundary conditions, gives

12! 4d_
kD= 14—~ (1— 14+ )

2d_ 1—2z71
]_—Zil 4d+
=1 1—4/1 . 4.39
i YR ( + 1—z—1> (4.39)
Substituting these into the second equation gives
4d _2 4d
1+ 1—72’*1 + rz ( 1+ 1.1 - 1) =0. (440)

When r < 1, the asymptotic solution is

[ 4d_
I+ —=~0 = z=~ (1+4d ) ! (4.41)
—Z
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|z| <1 for all values of d_ and so the discretisation is stable.
When r > 1, the asymptotic solution is given by

4d
2_2( L+ +_1—1)%0, — 'm0 = |z>1 (4.42)
—Z

Given that |z| > 1, an approximate value can then be obtained from

1
1 V1i+4d, —1\2
2./ ~ / ~ i +

(4.43)
Thus for fixed d_, d, and sufficiently large r, the coupled system is unstable.

It is not possible for general values of d_, d, to determine explicitly the value
of r above which the solution procedure is unstable. It is possible however to
obtain an asymptotic solution under the assumption d_,d, > 1. This is a
reasonable assumption since the motivation in using implicit methods is to use
much larger timesteps than would be stable using explicit methods. Under the
assumption d_,d, > 1, Equation (4.40) reduces to

L\
Jdo + rz i Jdyx0, = x4 (d—+> : (4.44)

Hence, under these conditions the stability limit is

d_
0<7 <5 (4.45)
dy

Provided, as before, that the correct choice is made as to which domain
uses the Neumann b.c.’s and which uses the Dirichlet b.c.’s, then r should be
sufficiently small that practical computations will be stable.

5 Concluding remarks

The stability analysis in this paper has shown the viability of a loosely-coupled
approach to computing the temperature and heat flux in coupled fluid/structure
interactions. The key point to achieving numerical stability is the use of Neu-
mann boundary conditions for the structural calculation and Dirichlet boundary
conditions for the fluid calculation.

Although the analysis was performed here for the 1D model diffusion equa-
tion, the results are believed to be applicable to the real situation in which the
3D diffusion equation is used to model the heat flux in the structure and the 3D
Navier-Stokes equations are used to model the behaviour of the fluid. This belief
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is supported by the practical experience of 3D computations performed using
this coupling procedure [1, 2].

The analysis also assumed a time-accurate modelling of the fluid/structure
interaction. In practical computations, the point of engineering interest is often
the steady-state temperature and heat flux distributions. In such cases, the
computations in the structure and fluid can both proceed with different timesteps
given by their respective Fourier stability limits. The coupled normal mode
analyses remain valid using the values of d_, d, based on the timesteps At_, At
used in the two domains.
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