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21 IntroductionThis analysis is motivated by interest in numerical procedures for coupling sepa-rate computations of thermal di�usion in a solid and a 
uid. A typical exampleapplication is the computation of heat transfer to a blade in a gas turbine. Thesurrounding air in a high pressure turbine is on average at a much higher tem-perature and therefore there is a signi�cant heat 
ux from the 
uid into theturbine blade. In steady-state, this is matched by a corresponding heat transferfrom the blade to relatively cold air 
owing through internal cooling passages.One approach to the numerical approximation of the above situation would bethe use of a single consistent, fully-coupled discretisation modelling both thesolid and the 
uid, plus the boundary conditions at the interfaces [5]. How-ever, for the solid it is the scalar unsteady parabolic p.d.e. which describes thethermal di�usion, while for the 
uid the appropriate equations are the Navier-Stokes equations, with suitable turbulence modelling. Therefore, the productionof a single fully-coupled code for the combined di�usion application can be asmuch work as writing the individual programs for the separate solid and 
uidapplications. Since there are existing codes which accurately and e�ciently solvethese individual problems, a more practical approach in many circumstances isto investigate how best to couple such codes together to analyse coupled prob-lems. Both CFD codes and thermal analysis codes usually have the capabilityto specify either the temperature or the heat 
ux at boundaries. The naturalchoice therefore for coupling these codes is to specify the surface temperature atthe interface in one code, taking the value from the other code, and specify theboundary heat 
ux in the second code, taking its value from the �rst code [1, 2].A concern is whether there is any possibility that the coupling procedure will in-troduce a numerical instability which does not exist for the uncoupled problems.This is the issue that is addressed in this study.The general theory for the analysis of numerical interface or boundary condi-tion instabilities is well-established but can be complicated to apply in practice.In this paper we simplify the analysis for this di�usion problem by restrictingattention to a simple 1D model problem, with a uniform grid on either side ofthe interface. It is usually true that in 2D and 3D computations, any instabilitydue to an interface condition will �rst occur with a purely 1D eigenmode with aspatial variation in the direction normal to the interface but no variation alongthe interface. Therefore, the restriction of the analysis to 1D is felt to be welljusti�ed. Furthermore, in 2D and 3D 
ows there is no velocity component nor-mal to the solid boundary of the blade and so in the 1D model problem it isappropriate to omit any convection term.



32 Analytic problemThe parabolic p.d.e. describing unsteady thermal di�usion isc@T@t = �@q@x; q = �k@T@x (2.1)Here T (x; t) is the temperature, q(x; t) is the heat 
ux, c(x) is the heat capacityand k(x) is the conductivity. These equations are valid for arbitrary, piecewisecontinuous positive functions c(x); k(x). At any interface at which c and/or kare discontinuous, the equations are augmented by the requirement that T and qmust be continuous. The physical requirement that T is continuous is clear. Therequirement that q is continuous follows from the integral version of the di�usionequation which is ddt Z x2x1 c Tdx = �[q]x2x1 : (2.2)If x1 and x2 are taken on either side of the interface, then in the limit as x1 ! x2,both sides of the above equation must approach zero.De�ning Tmax(t) = maxx T (x; t); Tmin(t) = minx T (x; t); (2.3)an important property of solutions of the unsteady di�usion equation is that forany non-uniform initial conditions T (x; 0) and for all t > 0,dTmaxdt < 0; dTmindt > 0; (2.4)and Tmin(t)! Tmax(t) as t!1.Although the above theory is given for general c(x); k(x), in this paper wewill now restrict attention to a single interface at x = 0 with c and k havinguniform values c�; k� for x< 0, and c+; k+ for x> 0. The boundary conditionsas x ! �1 are that the temperature approaches a uniform state and so theheat 
ux tends to zero. The integral version of the thermal di�usion equationwill play a central role in the formulation of the discretisations, especially at theinterface. Also, the behaviour of the maximum and minimum temperature willbe important in de�ning the numerical stability of the coupled system.3 Fully-coupled discretisationIn this section we examine the stability of fully-coupled discretisations of themodel problem. The theory for this is well established since it is simply a specialcase of the more general problem of the discretisation of a parabolic p.d.e. withspatially varying di�usivity [3, 6]. There are several reasons for doing this anal-ysis even though it is believed that the fully-coupled approach is not the most



4practical approach to real coupled applications. The �rst is to show that in agood fully-coupled discretisation there are no instabilities associated with theinterface treatment, that stability of the discretisation on the uniform mesh oneither side of the interface is a necessary and su�cient for stability of the fully-coupled discretisation. The second is to have a benchmark against which tocompare the `weakly-coupled' discretisations in the next section. These will beshown to have interface instabilities under certain conditions, and it is informa-tive to see how these are related to di�erences in the interface treatment relativeto the fully-coupled discretisation.Using a computational grid with uniform spacing �x� for x<0 and uniformspacing �x+ for x>0, the location of grid nodes is given byxj = ( j�x�; j � 0j�x+; j � 0 (3.1)Associated with each grid node is the discrete temperature variable T nj which isto approximate the analytic solution T (x; t) at x=xj; t=n�t.3.1 An explicit algorithmUsing forward Euler time di�erencing and conservative spatial di�erencing basedon the integral form of the unsteady di�usion equation on the interval xj� 12 �x�xj+ 12 gives the following explicit algorithm,Cj (T n+1j �T nj ) = �(qnj+ 12�qnj� 12 ); qnj+ 12 = �Kj+ 12 (T nj+1�T nj ) (3.2)where Cj = 8>>>>>>>>><>>>>>>>>>:
c��x��t ; j < 012 �c��x��t + c+�x+�t �; j = 0c+�x+�t ; j > 0 (3.3)and Kj+ 12 = 8>>>><>>>>: k��x� ; j + 12 < 0k+�x+ ; j + 12 > 0 (3.4)Note that the equation for j=0 involves the conductivity and heat capacity onboth sides of the interface. In particular, �t C0 is the heat capacity of the wholecomputational cell extending from x� 12 to x+ 12 .



5For j<0, the di�erence equation reduces toT n+1j = T nj + d� �T nj+1 � 2T nj + T nj�1� (3.5)where d� = k��tc��x2� (3.6)The Fourier mode T nj = zn exp(ij�) (3.7)with the superscript in zn being a true exponent not an index denoting theiteration level, is a solution of this di�erence equation provided thatz = 1� 4d� sin2 12�: (3.8)Fourier stability requires that jzj � 1 for all real values of �; this is satis�edprovided d� � 12 .Similarly, Fourier stability of the constant coe�cient di�erence equation inj > 0 requires that d+ � 12 , whered+ = k+�tc+�x2+ (3.9)We will now prove that if the requirements of Fourier stability are satis�edon each side of the interface, then the fully-coupled discretisation is stable in thesense that T n+1max � T nmax; T n+1min � T nmin; (3.10)where T nmax � maxj T nj ; T nmin � minj T nj : (3.11)We begin by noting that if d� � 12 and d+ � 12 , then for any positive value rd� + rd+ � 12(1 + r) =) d� + rd+1 + r � 12 : (3.12)In particular, we will use this result with r as the ratio of the heat capacities ofthe computational cells on either side of the interface,r = c+�x+c��x� ; (3.13)The next step is to re-write the full di�erence equation asT n+1j = (1�aj�bj)T nj + ajT nj+1 + bjT nj�1 (3.14)



6where aj = bj = d�; j < 0a0 = 2d�1 + r ; b0 = 2rd+1 + r (3.15)aj = bj = d+; j > 00<d�� 12 and 0<d+� 12 , so for all j, aj; bj and 1�aj�bj are positive quantitiesand thus T n+1j is a positive weighted average of T nj+1; T nj ; T nj�1. Hence,T nmin � min(T nj+1; T nj ; T nj�1) � T n+1j � max(T nj+1; T nj ; T nj�1) � T nmax (3.16)This is true for all j, and so taking the maximum over all j, and the minimumover all j, gives the desired result, Eq.(3.10).3.2 An implicit algorithmReplacing the forward Euler time di�erencing with backward Euler time di�er-encing gives the following implicit algorithm.Cj (T n+1j �T nj ) = �(qn+1j+ 12�qn+1j� 12 ) qn+1j+ 12 = �Kj+ 12 (T n+1j+1 �T n+1j ); (3.17)with Cj; Kj+ 12 as de�ned before. Fourier stability analysis of the discretisationon either side of the interface yieldsz = �1 + 4d� sin2 12���1 : (3.18)In both cases, jzj < 1 for all values of d and �, giving unconditional Fourierstability for the separate constant coe�cient discretisations.Furthermore, the fully-coupled discretisation is also unconditionally stable inthe same sense as before thatT n+1max � T nmax; T n+1min � T nmin: (3.19)To prove this, the di�erence equation is re-written asT n+1j = (1�aj�bj)T nj + ajT n+1j+1 + bjT n+1j�1 (3.20)where aj = Kj+ 12Kj+ 12 +Kj� 12 + Cjbj = Kj� 12Kj+ 12 +Kj� 12 + Cj (3.21)1� aj � bj = CjKj+ 12 +Kj� 12 + Cj



7It is clear that aj; bj and 1�aj�bj are positive quantities, for all j. We now chooseJ such that T n+1J = T n+1max . Subtracting T n+1max from both sides of the di�erenceequation gives(1�aJ�bJ)(T nJ � T n+1max ) + aJ(T n+1J+1 � T n+1max ) + bJ(T n+1J�1 � T n+1max ) = 0 (3.22)Because T n+1J�1 ; T n+1J+1 � T n+1max and aJ ; bJ ; 1�aJ�bJ are all positive, either T nJ > T n+1maxor T nJ = T n+1J+1 = T n+1J+1 = T n+1max . In the �rst case, we immediately get the resultthat T nmax > T n+1max . In the second case, we can repeat the argument with j =J � 1. By further repetition if necessary, we conclude that either T nmax > T n+1maxor T nj = T n+1j = T n+1max , for all j, in which case T nmax = T n+1max .Exactly the same argument can be used to prove that T nmin � T n+1min withequality occurring only in the trivial case in which T nj is constant.4 Loosely-coupled discretisationIn the loosely-coupled discretisation, each half of the domain is solved separatelywith boundary conditions containing information from the other. The naturalboundary conditions for a di�usion problem are either Dirichlet (the speci�cationof the boundary temperature) or Neumann (the speci�cation of the boundaryheat 
ux). Therefore we will consider a loosely-coupled procedure in which thecalculation for x � 0 uses Dirichlet data obtained from the solution for x � 0,while the calculation for x � 0 uses Neumann data obtained from the solutionfor x � 0.4.1 An explicit algorithmGiven existing solutions at time level n in both halves of the domain, the simplestand most natural explicit numerical algorithm for determining T n+1j for j�0 isc��x��t (T n+1j �T nj ) = k��x� (T nj+1 � 2T nj +T nj�1); j < 0c��x�2�t (T n+10 �T n0 ) = �qw � k��x� (T n0 �T n�1); (4.1)where qw is the heat 
ux speci�ed as the interface boundary condition. Thesimplest consistent equation for determining this from the data in j � 0 isqw = � k+�x+ (T n1 � T n0 ): (4.2)The corresponding explicit numerical algorithm for simultaneously determin-ing T n+1j for j>0 isc+�x+�t (T n+1j �T nj ) = k+�x+ (T nj+1 � 2T nj +T nj�1): (4.3)



8The equation for j =1 requires the variable T n0 and this is set by the Dirichletboundary condition T n0 = Tw; (4.4)where Tw is the interface temperature. The obvious value for this is simply T n0from the computation for j�0.To summarise the communication between the two calculations for j � 0and j � 0, at each timestep there is an exchange of data, with the program orsubroutine performing the calculation for j�0 supplying the value of Tw to theother program or subroutine performing the calculation for j�0, while the lattersends qw to the former. It is then possible that the computations for the twohalves could proceed in parallel (perhaps using separate processes on separateworkstations) until they again exchange data before the next timestep.By comparing Equations (4.1,4.3) with Equation (3.2), it can be seen thatthe only di�erence is the omission of the termc+�x+2�tin the equation for j = 0. If c+�x+ � c��x� , then this omitted term isnegligible compared to the retained termc��x�2�tand so it seems likely that no instability will be introduced by its omission.On the other hand, if c+�x+ � c��x�, then the omitted term may be verysigni�cant. This indicates very simply that a key parameter in the followinganalysis will be the variable r, de�ned earlier in Equation (3.13) as the ratio ofthese two quantities.For the purposes of analysis it is more convenient to consolidate and simplifythe equations into the following form,T n+1j = T nj + d� �T nj+1 � 2T nj + T nj�1� ; j < 0T n+10 = T n0 � 2d� �T n0 � T n�1�+ 2rd+ (T n1 � T n0 ) ; (4.5)T n+1j = T nj + d+ �T nj+1 � 2T nj + T nj�1� ; j > 0where d� and r are as de�ned previously.In applying the stability theory of Godunov and Ryabenkii [4, 7], the task isto investigate the existence of separable normal modes of the formT nj = znfj: (4.6)The discretisation is unstable if the di�erence equation admits such solutionswhich satisfy the far-�eld boundary conditions, jfj � fj�1j ! 0 as j ! �1, and



9have jzj > 1, giving exponential growth in time. The form of the solution is verysimilar to the assumed Fourier modes, except that the spatial variation is not ofthe form exp(ij�). In fact, for this application the normal mode must be of theform T nj = 8<: zn�j�; j � 0zn�j+; j � 0 : (4.7)The di�erence equations, Equation (4.5) are satis�ed provided the three variablesz; ��; �+ satisfy the following equations.z = 1 + d�(���2+��1� )z = 1 + 2d�(��1� �1) + 2rd+(�+�1) (4.8)z = 1 + d+(�+�2+��1+ )Solving the �rst of these equations to obtain ��1� gives��1� = 1� 1�z2d� 0@1�s1� 4d�1�z1A : (4.9)To satisfy the far-�eld boundary conditions as j ! �1 it is necessary to choosethe negative square root when the argument is real and positive. When it iscomplex, the choice of root is de�ned by the requirement that j��1� j < 1.Similarly, solving the third of the equations gives�+ = 1� 1�z2d+ 0@1�s1� 4d+1�z1A : (4.10)Substituting these into the second equation gives the following nonlinear equa-tion for z. s1� 4d�1�z � r0@1�s1� 4d+1�z1A = 0 (4.11)There is no simple closed form solution to this, giving z as an explicit functionof the parameters d�; d+; r. Instead, we consider asymptotic solutions underdi�erent assumptions.When d�; d+ � 1, the square root terms can be expanded to give the followingapproximate equation and solution.1� 2d�1� z � 2rd+1� z � 0; =) z � 1� 2d� � 2rd+: (4.12)The requirement for stability is jzj < 1. The solution z(r) lies inside jzj = 1 forsu�ciently small values of r, but then crosses it at z=�1 when r= 1d+ . Thus ford�; d+ � 1 the stability requirement is 0 < r < 1d+ .



10 Expanding the analysis to consider arbitrary values for d�; d+, we begin byconsidering the asymptotic behaviour when r � 1 and r � 1.When r � 1 the asymptotic solution iss1� 4d�1�z � 0; =) z � 1� 4d� (4.13)Since d� must satisfy 0 < d� � 12 for the discretisation to be stable accordingto Fourier stability analysis, it follows that jzj � 1. Thus, there is no coupledinstability when r � 1.When r � 1, the asymptotic solution is given by1�s1� 4d+1�z � 0; =) 4d+1� z � 0 =) jzj � 1: (4.14)Given that jzj � 1, an approximate value can then be obtained from1�s1� 4d+1�z � �1r =) 4d+1�z � 2r =) z � 1� 2rd+ (4.15)Thus for �xed d+ and su�ciently large r, there is a instability with z beinglarge, real and negative. The corresponding values of ��1� and �+ will be small,real and negative, so the instability will appear as a `sawtooth' oscillation mode,both spatially and in time, with an amplitude which decays exponentially awayfrom the interface, but grows exponentially in time.Since the loosely coupled system is stable for r � 1 and unstable for r � 1the remaining question is the value of r at which the instability begins. Thiscorresponds to the lowest positive real value of r for which jzj = 1. Because ofthe requirement that r is real, it can be shown from Equation (4.11) that thisagain requires z = �1, in which caser = p1� 2d�1�p1� 2d+ (4.16)Thus the condition for stability is0 < r < p1� 2d�1�p1� 2d+ (4.17)A typical calculation using a timestep close to the Fourier stability limit mighthave d� = d+ = 0:45, for which the coupled stability limit is approximately0 < r < 0:46. The key to obtaining stability in practical computations is thecorrect choice of which half of the domain uses the Dirichlet boundary conditionsand which half uses the Neumann boundary conditions. The usual practicefor the coupled blade/air computations discussed in the Introduction is to use



11Neumann boundary conditions for the solid computation, and Dirichlet boundaryconditions for the 
uid computation. For this choice, the corresponding value ofr is given by r = c
uid�x
uidcsolid�xsolid : (4.18)Given typical values for the parameters involved, r is usually very small and sothis is stable.If, on the other hand, one were to use Dirichlet boundary conditions for thesolid computation and Neumann boundary conditions for the 
uid computation,then the appropriate value for r would be the inverse of the above quantity, whichwould be very large. In this case the coupled calculation would almost certainlybe unstable.4.2 A hybrid algorithmThe next algorithm to consider is a hybrid one, in which the computation isunaltered for j>0, but the algorithm for j � 0 is replaced by the correspondingimplicit method based on a backward Euler time discretisation.c��x��t (T n+1j �T nj ) = k��x� (T n+1j+1 � 2T n+1j +T n+1j�1 ); j < 0c��x�2�t (T n+10 �T n0 ) = �qw � k��x� (T n+10 �T n+1�1 ): (4.19)The boundary heat 
ux qw is again de�ned explicitly byqw = � k+�x+ (T n1 � T n0 ): (4.20)The di�erence equations for j>0 are unchanged, as is the communication ofdata between the calculations for j�0 and j>0.The consolidated, simpli�ed form of the equations isT n+1j = T nj + d� �T n+1j+1 � 2T n+1j + T n+1j�1 � ; j < 0T n+10 = T n0 � 2d� �T n+10 � T n+1�1 �+ 2rd+ (T n1 � T n0 ) ; (4.21)T n+1j = T nj + d+ �T nj+1 � 2T nj + T nj�1� ; j > 0and the normal mode is again of the formT nj = 8<: zn�j�; j � 0zn�j+; j � 0 : (4.22)



12The di�erence equations, Equation (4.21) are satis�ed provided the three vari-ables z; ��; �+ satisfy the following equations.1 = z�1 + d�(���2+��1� )1 = z�1 + 2d�(��1� �1) + 2rd+z�1(�+�1) (4.23)z = 1 + d+(�+�2+��1+ )The third of these equations requires that �+ depends on z in exactly thesame way as for the purely explicit algorithm. Solving the �rst of these equationssubject to the far-�eld boundary conditions gives��1� = 1 + 1�z�12d� 0@1�s1 + 4d�1�z�11A : (4.24)Substituting these into the second equation givess1 + 4d�1�z�1 � r0@1�s1� 4d+1�z1A = 0 (4.25)When r � 1 the asymptotic solution iss1 + 4d�1�z�1 � 0; =) z � (1 + 4d�)�1 (4.26)jzj < 1 for all values of d� and so the discretisation is stable.When r � 1, the asymptotic solution is given by1�s1� 4d+1�z � 0; =) 4d+1� z � 0 =) jzj � 1: (4.27)Given that jzj � 1, an approximate value can then be obtained from1 � s1� 4d+1�z � �p1 + 4d�r=) 4d+1�z � 2p1 + 4d�r=) z � 1� 2rd+p1 + 4d� (4.28)Thus for �xed d�; d+ the coupled discretisation is still unstable for su�cientlylarge values of r.The cross-over from stability to instability again occurs when z=�1, givingr = p1 + 2d�1�p1� 2d+ (4.29)



13Thus the condition for stability is0 < r < p1 + 2d�1�p1� 2d+ (4.30)Comparing this result with the corresponding result for the purely explicit algo-rithm, it can be seen that the new stability region is greater except when d��1.This has a physical interpretation; when d� is not small, the strong implicit cou-pling of the computational cells for j�0 increases the e�ective thermal capacityof the cells a�ected in one timestep by the interface heat 
ux.4.3 An implicit algorithmWe now consider a fully implicit algorithm, but with explicit updating of the dataused for the interface boundary conditions. The implicit numerical algorithm forj�0 is againc��x��t (T n+1j �T nj ) = k��x� (T n+1j+1 � 2T n+1j +T n+1j�1 ); j < 0c��x�2�t (T n+10� �T n0�) = �qw � k��x� (T n+10� �T n+1�1 ): (4.31)with qw de�ned explicitly byqw = � k+�x+ (T n1 � T n0+): (4.32)An important point in the above equations is the distinction between T n0�, thevalue of T n at j=0 as calculated for the domain j�0, and T n0+, the value of T nat j = 0 for the domain j � 0. In the previous discretisations these two valueshave been identical but this will not be true in this case.The corresponding implicit numerical algorithm for simultaneously determin-ing T n+1j for j>0 isc+�x+�t (T n+1j �T nj ) = k+�x+ (T n+1j+1 � 2T n+1j +T n+1j�1 ): (4.33)The equation for j=1 requires the variable T n+10+ and this is set by the Dirichletboundary condition T n+10+ = Tw; (4.34)where Tw is the interface temperature. Using explicit updating of boundary data,Tw = T n0�; (4.35)T0+ lags T0� by one iteration.



14 The pattern of communication between the calculations for j � 0 and j � 0is exactly the same as for the explicit algorithm. They exchange the values ofTw and qw at the beginning of the timestep, perform the timestep calculationsindependently (possibly in parallel on separate workstations) and then repeatthe process for the next timestep.For the purposes of analysis it is again more convenient to consolidate andsimplify the equations into the following form,T n+1j = T nj + d� �T n+1j+1 � 2T n+1j + T n+1j�1 � ; j < 0T n+10� = T n0� � 2d� �T n+10� � T n+1�1 �+ 2rd+ �T n1 � T n0+� ; (4.36)T n+1j = T nj + d+ �T n+1j+1 � 2T n+1j + T n+1j�1 � ; j > 0T n+10+ = T n0�:The form of the normal mode solution for this case isT nj = 8<: zn�j�; j = 0�;�1;�2;�3; : : :zn�1�j+; j = 0+;+1;+2;+3; : : : : (4.37)The fourth equation in Equation (4.36) is automatically satis�ed by the abovechoice of normal mode. The other three equations require that the variablesz; ��; �+ satisfy the following equations.1 = z�1 + d�(���2+��1� )1 = z�1 + 2d�(��1� �1) + 2rd+z�2(�+�1) (4.38)1 = z�1 + d+(�+�2+��1+ )Solution of the �rst and third of these equations, subject to the far-�eldboundary conditions, gives��1� = 1 + 1�z�12d� 0@1�s1 + 4d�1�z�11A ;�+ = 1 + 1�z�12d+ 0@1�s1 + 4d+1�z�11A : (4.39)Substituting these into the second equation givess1 + 4d�1�z�1 + rz�20@s1 + 4d+1�z�1 � 11A = 0: (4.40)When r � 1, the asymptotic solution iss1 + 4d�1�z�1 � 0; =) z � (1 + 4d�)�1 (4.41)



15jzj<1 for all values of d� and so the discretisation is stable.When r � 1, the asymptotic solution is given byz�2 0@s1 + 4d+1�z�1 � 11A � 0; =) z�1 � 0 =) jzj � 1 (4.42)Given that jzj � 1, an approximate value can then be obtained fromz�2 �q1 + 4d+ � 1� � �1rq1 + 4d� =) z � �ipr  p1 + 4d+ � 1p1 + 4d� ! 12(4.43)Thus for �xed d�; d+ and su�ciently large r, the coupled system is unstable.It is not possible for general values of d�; d+ to determine explicitly the valueof r above which the solution procedure is unstable. It is possible however toobtain an asymptotic solution under the assumption d�; d+ � 1. This is areasonable assumption since the motivation in using implicit methods is to usemuch larger timesteps than would be stable using explicit methods. Under theassumption d�; d+ � 1, Equation (4.40) reduces toqd� + rz�2qd+ � 0; =) z � �ipr d+d�! 14 : (4.44)Hence, under these conditions the stability limit is0 < r < sd�d+ : (4.45)Provided, as before, that the correct choice is made as to which domainuses the Neumann b.c.'s and which uses the Dirichlet b.c.'s, then r should besu�ciently small that practical computations will be stable.5 Concluding remarksThe stability analysis in this paper has shown the viability of a loosely-coupledapproach to computing the temperature and heat 
ux in coupled 
uid/structureinteractions. The key point to achieving numerical stability is the use of Neu-mann boundary conditions for the structural calculation and Dirichlet boundaryconditions for the 
uid calculation.Although the analysis was performed here for the 1D model di�usion equa-tion, the results are believed to be applicable to the real situation in which the3D di�usion equation is used to model the heat 
ux in the structure and the 3DNavier-Stokes equations are used to model the behaviour of the 
uid. This belief



16is supported by the practical experience of 3D computations performed usingthis coupling procedure [1, 2].The analysis also assumed a time-accurate modelling of the 
uid/structureinteraction. In practical computations, the point of engineering interest is oftenthe steady-state temperature and heat 
ux distributions. In such cases, thecomputations in the structure and 
uid can both proceed with di�erent timestepsgiven by their respective Fourier stability limits. The coupled normal modeanalyses remain valid using the values of d�; d+ based on the timesteps �t�;�t+used in the two domains.References[1] R. S. Amano, K. D. Wang, and V. Pavelic. A study of rotor cavities and heattransfer in a cooling process in a gas turbine. Journal of Turbomachinery,116:333{338, April 1994.[2] J. Chew, I. J. Taylor, and J. J. Bonsell. CFD developments for turbine bladeheat transfer. Paper C499-035, 3rd International Conference on ReciprocatingEngines and Gas Turbines, I. Mech E., London, 1994.[3] J. Crank. The Mathematics of Di�usion. Clarendon Press, 2nd edition, 1975.[4] S.K. Godunov and V.S. Ryabenkii. The Theory of Di�erence Schemes{AnIntroduction. North Holland, Amsterdam, 1964.[5] J. Moore, J. G. Moore, G. S. Henry, and U. Chaudry. Flow and heat transferin turbine tip gaps. Journal of Turbomachinery, 111:301{309, July 1989.[6] K.W. Morton and D.F. Mayers. Numerical Solution of Partial Di�erentialEquations { an Introduction. Cambridge University Press, Cambridge, 1994.[7] R.D. Richtmyer and K.W. Morton. Di�erence Methods for Initial Value Prob-lems. Wiley-Interscience, 2nd edition, 1967.


