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Aerospace design: a complex task

M. B. GilesThese lecture notes, prepared for the 1997 VKI Lecture Courseon Inverse Design, identify some of the complexities inherent in thedesign of aeroengines and aircraft. It is argued that to handle thegeometric complexities requires a computational representation whichis hierarchical and based on parametric solids at the lowest level. Ontop of this can be built a tightly coupled two-level design systemwhich uses an integrated set of multidisciplinary analysis packageswhich are also hierarchical, with di�ering levels of approximation andcomputational cost appropriate to preliminary design and detailedcomponent design.A range of di�erent numerical approaches to design are outlined,and their strengths and weaknesses are compared. Other relatedtopics such as distributed computing, risk management and strategicresearch planning are also discussed.Key words and phrases: design, CAD/CAM, optimisation, sensitivity analysis,adjoint methods, genetic algorithmsThis work was supported by Rolls-Royce plc and EPSRC.Oxford University Computing LaboratoryNumerical Analysis GroupWolfson BuildingParks RoadOxford, England OX1 3QDhttp: //www.comlab.ox.ac.ukemail: giles@comlab.oxford.ac.uk September, 1997



21 Introduction1.1 DesignThe objective of engineering analysis, the mathematical and computational mod-elling of an engineering product, is not to determine the behaviour of a singleproduct; if this were the case it would be simpler and cheaper to take the �rstmanufactured product and test it extensively. The real objective of engineeringanalysis is to predict the behaviour of a product, and then use that informa-tion to design a better product. Often a whole sequence of improved designs iscreated, with very few being actually manufactured and tested experimentally.Given that experimental testing is often very time-consuming and expensive, theextensive use of computational engineering analysis can greatly reduce the timeand cost of the design process.Although design is the ultimate objective of engineering analysis, most aca-demic research in the past 20 years has been directed towards the simpler taskof modelling the behaviour of speci�c aspects of the engineering system. Thisresearch, coupled with enormous increases in computational power, has led tothe development of three-dimensional modelling and numerical methods in CFD,combustion modelling, �nite element structural analysis and computational elec-tromagnetics. Despite limitations due to modelling approximations, such as tur-bulence and transition modelling, these methods are now capable of analysingthe behaviour of many aspects of engineering systems with an accuracy whichis acceptable for most engineering purposes. They are being widely used withinindustry, particularly in aeronautical engineering, and are responsible for an im-provement in product quality and a shortening of the design cycle.However, the use of current engineering analysis methods in designing com-plex systems relies very heavily on the knowledge and intuition of the designer.Individual analyses of a speci�c design reveal its performance; it is then up tothe designer to note shortcomings in the performance, identify possible causesand then formulate remedial design changes. When designing very large complexengineering systems, the situation can be worse, because there is then a teamof people responsible for the design, usually with di�erent people responsiblefor di�erent aspects of the performance of the system. Any design will involvetrade-o�s between the di�erent aspects, but an intuitive understanding of thetrade-o�s becomes increasingly hard as the complexity of the system and itsmultidisciplinary nature increase.Although there is still scope for signi�cant improvement in the accuracy andcapabilities of the individual analysis tools, my belief is that the greatest advancein engineering analysis in the next 20 years will come from the harnessing of theindividual tools within integrated design systems. The aim of these is not toreplace the designer by a `black box' producing optimal designs, but to providethe designer with a exible environment in which to de�ne the design space (the



3parameters which de�ne the design), explore the trade-o�s, and investigate noveldesigns which may well lie outside the designer's range of intuition based on pastexperience. These design systems will also lead to a further shortening of thedesign cycle, reduce the risk, reduce costs (in part through more automation ofthe analysis process) and allow a better targetting of strategic research.1.2 Aeronautical engineeringThe systems being designed in aeronautical applications are among the mostcomplex in engineering. Not counting the smallest components such as nuts,bolts and rivets, the aeroengines and the rest of an aircraft may have hundredsof thousands of components, with over a million important design parametersand many more which are less important. Furthermore, a complete unsteadysimulation of the workings of an aeroengine including all uid dynamics, struc-tural stresses and vibration, heat transfer, etc., would take on the order of a yearon on the computing resources of a typical large aerospace company. A completesimulation of an aircraft from take-o�, to cruising at altitude and then landingwould be similarly expensive.It is this level of complexity in aeronautical engineering which rules out thegeneral use of methods such as genetic algorithms for optimisation. Such meth-ods have been very usefully applied to problems with very few design parametersand very low computational analysis costs. They may also be very appropriatefor preliminary design optimisation, as will be discussed later, but their compu-tational cost means they can not be applied to optimisation of the entire systemusing all of the design parameters and the full computational simulation. Instead,a hierarchical approach is needed, both in handling the design space (the set ofdesign parameters) and in modelling the engineering system. The complexity ofthe design space also provides a strong argument for the use of a design systemwhich keeps track of all of the design variables, allowing the designer to inves-tigate the e�ect of certain `active' design variables to try to improve the designwhile satisfying all of the many constraints that a design always has.Another important features of aeronautical engineering is its strongly mul-tidisciplinary nature. In wing design, the optimal thickness of the wing is atrade-o� between aerodynamic performance (which decreases as the thicknessincreases) and penalties due to weight (which also decreases as the thicknessincreases because the bending moment can be sustained using an thinner air-foil skin). Similarly, the optimal trailing edge thickness of a turbine blade is acompromise between aerodynamic performance (which decreases as the thicknessincreases) and structural integrity due to both static and dynamic loading (whichimproves with thickness).This multidisciplinary aspect of the design problem is a major challenge,because there are few engineers with the necessary knowledge of each of the dis-ciplines, and fewer still with a good intuitive grasp of the various compromises to



4be reached in coming to a good overall design. Here again is where an integrateddesign system has much to o�er, for example giving the designer the necessaryknowledge about how variations in the thickness a�ect the aerodynamic andstructural performance.The development of these integrated design systems will not be an easy task.Much of it is a complex software engineering task, linking together di�erentcomponents modules from CAD/CAM, grid generation, CFD, structural analy-sis, etc. The di�culty comes from the lack of well accepted standards for theinterfaces, together with the fact that those carrying out the software engineeringmay have di�culty appreciating the goals and challenges of engineering design.Academics (such as myself) may be able to help to de�ne the long-term visionof what could be accomplished by such systems, as well as working on speci�cpieces of it such as genetic algorithms and adjoint methods. There is also a sub-stantial body of academic research on engineering design, most of which seemsoriented towards simple engineering systems, but may still be relevant to muchlarger systems.However, much of the work to be done on engineering design systems for largecomplex applications is best done in industry, directed by those who best un-derstand the realities of engineering design and how the current design processesmay be improved. Many of the challenges to be faced are a direct consequence ofthe complexity of the engineering application, and it is not feasible to duplicateapplications of this magnitude in academia; the only option is for academics tobe closely involved in the research be carried on within industry.1.3 These lecture notesMy objective is to explain what I see as being the sources of complexity inaeronautical engineering, and how this complexity can be tackled by the use ofappropriate hierarchies in both EPD (electronic product de�nition) and anal-ysis/design methods. I also survey the main numerical approaches to design,discussing their relative strengths and weaknesses.As I write these notes, I am conscious of the fact that I do not have any actualexperience of designing an engineering product. Therefore, I cannot pretend tobe a designer or to understand all of the issues that concern a designer. How-ever, I know a lot about mathematical modelling and computational engineeringanalysis, and I have the bene�t of almost 20 years association with Rolls-Royce,developing CFD tools which are used by designers. Therefore, I will present myvision of the engineering design system of the future, knowing that it is quitepossible I will omit some features that designers may consider crucial. I alsorecommend that readers consult Reference [17] for an industrial viewpoint ondesign and the limitations of some academic approaches to the subject.



5Table 1: Hierarchical de�nition of a turbine vaneLevel 1 number of blades, hub/tip radius, throat area,inow/outow angles, mass owLevel 2 camber/thickness distribution, cooling mass owLevel 3 geometry of �llets at hub and tip junctionsLevel 4 details of �lm cooling holes and slots,temperature of inow and cooling owLevel 5 alloy type and thermal propertiesTable 2: Hierarchical de�nition of an aircraftLevel 1 aircraft weight, wingspan, cruising speedLevel 2 wing/fuselage geometryLevel 3 engines, tail, wingletsLevel 4 high-lift aps & slats, take-o� climb rateLevel 5 control surfaces, fairings, desired roll rate2 Managing complexity2.1 Hierarchical EPDAs explained in the Introduction, the problem with electronic product de�nition(EPD) in aeronautical engineering is the magnitude of the de�nition. Theremay be hundreds of thousands of components, and well over a million importantdesign parameters. This is far too large a number to be handled easily by thedesigner.Furthermore, the complete product de�nition contains a level of detail whichis undesirable for much engineering analysis. An example of this in turboma-chinery is the cooling holes in a high pressure turbine. The geometry of thesemust be contained in the EPD database for manufacturing purposes, but whencomputing the viscous ow in the blade passage and the resulting heat transferto the blade it is usual to ignore the details of the cooling holes and simply modelthe coolant injection through a transpiration boundary condition. An even moreextreme example for aircraft is the rivets in the skin of the wing. Again, thedetails of these must be contained in the EPD database for manufacturing pur-poses, but when generating an unstructured grid for a CFD calculation it wouldbe ridiculous to resolve the details of the ow over each rivet head.The solution to these problems is to use a hierarchical EPD database in whichevery component is de�ned at a number of di�erent levels of detail. Tables 1



6and 2 illustrate possible hierarchical representations of a high pressure turbinevane and a complete aircraft. In each case, the level 1 representation is themost basic, with higher levels adding successively more detail. Neither table iscomplete; the rivets on the aircraft may not appear until level 20! Note alsothat both tables contain data which is not geometric; variables such as operatingconditions, material types and cooling ow rates are important design parametersin addition to the more obvious geometric parameters.An engineering analysis tool will interface to whichever level of the EPD ismost appropriate. In the case of the turbine vane, a CFD code might interfaceat level 2, treating the blade/hub and blade/tip junction as sharp corners, andmodelling the �lm cooling as a distributed mass source. A stress analysis packagewould need to interface at level 3 or higher since the �llet geometry is neededto calculate the correct stresses in the corners. A thermal analysis of the solidwould need to go to level 5.In coupled multidisciplinary applications, such as aeroelasticity or combinedaerothermal analysis, it is possible that the applications being coupled may beworking with di�erent representations of the component. For example, supposeone wishes to perform a combined aerothermal analysis of the turbine vane,performing a Navier-Stokes CFD analysis of the ow in the vane passage andcoupling this (through matching the surface temperature and heat ux) to athermal analysis of the vane. If the CFD code is working with the level 2 de�ni-tion while the solid thermal analysis package is working with level 5, there willbe subtle di�erences in the surface geometry because of the absence or presenceof the �llets. Moreover, the computational grids used for each analysis are likelyto be quite di�erent. Both of these problems raise the question of how to linkthe two packages. The solution is to do so parametrically. An arbitrary point onthe surface of the vane can be referenced parametrically by (�1; �2) where �1 isthe fractional distance from hub to tip and �2 is the fractional distance aroundthe vane. The interface conditions between the two codes can then be de�nedas matching temperature and heat ux at corresponding (�1; �2) points. Thiswill still require interpolation from one grid to another but this is a relativelystraightforward task.An important aspect of a hierarchical EPD is that each level is de�ned rela-tive to the ones below, so that design changes at one level are `inherited' by thoseabove. A good example of this is the cooling holes in the high pressure turbinevane. If the designer changes the blade pro�le in level 2, then the cooling holes inlevel 4 are automatically adjusted accordingly. In practice, this may be accom-plished by de�ning the (�1; �2) location of each hole together with its diameterand its angle relative to the surface. Its length would be implicitly de�ned byits intersection with the internal cooling plenum, which would itself need to bede�ned relative to the blade pro�le. This `inheritance' feature of a hierarchicalEPD database means that all of the parameters at each level of representationare design parameters which may perhaps be altered by the design system.



72.2 Hierarchical designThe hierarchical EPD approach is a convenient way to organise the very largenumber of design parameters in a typical aeronautical engineering application.However, on its own it does not address the other problem identi�ed in theIntroduction, the huge computational cost of analysing the entire engineeringsystem and investigating the e�ect of all of the design parameters.To tackle this requires a hierarchical approach to the design process as well. Inmost aerospace companies design is carried out at two levels, preliminary designand detailed component design. The preliminary design group considers the en-gine or aircraft as an entire system, thinking about the customers' requirements,sizing the major components, deciding which subsystems to retain from previ-ous products, aiming to maximise pro�t over the lifetime of the entire project.When trying to optimise the overall con�guration during the preliminary designprocess the system is modelled at a very approximate level using a considerableamount of empiricism based on previous experience. It may even assume futureadvances in component technology. This approximate modelling, working withthe lowest levels in the hierarchical EPD database with a strictly limited numberof fundamental design parameters means that the cost of simulating the entiresystem is reduced to a few minutes, at most. This allows a thorough investiga-tion of the global trade-o�s inuencing the overall system con�guration. At theconclusion of the preliminary design process, many crucial design decisions havebeen made. In the case of aeroengine design, this would include engine thrust,mass ow, fan radius, the number of compressor and turbine stages, and theapproximate size and pressure ratio of each blade row. In the case of aircraftdesign, it would include the aircraft weight and cruising speed, number of enginesand their thrust, ing span and aspect ratio, approximate sizes of control surfacesand high-lift aps and slats.The second stage in the design process is component design. A number ofdi�erent design teams are given responsibility for the design of the componentswithin a particular subsystem. For example, the Turbine Group would be re-sponsible for the development of the turbine stages in an aeroengine. Designresponsibility may be further broken down so that just three people, an aerody-namicist, a structural analyst and an expert in blade cooling may design the highpressure turbine vane, under the eye of the designer with overall responsibilityfor the turbine. At this level of design, the design intent for each componenthas been fairly tightly speci�ed by the preliminary design group, and many con-straints have been imposed. The task of the component design team is to ful�l thedesign intent as well as possible (good aerodynamic performance, good structuralbehaviour, low weight, low cost of manufacture and maintenance, etc.) subjectto the constraints. To a large extent, this is a matter of shape optimisation, thenon-geometric design parameters having been set in preliminary design.The analysis tools which are used at this level are usually three-dimensional
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Figure 1: Current sequential two-level design processCFD and structural analysis packages, with execution times ranging from a fewminutes to many hours. These packages will work with the higher levels of theEPD database, using the much more complete de�nitions of each component.Sometimes, more approximate analysis methods may be used, such as 2D anal-yses, inviscid ow methods, even simple panel methods. The advantage of thesemethods is their very low computational cost, often measured in seconds ratherthan minutes, but this comes at the expense of reduced modelling accuracy sothe designer must decide on the level of accuracy required. In some cases, theaccuracy of the more approximate methods can be improved by the additionof `corrections' (e.g. loss or drag, deviation angles) derived from the more ac-curate methods. This third form of hierarchy, hierarchical analysis, is alreadywell-established in industrial practice and will not be discussed further.As described above, and illustrated in Figure 1, the current hierarchical designapproach is sequential, preliminary design followed by component design. Exceptin exceptional circumstances, the decisions made in preliminary design are notchanged during component design. This is due to preliminary design being �rmlybased on empiricism from past experience, so major surprises are unlikely to ariseduring the component design process. Indeed, at the end of the component designprocess the empiricism in the preliminary design modelling should be updatedto improve the preliminary design for the next major project.There are two drawbacks to this sequential design process. The �rst is that itssuccess depends on the new design not being too di�erent from past designs, sothat the empiricism in the modelling remains valid. This makes it very di�cult todevelop radically new designs, but it may be argued that in both aeroengine andaircraft design it is unlikely that a radically new design will be signi�cantly betterthan existing designs. Therefore, the less risky nature of the current evolutionaryprocess makes it commercially desirable. The second drawback of the currentprocess is perhaps more mundane, but it is also probably more important. The



9empiricism in the preliminary design system represents the collective experienceof past projects, but no two projects are ever identical. Even if the customerrequirements are identical, technological advances mean that the best engine oraircraft of today would be di�erent from that designed twenty years ago. Tosome extent this technological progress can be accounted for in the empiricism,but inevitably it remains true that the preliminary design process carries out itsoverall system optimisation and makes crucial design decisions based on only anapproximate model of the system.In the future I believe there will be a shift to a more tightly-coupled two-leveldesign system, as illustrated in Figure 2. The overall system design will begin,as now, with a preliminary design based on past empiricism. This will thenprovide the starting point for the detailed component design. The change fromthe current sequential design process is that at this point data will be fed backinto the overall system design, updating its empiricism based on the results of thedetailed engineering analyses performed during the component design. This willallow further re�nement of the overall system performance by �ne-tuning someof the global trade-o�s. Ideally, this design cycle would be repeated a numberof times, with the component design responsible for the shape optimisation ofspeci�c components from a `local' viewpoint, while the system design is concernedwith overall optimisation of the major sub-systems based on a global viewpoint.Further in the future it is even possible that additional levels of optimisationmay be introduced [1]. For example, in designing turbine blades, 2D pro�leoptimisation to minimise boundary layer growth may be added as an additionallevel of optimisation after the basic 3D shape has already been optimised. 1The main reason a tightly coupled design system is not used today is time.The design time for an engine or aircraft project is strictly limited. There arevery strong commercial pressures to bring a product to market as quickly as pos-sible, even if this involves sacri�cing a certain amount of performance because ofthe lack of time to investigate all design options. Spending more time on re�ninga design also has manpower and experimental testing costs; these have to beweighed against the possible bene�ts to be gained. The key to the successfuladoption of a tightly coupled design system in the future lies in software engi-neering and ever increasing computational power. Good software engineering willminimise the time spent by designers in the coupling between system design andcomponent design. The continuing doubling of computational power every 18-24months will ensure decreasing execution times for the more expensive analysistools, allowing more cycles of the coupled design process to be completed withina given time.1Readers familiar with numerical methods might like to note that this hierarchical designis similar to multigrid in that the very approximate representation of the system (the `coarsegrid') is used for global tradeo�s and the design of the overall system, while the fully de-tailed representation of each component (the `�ne grid') is used for the detailed design of eachindividual component.
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Figure 2: Future tightly-coupled two-level design process2.3 Parametric variations and grid generationIn the design system, geometric design parameters will be handled by consideringchanges to their values and determining, in a nonlinear or linear manner, the ef-fect of those changes on the engineering system. To properly appreciate the laterdiscussion of the di�erent numerical approaches, it is important to understand ata more detailed level how these parametric variations change the geometry of thecomponent and how those geometric changes change the resulting computationalgrids used by the analysis packages.In CAD systems, objects used to be de�ned by a collection of surfaces. Forexample, a turbine vane and the hub and tip annuli to which it is attached couldbe de�ned by a set of bi-cubic spline patches. However, in practice there wereproblems with this approach because at intersections, such as at the root of thevane, there could be slight gaps between the two surfaces which would causeenormous di�culties, especially for grid generation packages.At the heart of most CAD systems these days is a solids modelling package(e.g. ParaSolids, Pro Engineer [6, 13]), which de�nes each object as a compositebuilt from simpler solids using rules of union, intersection and exclusion. Forexample, a turbine vane is a solid which is a union of three parts, the blade itselfand the `�r trees' which attach it to the hub and tip annuli. The blade partcan be de�ned as an intersection between two solids, one a body of revolutioncorresponding to the volume between the hub and tip annuli, and the other aparametric cylinder part of whose cylindrical parametric surface corresponds tothe vane surface. The hub �r tree part is an intersection between a hub solid ofrevolution, and a standard �r tree solid (possibly de�ned as a parametric cube)whose location depends on the minimum radius along the line of the hub/bladeintersection. This may seem quite complex, but it is the task of modern CADsystems to make the de�nition and handling of such objects as simple as possible.



11Once the designer has input the solid de�nition, the CAD system can deter-mine its surfaces, lines of intersection (such as the vane/hub root) and pointsof intersection (such as where the trailing edge line intersects the hub and tipannuli). The CAD system can output these as cubic spline patches (for surfaces),or cubic splines (for lines) of the requisite accuracy for use by grid generators[6]). Alternatively, it is becoming more common to be able to access the EPDdatabase directly through a programming interface, so that the grid generatorcan directly interrogate the EPD database to �nd, to a speci�ed accuracy, thelocation of points on the surfaces and along surface lines.If the designer, or design system, then changes one or more design parametersin the de�nition of the solids in the EPD database, the CAD system can computethe new surfaces and lines of intersection. The grid generator can then usethe new information to construct an entirely new grid. Alternatively, the gridgenerator can determine from the CAD system the perturbations to the surfacesand lines of intersection, and use these to perturb the surface grid points of theoriginal grid so that they lie on the surfaces and lines of intersection of the newgeometry. Having done so, the grid generator can then perturb the interior gridpoints to produce a valid perturbed grid with the same topology as the originalgrid. For reasons to be discussed in the next section, this second approach ispreferable in many cases even though it involves additional programming in thegrid generation package.3 Design approaches3.1 PreliminariesBefore starting to discuss speci�c design methods, it is necessary to de�ne thedesign task and some of the nomenclature which will be used.The design parameters are labelled �1; �2; �3; : : : and are referred to collec-tively as �. ek is de�ned to be a vector whose elements are zero except for its kthelement which has value unity. Therefore, �� = �kek represents a perturbationof magnitude �k to the kth design parameter, keeping the others unchanged.The dependent variables are labelled U . In the original mathematical mod-elling, this would be a collection of continuous variables in various regions. Forexample, depending on the application, this may include ow variables, struc-tural displacements and stresses, temperatures, etc. For simplicity, however,we will take U to be a set of discrete values of these quantities related to thecomputational grids being used for the engineering analyses. Accordingly, thesedependent variables are related to the design parameters through a set of non-linear discrete equations of the formF (U ;�) = 0:



12 A design usually has to satisfy a number of constraints. Some of these willbe equality constraints (e.g. �xed thrust) and will be written collectively asE(U ;�) = 0:Others will be in the form of inequalities (e.g. maximum fan diameter or wingspan) and will be written as C(U ;�) � 0:A constraint is said to be violated if it is not satis�ed. A constraint is said tobe active if it is either an equality constraint or an inequality constraint whichis currently satis�ed through strict equality. The number of active constraintsshould not exceed the total number of design parameters; otherwise the problemis over-constrained and will not have a solution in general.3.2 Optimisation and the role of the designerBefore talking about speci�c numerical approaches to design, it is useful to �rstdiscuss the aims of design and the role of the designer within the design process.At the outset, the designer must specify the design space, the parameters inthe parametric design which are to be varied to improve the design. Since thecomputational cost of some of the numerical methods discussed later is propor-tional to the number of design parameters, it is very important that the designeruses his expert judgement to limit the number of design parameters to thosewhich are most important.The designer must also specify the design constraints. As mentioned above,some of these will be inequality constraints (minimum and maximum valuesfor the design parameters, minimum blade thickness, etc.) while some will beequalities (speci�ed lift for a wing, or pressure ratio for a compressor).There are then three possible design scenarios. In the �rst, the designer is ableto de�ne a single scalar function I(U ;�) (known as the objective function) to beoptimised subject to all of the constraints. In preliminary design this objectivefunction may be overall fuel e�ciency, or even the �nancial return on investmentof the operating airline [11]. The computational design system will then attemptto �nd the optimal solution to the problem, subject to the constraints, using themost appropriate optimisation technique.In component design, the de�nition of a suitable objective function can betrickier. Ideally, the designer might wish to minimise drag (for an aircraft) orloss (for a compressor). However, due to limitations in turbulence and transitionmodelling, the time-averaged treatment of unsteadiness such as vortex sheddingand wake/rotor interaction, and numerical e�ects due to grids which do not yetfully resolve all features in three-dimensional ows, CFD methods are often notable to predict drag or loss with su�cient accuracy for the purposes of designoptimisation. Therefore, it is much more common for the designer to choose an
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Figure 3: An example of a tradeo� between two di�erent objective functionsalternative objective function, which if optimised will lead to an improved designwith lower drag or loss. A common choice is the root-mean-square deviationfrom a target pressure distribution [10, 9, 14, 15, 16, 20]. CFD methods usuallydo well in predicting pressure distributions, and so should be able to optimisesuch an objective function quite reliably. A knowledgeable designer is able tospecify a target pressure distribution which in the case of wing design will leadto low boundary layer growth, and in the case of turbomachinery blade designwill also reduce the secondary ow and hence the losses. Thus, the designerplays a critical role in formulating a well-behaved objective function which canbe reliably optimised by the available computational analysis tools.During the optimisation process, the designer's task is to monitor the evo-lution of the design parameters, making sure that the design remains sensible.This may prove to be a much harder task than it appears. Aerospace design isvery multidisciplinary and highly constrained. Initially, one might ignore a largenumber of inequality constraints, believing them to be unimportant because theywill not be active in the �nal design, and wishing to minimise the computationalcost of each step in the design process. One may even forget a large number of`obvious' constraints (such as minimum blade thicknesses). The designer musttherefore watch the evolution of the design to see if new constraints should beadded [17]. In component design, it may also be necessary to examine the de-tailed results from the engineering analyses to ensure that the design does notproduce ow �elds or other features which violate basic modelling assumptionsinherent in the analyses. For example, the use of potential ow modelling wouldno longer be appropriate if the design led to the presence of strong shocks.In the second design scenario, it is appropriate to work with more than one ob-jective function. For example, in preliminary aeroengine design one might choose



14to perform a design which optimises fuel e�ciency at a �xed manufacturing cost.However, the airlines considering purchasing the engine will be considering theirown pro�t optimisation, taking into account the running costs due to both fuelconsumption and interest payments on the capital costs. Therefore, in prelimi-nary design it may be more helpful to plot the trade-o� between fuel e�ciencyand unit engine cost, as illustrated in Figure 3. Each point on this curve rep-resents the optimum fuel e�ciency for a �xed cost, and the optimum cost for a�xed fuel e�ciency. The designer would have the responsibility of studying thistradeo� curve and deciding on the optimum tradeo�.Similarly, at the component design level, the thickness of a compressor bladeis a tradeo� between aerodynamic performance, which decreases with increas-ing thickness, and structural integrity which improves with increasing thickness.Rather than �xing one and optimising the other, the designer may prefer to studythe tradeo� between the two before making a judgement about the best compro-mise. This need to assess multidisciplinary tradeo�s is emphasised in Reference[17] in the context of aircraft design.If the relative importance of the two objective functions is known beforehand,then a single composite objective function of the form I2+�I1 can be created.Referring to Figure 3, optimising I2�I1 corresponds to �nding the point A on thecurve which has the maximum value of I2�I1, and for which there is a tangentline of the form I2� I1 = const. The drawback of this approach is that thedesigner may not have a good idea of the appropriate value of �, and optimisingin this fashion would give no information about how the optimum would changeif the value of � were changed.In the �rst two design scenarios, the engineering design system was responsi-ble for some, or all, of the optimisation of the design, with the designer monitor-ing the design evolution in the �rst, and making some critical design decisionsin the second. In the third design scenario, the designer performs the optimisa-tion, with the design system supplying the designer with sensitivity informationabout the consequences of design changes. This assumes that there is an exist-ing design and the objective is to improve upon it. The designer speci�es theactive design parameters and the constraint functions and objective functionshe considers important. The design system returns the sensitivity of each of thefunctions to changes in each of the parameters, and invites the designer to decideupon suitable parameter changes. The design system may also aid the designerby ensuring that the changes are compatible with the constraints in the problem.This scenario gives the designer the greatest exibility, allowing the designerto take into account other factors and constraints which may be hard to specifyin a computerised design system [17]. In particular, during the development ofan integrated design system, when not all of the analysis modules have beendeveloped or integrated into the system, this third approach may be the onlyfeasible option.Sensitivity analysis is a crucial component of the tightly coupled two-level
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Figure 4: An example of an objective function depending on one continuousparameter, �1, and one integer parameter, �2.design system described earlier. It is unlikely that at the component level onewould simultaneously optimise the size and shape of di�erent blade rows in anengine. However, sensitivity analysis at the component level could determine,for example, the change in the aerodynamic e�ciency due to a change in chordlength. With this information, the system level design could consider tradeo�s,increasing the chord of one blade row while simultaneously decreasing the chordlength of another to retain a �xed overall engine size.The whole approach of sensitivity analysis also has spino� bene�ts in otherareas, such as risk management and strategic research planning; this is discussedlater.3.3 Methods for global optimisationGlobal optimisation is particularly appropriate to the preliminary design task of�nding the optimum con�guration of the overall system. The objective functionto be optimised will usually be something relatively simple of clear engineeringimportance, such as aiming to maximise fuel e�ciency. In addition to constraintssuch as �xed thrust, there may also be inequality constraints to ensure that thedesign remains within the design space for which the empiricism is thought tobe valid.The aim then is to �nd the optimal solution over the entire permissible designspace. Figure 4 illustrates two of the important features of this problem. The �rstis that some of the design parameters may be integers. In the case of aeroenginedesign, the number of stages in the compressor, the number of blades in eachblade row and the material type of di�erent parts of the engine are all examples



16of integer design variables. In aircraft design, the number of engines, the numberof high-lift ap and slat components and the material type (metal or composite)of various components are all integer parameters. The problem with integerparameters is that for each set of values for the integer parameters there will bean optimal solution for certain values of the real (i.e. continuous) parameters.How does the optimisation procedure select the correct global optimum? Thesecond feature, illustrated by the curve for �2=10, is that even when there areonly continuous parameters there is the possibility that the objective functionmay have multiple local optima. This again raises the problem of how to �ndthe global optimum.Because the optimisation procedure must to some extent search the entiredesign space, it is vital that the computational cost of determining U , and henceE;C and I, for a given set of design parameters � is quite low. This is why globaloptimisation is best suited to preliminary design using inexpensive empiricalmodelling. Assuming this low computational cost, genetic algorithms and otherstochastic evolutionary methods are a particularly appropriate choice to �nd theglobal optimum [7, 11]. With genetic algorithms, one starts with an initial familyof solutions, some of which may not be feasible because they violate one or moreof the constraints. The genetic algorithm then produces new families of solutionsin a way that gives a preference towards solutions which are feasible and moreoptimal. The process can handle integer variables as well as continuous variables,and with a large initial family one gets e�ective cover of the entire design spacemaking it likely that the process will converge to the global optimum rather thanan incorrect local optimum [18]. Another good feature of genetic optimisationis that the computational cost increases rather slowly as the number of designparameters increases so there is little need for the designer to prune the designspace.3.4 Local OptimisationIn local optimisation, within either system or component design, one has aninitial design which one wishes to improve upon through evolution, looking atthe neighbourhood of the current design within the design space.There are three broad categories of optimisation methods:stochastic Like genetic algorithms and related evolutionary algorithms, thesemethods introduce a random element in the evolution of the design. Theyevaluate whether or not the new designs are better and feasible, allow-ing some infeasible and poorer solutions in the short term but aiming forfeasibility and optimality in the long term.gradient-based There are a huge number of methods designed to optimise asmooth function I(�) given the ability to evaluate both I(�) and its vectorgradient r�I whose kth element is @I@�k .



17In unconstrained optimisation, the simplest method is to choose r�I asa search direction and use a simple one-dimensional optimisation methodto �nd a local optimum, and then repeat with the new gradient. Moree�cient methods approximate the Hessian matrix of second derivatives,@2I@�j@�k , e�ectively constructing a local quadratic approximation to I(�).There are modi�cations to the standard unconstrained optimisation meth-ods to handle constraints, often through the use of Lagrange multipliers.However, when there are a large number of constraints, other approachesmay be preferable. In particular, when the number of active constraints isequal to the number of active design parameters, the best approach maybe to use a linear approximation to the objective function and constraints.The optimal solution to this linear programming problem can be foundusing the simplex method, and then the process is repeated using the newsolution and gradient information.other There are other optimisation methods which are deterministic, but do notutilise gradient information. One of the most popular is, confusingly, alsocalled the simplex method (or sometimes `the other simplex method' todistinguish it from the linear programming problem. In a N -dimensionaldesign space this method uses a N -dimensional simplex having N+1 ver-tices. This is a triangle in 2D, a tetrahedron in 3D, and a generalisation ofthis in higher dimensions. At each step of the procedure, all of the verticesare held �xed apart from the one which is least optimal which is reectedin the opposing face. If the new vertex is better than the poorest of therest the procedure is repeated; if not, it indicates the simplex is close tothe optimum and so the size of the simplex is reduced.In general, when dealing with a small number of design parameters thegradient-based methods are computationally more e�cient than the other meth-ods, but they can also be less robust, getting confused much more easily when theobjective function is not very smooth, and getting stuck in local optima. Whenthere is a larger number of design parameters, and a large number of constraints,the stochastic methods are more competitive. Their randomness gives them theability to escape small local optima en route to a global optimum. Therefore, forlocal optimisation within system level design I would tend to prefer stochasticoptimisation methods; even if the number of active design parameters is smallthe computational cost of the system-level analysis is so small that the compu-tational expense of using the stochastic methods is perfectly acceptable.For local optimisation within component design the choice is harder. If thereare many active design variables the cost of almost any of the optimisation meth-ods will be substantial. As explained later, the use of adjoint methods to computethe linear sensitivities can greatly decrease the cost, but only if there are veryfew active constraints. In practice, the designer should attempt to minimise the
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Figure 5: Discontinuities and ripples in an objective function due to discretisatione�ectsnumber of active design variables by careful selection of the most appropriatedesign parameters for a particular optimisation.Once the number of design parameters is reduced, the gradient-based meth-ods become the natural choice, but here one encounters another problem, thefact that the objective function is often not smooth. In fact, for many engi-neering analyses, it is not even continuous. The origin of the problem is notin the mathematical modelling but in the numerical discretisation of the partialdi�erential equations in the uid and structural modelling. There are in facttwo problems. The �rst is that as the design changes the grids produced by thegrid generator will usually not vary continuously. The number of grid pointswill often change, and in the case of unstructured grids the grid connectivitywill also change. Both of these will produce small discontinuities in all objectiveand constraint functions. The second problem is discontinuities in the solutions(such as shocks) or very rapid variations which are inadequately resolved (suchas wakes and free shear layers). The position of these features relative to gridpoints will vary as the design parameters changes, and this variation in positionrelative to the grid can produce a small `ripple' in the objective and constraintfunctions. The magnitude of the ripple is small, but its `wavelength' correspondsto the variation in the design parameter necessary for the feature to move onegrid point. Thus the wavelength is small and so the variation in the gradient ofall of the functions may be appreciable. Both of these features are illustrated inFigure 5 which shows a function of a single design variable.In practice, the di�culties associated with these two problems may not be-come signi�cant until one is very close to the optimum solution, in which case onemight reasonably argue that it is not important since the solution one obtains



19may be su�ciently close to optimal. However, it may also be true that certainobjective functions (such as drag and loss) are inherently more sensitive thanothers (such as lift, deviation from a target pressure distribution, etc.)One solution to this problem of `noise' superimposed upon the objective func-tion is to construct a smooth function (sometimes called a `response surface' or`regression surface' [5, 12]) which is a good approximation to the noisy objec-tive function. At its simplest, this involves a least-squares �tting of a quadraticfunction to the noisy data. The smooth approximating function can then beoptimised reliably by standard gradient-based methods.Another problem of local optimisation within component design is that iter-ative methods are often used to solve the �nite di�erence equations that arisefrom the discretisation of the partial di�erential equations. The iterative pro-cess is almost always terminated before the solution has converged to the levelof machine accuracy, and so there is a residual error corresponding to the factthat the nonlinear discrete equations are not satis�ed exactly. This residual errorwill mean corresponding errors in all of the objective and constraint functions.When the design process has come close to the optimum, these residual errorsmay become signi�cant and one may need to use a tighter convergence criterionat the expense of increased computational costs. In practice, however, I suspectthat this is not an important problem.3.5 Sensitivity analysis3.5.1 Nonlinear analysisIn nonlinear sensitivity analysis, one obtains approximate linear sensitivities bysimple �nite di�erencing of the solutions from a number of nonlinear computa-tions [22, 23, 21]. For each set of design parameters �, the discrete equationsF (U ;�) = 0;can be solved to implicitly obtain U as a function of �. Using simple one-sideddi�erencing, we can de�ne the approximate sensitivity of the ow solution tovariations in the kth design parameter asdUd�k � U (�+�kek)�U(�))�k :Similarly, the approximate gradient of an objective function I(U ;�) is given bydId�k � I(U(�+�kek);�+�kek)� I(U(�);�)�k :A question that arises is what should be the magnitude of the perturbations�k? Since the �nite di�erence corresponds to a secant approximation to the gradi-ent, it is intuitively clear from Figure 5 that a large value of �k has the advantage



20of minimising the errors due to discontinuities and ripple in the function. How-ever, a large value of �k would have a signi�cant error due to the one-sided natureof the di�erencing and so it might be necessary to use central di�erencing,dId�k � I(U(�+�kek);�+�kek)� I(U(���kek);���kek)2�kdoubling the computational cost.Using an extremely small value of �k would theoretically lead to a �nite dif-ference value approaching the analytic derivative, but in practice there is theproblem of rounding errors due to �nite precision oating point arithmetic if theratio I(U(�+�kek);�+�kek)� I(U(�);�)I(U(�);�)becomes too small. However, 64-bit arithmetic is being used increasingly, andfor this the rounding errors would be acceptable for values of �k for which theabove ratio is larger than 10�10.There is still the problem of the `ripple'. If this is a major problem, the bestsolution may be to use an intermediate value for �k, one which is small but notvery small. The danger in this is that di�erencing across a discontinuity in theobjective function could produce a very large error. To avoid this, it would benecessary to use a perturbed grid of the same size and topology as the base grid.The construction of such a grid was discussed in Section 2.3.The main advantage of the nonlinear sensitivity approach is its simplicity.There are no major new analysis codes to be written, just a small amount ofprogramming to evaluate the objective and constraint functions. With the ap-propriate design software to manage the construction of the approximate sensi-tivities it is then possible to build the analysis codes into a design system veryrapidly.The direct sensitivity approach also has a big advantage when the objectivefunction comes from a least-squares minimisation problem, in which case it hasthe form I = 12 Xn (fn(U)� fn0)2 ;where fn(U ) is some nonlinear function of the ow variables, such as the pressureat a particular surface point, and fn0 is the target value for the design.Linearising about a base solution U 0 givesI � 12 Xn (fn(U 0)� fn0)2 +Xn (fn(U 0)� fn0) @fn@U fU + 12 Xn  @fn@U fU!2 ;where fU is the ow perturbation. PuttingfU =Xi dUd�i e�i;



21then gives I � I0 +Xi @I@�i e�i + 12 Xi;j @2I@�i@�j e�i e�j;where @I@�i =Xn (fn(U 0)� fn0) @fn@U dUd�i ;and @2I@�i@�j =Xn  @fn@U dUd�i! @fn@U dUd�j! :Thus, the direct sensitivity approach gives both the gradient and the approxi-mate Hessian of the least-squares objective function [8, 21, 22, 23], enabling theapproximate quadratic function to be minimised by solving the linear equationsXj @2I@�i@�j e�j + @I@�i = 0:The main disadvantage of the nonlinear approach is its cost when the numberof design parameters is large. This is why it is important that the designerexercises good judgement in limiting the number of active design parameters.Another way of reducing the computational cost is to use coarse computa-tional grids for the purpose of evaluating approximate sensitivities. Startingwith the �ne grid solution U , a coarse grid solution U c0 could be de�ned byinterpolation onto the coarse grid. De�ning the coarse grid residual vector asRc = F c(U c0;�);the coarse grid equations de�ning perturbed solutions would beF c(U c(�+��);�+��) = Rc:The purpose of the residual vector on the r.h.s. of this equation is to ensure thatU c = U c0, when �� = 0.The approximate sensitivities can then be obtained with the same one-sidedapproximation as before,dId�k � I (U c(�+�kek);�+�kek)� I (U c(�);�)�k :3.5.2 Linear analysisMathematically, the simplest form of linear analysis is equivalent to the nonlinearanalysis in the limit as �k ! 0. If we de�ne fUk to be the sensitivity of Uto changes in the kth design parameter, then linearising the nonlinear discreteequations yields @F@U fUk + @F@�k = 0:



22 This can be solved, directly or iteratively, to obtain fUk for each design pa-rameter. The total derivative of an objective function with respect to the kthdesign parameter is then given bydId�k = @I@U fUk + @I@�k :There are also linear methods in which the original nonlinear partial di�er-ential equation is linearised �rst, and then discretised. These do not have anyparticular advantages over the approach above, starting with the nonlinear dis-cretisation and then linearising. Indeed, there are some disadvantages in that itcan be harder to understand how best to treat the perturbations to the boundaryconditions.The big disadvantage of the linear methods compared to the nonlinear meth-ods is the need to develop an entirely new analysis code to solve the linearperturbation problem. In CFD applications, the task of linearising the discreteNavier-Stokes equations together with the turbulence modelling is at best te-dious and error-prone, although automatic di�erentiation software may be veryhelpful.In CFD applications, the cost of solving the linear system of equations is com-parable to the cost of solving the nonlinear system, so there are no computationalsavings from using the linear approach. The one exception to this is an unusualturbomachinery application in which one designs a blade row with a sinusoidalcircumferential variation in camber with the aim of producing a correspondingpressure variation cancelling that produced by a single large pylon. In this casethe nonlinear analysis must be performed for the full annulus whereas the linearanalysis can be performed using complex variables on a single blade passage witha complex phase shift between its two periodic boundaries [21, 22, 23].In structural applications the linear approach may be much cheaper, partic-ularly if the nonlinear equations are solved by a Newton-Raphson method whichinvolves the computation of the LU decomposition of the matrix @F@U .As with the nonlinear sensitivity approach, it is possible to reduce the com-putational cost of the linear analysis by using coarser grids.3.5.3 Adjoint methodsThe simplest form of the adjoint approach starts from the linear equations above,and then eliminates fU to obtain [10, 9]dId�k = � @I@U  @F@U !�1 @F@�k + @I@�k :This can then be written as dId�k = V T @F@�k + @I@�k ;



23where the vector V satis�es the equation @F@U !T V +  @I@U !T = 0:The great advantage of this approach is that one only needs to solve a single�nite di�erence equation to get the sensitivities of I with respect to all of thedesign parameters. This is because the same solution V is used for each valueof k. The only additional cost for each design parameter is the computation of@F@�k and @I@�k , which is inexpensive, and the dot product V T @F@�k which is evencheaper.The main drawback of the adjoint approach is that a separate adjoint equationmust be solved for each objective function or constraint function. Hence, in ahighly constrained design in which the number of active constraints is comparablewith the number of active design parameters, there is little to be gained fromthe adjoint approach.A second weakness of the adjoint approach is that there is no simple wayin which to compute the Hessian matrix @2I=@�i@�j even when the objectivefunction comes from a least-squares minimisation problem. Instead, the gradient-based optimisation methods must construct an approximation to the Hessianmatrix using information about the variation in the gradient at di�erent points inthe design space. In addition, such methods usually determine a search directionand then �nd the optimum along this direction using a line search algorithm.Both of these aspects result in more steps in the optimisation procedure than arerequired when for the direct sensitivity approach using its approximate Hessian.The label `adjoint' comes from the alternative treatment in which one startswith the linearised partial di�erential equation and converts the linear sensitivityof the objective function into an equivalent form involving the solution of theadjoint partial di�erential equation with appropriate boundary conditions [19].This can then be discretised and solved numerically [2, 3, 4, 14, 15, 16, 20, 24].



244 Other related topics4.1 Manufacturing considerationsReducing the cost of manufacturing is a major concern in the aerospace industrytoday. Many years ago it might have been the case that a design team wouldaim to design the best possible product, and then a manufacturing team wouldface the task of trying to fabricate the product. Nowadays, the design team ismuch more aware of the manufacturing implications of their design decisions.In preliminary design, the cost/weight/strength tradeo�s of using di�erentmaterials may be considered through integer optimisation by assigning each ma-terial a unique integer value.In detailed component design, sensitivity analysis could reveal the probableperformance deterioration due to manufacturing tolerances. This informationcould then be used in considering the cost/bene�t tradeo� in using more expen-sive manufacturing techniques to reduce the manufacturing tolerances.4.2 Risk managementAerospace companies invest huge amounts of money in developing new aircraftand new aeroengines. They are also competing �ercely to reduce the productdevelopment cycle and deliver a new product to customers as quickly as possible.In this climate, project managers are very concerned with risk management,trying to minimise the risks in developing a new product, avoiding problemswhich might seriously delay the project. However, at the same time there is stillthe goal of developing improved products and so some level of risk is inevitable.In deciding where to focus development e�ort, sensitivity analysis can revealthe improvement in overall system performance due to a possible improvementin a particular component. Engineering judgement gives the likely developmentcost to achieve this improvement in the component, and the probability that,despite everyone's best e�orts, the improvement cannot be achieved. With thisinformation, the project management can focus development e�ort on those areaswhich o�er the greatest potential bene�t for the lowest development cost and withthe lowest level of risk.4.3 Strategic research planningLarge aerospace companies have large research budgets, and an important prob-lem is deciding on the relative importance of di�erent research areas. One con-sideration is the relative costs and bene�ts of technological advances in di�erentareas. For example, in military aircraft one might consider the merits of reducingthe weight of the avionics by 50% compared to the introduction of a new com-posite material weighing 10% less than the current one. In the turbomachinery



25context, one might consider the bene�ts of improved CFD modelling leading toimproved turbine �lm cooling, compared to the development of a new alloy forthe turbine blade which would also allow an increase in the ow temperature.In each case, sensitivity analysis can give the overall system bene�ts from thepossible technological advance. Engineering judgement is needed to assess thelikelihood of the technological advance, and its cost. From this, rational decisionscan be made about how best to spend one's research budget.4.4 Distributed and parallel computingDistributed computing on multiple workstations, and parallel computing onshared-memory and distributed-memory multiprocessors, is the underlying tech-nology which makes an integrated design system possible by providing the com-putational resources necessary to achieve acceptable execution times. Determi-nation of approximate linear sensitivities through the computation of multipleperturbed nonlinear solutions is an ideal task-parallel application, in that eachcalculation is independent of the others and so they can all be executed in parallelwith one on each workstation.If some calculations using very �ne computational grids will take too longif executed on a workstation, or require too much memory, then they are goodcandidates for execution on a multiprocessor system using a data-parallel ap-proach in which the computational domain is divided into a number of pieces,each running on a di�erent processor with extensive communication between allof the processors.Companies with very large distributed-memory parallel computers (such as a128-processor CRAY-T3D) might well choose to pursue both approaches at thesame time, executing 16 sensitivity calculations simultaneously with each oneusing 8 processors. This would probably be much more e�cient than carryingout the 16 sensitivity calculations one after another, with each one using all 128processors.
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