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Aerospace design: a complex task
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These lecture notes, prepared for the 1997 VKI Lecture Course
on Inverse Design, identify some of the complexities inherent in the
design of aeroengines and aircraft. It is argued that to handle the
geometric complexities requires a computational representation which
is hierarchical and based on parametric solids at the lowest level. On
top of this can be built a tightly coupled two-level design system
which uses an integrated set of multidisciplinary analysis packages
which are also hierarchical, with differing levels of approximation and
computational cost appropriate to preliminary design and detailed
component design.

A range of different numerical approaches to design are outlined,
and their strengths and weaknesses are compared. Other related
topics such as distributed computing, risk management and strategic
research planning are also discussed.

Key words and phrases: design, CAD/CAM, optimisation, sensitivity analysis,
adjoint methods, genetic algorithms

This work was supported by Rolls-Royce plc and EPSRC.

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England  OX1 3QD

http: //www.comlab.ox.ac.uk

email: giles@Qcomlab.oxford.ac.uk September, 1997



1 Introduction

1.1 Design

The objective of engineering analysis, the mathematical and computational mod-
elling of an engineering product, is not to determine the behaviour of a single
product; if this were the case it would be simpler and cheaper to take the first
manufactured product and test it extensively. The real objective of engineering
analysis is to predict the behaviour of a product, and then use that informa-
tion to design a better product. Often a whole sequence of improved designs is
created, with very few being actually manufactured and tested experimentally.
Given that experimental testing is often very time-consuming and expensive, the
extensive use of computational engineering analysis can greatly reduce the time
and cost of the design process.

Although design is the ultimate objective of engineering analysis, most aca-
demic research in the past 20 years has been directed towards the simpler task
of modelling the behaviour of specific aspects of the engineering system. This
research, coupled with enormous increases in computational power, has led to
the development of three-dimensional modelling and numerical methods in CFD,
combustion modelling, finite element structural analysis and computational elec-
tromagnetics. Despite limitations due to modelling approximations, such as tur-
bulence and transition modelling, these methods are now capable of analysing
the behaviour of many aspects of engineering systems with an accuracy which
is acceptable for most engineering purposes. They are being widely used within
industry, particularly in aeronautical engineering, and are responsible for an im-
provement in product quality and a shortening of the design cycle.

However, the use of current engineering analysis methods in designing com-
plex systems relies very heavily on the knowledge and intuition of the designer.
Individual analyses of a specific design reveal its performance; it is then up to
the designer to note shortcomings in the performance, identify possible causes
and then formulate remedial design changes. When designing very large complex
engineering systems, the situation can be worse, because there is then a team
of people responsible for the design, usually with different people responsible
for different aspects of the performance of the system. Any design will involve
trade-offs between the different aspects, but an intuitive understanding of the
trade-offs becomes increasingly hard as the complexity of the system and its
multidisciplinary nature increase.

Although there is still scope for significant improvement in the accuracy and
capabilities of the individual analysis tools, my belief is that the greatest advance
in engineering analysis in the next 20 years will come from the harnessing of the
individual tools within integrated design systems. The aim of these is not to
replace the designer by a ‘black box’ producing optimal designs, but to provide
the designer with a flexible environment in which to define the design space (the



parameters which define the design), explore the trade-offs, and investigate novel
designs which may well lie outside the designer’s range of intuition based on past
experience. These design systems will also lead to a further shortening of the
design cycle, reduce the risk, reduce costs (in part through more automation of
the analysis process) and allow a better targetting of strategic research.

1.2 Aeronautical engineering

The systems being designed in aeronautical applications are among the most
complex in engineering. Not counting the smallest components such as nuts,
bolts and rivets, the aeroengines and the rest of an aircraft may have hundreds
of thousands of components, with over a million important design parameters
and many more which are less important. Furthermore, a complete unsteady
simulation of the workings of an aeroengine including all fluid dynamics, struc-
tural stresses and vibration, heat transfer, etc., would take on the order of a year
on on the computing resources of a typical large aerospace company. A complete
simulation of an aircraft from take-off, to cruising at altitude and then landing
would be similarly expensive.

It is this level of complexity in aeronautical engineering which rules out the
general use of methods such as genetic algorithms for optimisation. Such meth-
ods have been very usefully applied to problems with very few design parameters
and very low computational analysis costs. They may also be very appropriate
for preliminary design optimisation, as will be discussed later, but their compu-
tational cost means they can not be applied to optimisation of the entire system
using all of the design parameters and the full computational simulation. Instead,
a hierarchical approach is needed, both in handling the design space (the set of
design parameters) and in modelling the engineering system. The complexity of
the design space also provides a strong argument for the use of a design system
which keeps track of all of the design variables, allowing the designer to inves-
tigate the effect of certain ‘active’ design variables to try to improve the design
while satisfying all of the many constraints that a design always has.

Another important features of aeronautical engineering is its strongly mul-
tidisciplinary nature. In wing design, the optimal thickness of the wing is a
trade-off between aerodynamic performance (which decreases as the thickness
increases) and penalties due to weight (which also decreases as the thickness
increases because the bending moment can be sustained using an thinner air-
foil skin). Similarly, the optimal trailing edge thickness of a turbine blade is a
compromise between aerodynamic performance (which decreases as the thickness
increases) and structural integrity due to both static and dynamic loading (which
improves with thickness).

This multidisciplinary aspect of the design problem is a major challenge,
because there are few engineers with the necessary knowledge of each of the dis-
ciplines, and fewer still with a good intuitive grasp of the various compromises to



be reached in coming to a good overall design. Here again is where an integrated
design system has much to offer, for example giving the designer the necessary
knowledge about how variations in the thickness affect the aerodynamic and
structural performance.

The development of these integrated design systems will not be an easy task.
Much of it is a complex software engineering task, linking together different
components modules from CAD/CAM, grid generation, CFD, structural analy-
sis, etc. The difficulty comes from the lack of well accepted standards for the
interfaces, together with the fact that those carrying out the software engineering
may have difficulty appreciating the goals and challenges of engineering design.
Academics (such as myself) may be able to help to define the long-term vision
of what could be accomplished by such systems, as well as working on specific
pieces of it such as genetic algorithms and adjoint methods. There is also a sub-
stantial body of academic research on engineering design, most of which seems
oriented towards simple engineering systems, but may still be relevant to much
larger systems.

However, much of the work to be done on engineering design systems for large
complex applications is best done in industry, directed by those who best un-
derstand the realities of engineering design and how the current design processes
may be improved. Many of the challenges to be faced are a direct consequence of
the complexity of the engineering application, and it is not feasible to duplicate
applications of this magnitude in academia; the only option is for academics to
be closely involved in the research be carried on within industry.

1.3 These lecture notes

My objective is to explain what I see as being the sources of complexity in
aeronautical engineering, and how this complexity can be tackled by the use of
appropriate hierarchies in both EPD (electronic product definition) and anal-
ysis/design methods. I also survey the main numerical approaches to design,
discussing their relative strengths and weaknesses.

As I write these notes, I am conscious of the fact that I do not have any actual
experience of designing an engineering product. Therefore, I cannot pretend to
be a designer or to understand all of the issues that concern a designer. How-
ever, [ know a lot about mathematical modelling and computational engineering
analysis, and I have the benefit of almost 20 years association with Rolls-Royce,
developing CFD tools which are used by designers. Therefore, I will present my
vision of the engineering design system of the future, knowing that it is quite
possible I will omit some features that designers may consider crucial. I also
recommend that readers consult Reference [17] for an industrial viewpoint on
design and the limitations of some academic approaches to the subject.



Table 1: Hierarchical definition of a turbine vane

Level 1 | number of blades, hub/tip radius, throat area,
inflow/outflow angles, mass flow

Level 2 | camber/thickness distribution, cooling mass flow
Level 3 | geometry of fillets at hub and tip junctions
Level 4 | details of film cooling holes and slots,
temperature of inflow and cooling flow

Level 5 | alloy type and thermal properties

Table 2: Hierarchical definition of an aircraft

Level 1 | aircraft weight, wingspan, cruising speed
Level 2 | wing/fuselage geometry

Level 3 | engines, tail, winglets

Level 4 | high-lift flaps & slats, take-off climb rate
Level 5 | control surfaces, fairings, desired roll rate

2 Managing complexity

2.1 Hierarchical EPD

As explained in the Introduction, the problem with electronic product definition
(EPD) in aeronautical engineering is the magnitude of the definition. There
may be hundreds of thousands of components, and well over a million important
design parameters. This is far too large a number to be handled easily by the
designer.

Furthermore, the complete product definition contains a level of detail which
is undesirable for much engineering analysis. An example of this in turboma-
chinery is the cooling holes in a high pressure turbine. The geometry of these
must be contained in the EPD database for manufacturing purposes, but when
computing the viscous flow in the blade passage and the resulting heat transfer
to the blade it is usual to ignore the details of the cooling holes and simply model
the coolant injection through a transpiration boundary condition. An even more
extreme example for aircraft is the rivets in the skin of the wing. Again, the
details of these must be contained in the EPD database for manufacturing pur-
poses, but when generating an unstructured grid for a CFD calculation it would
be ridiculous to resolve the details of the flow over each rivet head.

The solution to these problems is to use a hierarchical EPD database in which
every component is defined at a number of different levels of detail. Tables 1



and 2 illustrate possible hierarchical representations of a high pressure turbine
vane and a complete aircraft. In each case, the level 1 representation is the
most basic, with higher levels adding successively more detail. Neither table is
complete; the rivets on the aircraft may not appear until level 20! Note also
that both tables contain data which is not geometric; variables such as operating
conditions, material types and cooling flow rates are important design parameters
in addition to the more obvious geometric parameters.

An engineering analysis tool will interface to whichever level of the EPD is
most appropriate. In the case of the turbine vane, a CFD code might interface
at level 2, treating the blade/hub and blade/tip junction as sharp corners, and
modelling the film cooling as a distributed mass source. A stress analysis package
would need to interface at level 3 or higher since the fillet geometry is needed
to calculate the correct stresses in the corners. A thermal analysis of the solid
would need to go to level 5.

In coupled multidisciplinary applications, such as aeroelasticity or combined
aerothermal analysis, it is possible that the applications being coupled may be
working with different representations of the component. For example, suppose
one wishes to perform a combined aerothermal analysis of the turbine vane,
performing a Navier-Stokes CFD analysis of the flow in the vane passage and
coupling this (through matching the surface temperature and heat flux) to a
thermal analysis of the vane. If the CFD code is working with the level 2 defini-
tion while the solid thermal analysis package is working with level 5, there will
be subtle differences in the surface geometry because of the absence or presence
of the fillets. Moreover, the computational grids used for each analysis are likely
to be quite different. Both of these problems raise the question of how to link
the two packages. The solution is to do so parametrically. An arbitrary point on
the surface of the vane can be referenced parametrically by (&;,&) where & is
the fractional distance from hub to tip and &, is the fractional distance around
the vane. The interface conditions between the two codes can then be defined
as matching temperature and heat flux at corresponding (&;,&,) points. This
will still require interpolation from one grid to another but this is a relatively
straightforward task.

An important aspect of a hierarchical EPD is that each level is defined rela-
tive to the ones below, so that design changes at one level are ‘inherited’ by those
above. A good example of this is the cooling holes in the high pressure turbine
vane. If the designer changes the blade profile in level 2, then the cooling holes in
level 4 are automatically adjusted accordingly. In practice, this may be accom-
plished by defining the (&, &) location of each hole together with its diameter
and its angle relative to the surface. Its length would be implicitly defined by
its intersection with the internal cooling plenum, which would itself need to be
defined relative to the blade profile. This ‘inheritance’ feature of a hierarchical
EPD database means that all of the parameters at each level of representation
are design parameters which may perhaps be altered by the design system.



2.2 Hierarchical design

The hierarchical EPD approach is a convenient way to organise the very large
number of design parameters in a typical aeronautical engineering application.
However, on its own it does not address the other problem identified in the
Introduction, the huge computational cost of analysing the entire engineering
system and investigating the effect of all of the design parameters.

To tackle this requires a hierarchical approach to the design process as well. In
most aerospace companies design is carried out at two levels, preliminary design
and detailed component design. The preliminary design group considers the en-
gine or aircraft as an entire system, thinking about the customers’ requirements,
sizing the major components, deciding which subsystems to retain from previ-
ous products, aiming to maximise profit over the lifetime of the entire project.
When trying to optimise the overall configuration during the preliminary design
process the system is modelled at a very approximate level using a considerable
amount of empiricism based on previous experience. It may even assume future
advances in component technology. This approximate modelling, working with
the lowest levels in the hierarchical EPD database with a strictly limited number
of fundamental design parameters means that the cost of simulating the entire
system is reduced to a few minutes, at most. This allows a thorough investiga-
tion of the global trade-offs influencing the overall system configuration. At the
conclusion of the preliminary design process, many crucial design decisions have
been made. In the case of aeroengine design, this would include engine thrust,
mass flow, fan radius, the number of compressor and turbine stages, and the
approximate size and pressure ratio of each blade row. In the case of aircraft
design, it would include the aircraft weight and cruising speed, number of engines
and their thrust, ing span and aspect ratio, approximate sizes of control surfaces
and high-lift flaps and slats.

The second stage in the design process is component design. A number of
different design teams are given responsibility for the design of the components
within a particular subsystem. For example, the Turbine Group would be re-
sponsible for the development of the turbine stages in an aeroengine. Design
responsibility may be further broken down so that just three people, an aerody-
namicist, a structural analyst and an expert in blade cooling may design the high
pressure turbine vane, under the eye of the designer with overall responsibility
for the turbine. At this level of design, the design intent for each component
has been fairly tightly specified by the preliminary design group, and many con-
straints have been imposed. The task of the component design team is to fulfil the
design intent as well as possible (good aerodynamic performance, good structural
behaviour, low weight, low cost of manufacture and maintenance, etc.) subject
to the constraints. To a large extent, this is a matter of shape optimisation, the
non-geometric design parameters having been set in preliminary design.

The analysis tools which are used at this level are usually three-dimensional
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Figure 1: Current sequential two-level design process

CFD and structural analysis packages, with execution times ranging from a few
minutes to many hours. These packages will work with the higher levels of the
EPD database, using the much more complete definitions of each component.
Sometimes, more approximate analysis methods may be used, such as 2D anal-
yses, inviscid flow methods, even simple panel methods. The advantage of these
methods is their very low computational cost, often measured in seconds rather
than minutes, but this comes at the expense of reduced modelling accuracy so
the designer must decide on the level of accuracy required. In some cases, the
accuracy of the more approximate methods can be improved by the addition
of ‘corrections’ (e.g. loss or drag, deviation angles) derived from the more ac-
curate methods. This third form of hierarchy, hierarchical analysis, is already
well-established in industrial practice and will not be discussed further.

As described above, and illustrated in Figure 1, the current hierarchical design
approach is sequential, preliminary design followed by component design. Except
in exceptional circumstances, the decisions made in preliminary design are not
changed during component design. This is due to preliminary design being firmly
based on empiricism from past experience, so major surprises are unlikely to arise
during the component design process. Indeed, at the end of the component design
process the empiricism in the preliminary design modelling should be updated
to improve the preliminary design for the next major project.

There are two drawbacks to this sequential design process. The first is that its
success depends on the new design not being too different from past designs, so
that the empiricism in the modelling remains valid. This makes it very difficult to
develop radically new designs, but it may be argued that in both aeroengine and
aircraft design it is unlikely that a radically new design will be significantly better
than existing designs. Therefore, the less risky nature of the current evolutionary
process makes it commercially desirable. The second drawback of the current
process is perhaps more mundane, but it is also probably more important. The



empiricism in the preliminary design system represents the collective experience
of past projects, but no two projects are ever identical. Even if the customer
requirements are identical, technological advances mean that the best engine or
aircraft of today would be different from that designed twenty years ago. To
some extent this technological progress can be accounted for in the empiricism,
but inevitably it remains true that the preliminary design process carries out its
overall system optimisation and makes crucial design decisions based on only an
approximate model of the system.

In the future I believe there will be a shift to a more tightly-coupled two-level
design system, as illustrated in Figure 2. The overall system design will begin,
as now, with a preliminary design based on past empiricism. This will then
provide the starting point for the detailed component design. The change from
the current sequential design process is that at this point data will be fed back
into the overall system design, updating its empiricism based on the results of the
detailed engineering analyses performed during the component design. This will
allow further refinement of the overall system performance by fine-tuning some
of the global trade-offs. Ideally, this design cycle would be repeated a number
of times, with the component design responsible for the shape optimisation of
specific components from a ‘local’ viewpoint, while the system design is concerned
with overall optimisation of the major sub-systems based on a global viewpoint.
Further in the future it is even possible that additional levels of optimisation
may be introduced [1]. For example, in designing turbine blades, 2D profile
optimisation to minimise boundary layer growth may be added as an additional
level of optimisation after the basic 3D shape has already been optimised. !

The main reason a tightly coupled design system is not used today is time.
The design time for an engine or aircraft project is strictly limited. There are
very strong commercial pressures to bring a product to market as quickly as pos-
sible, even if this involves sacrificing a certain amount of performance because of
the lack of time to investigate all design options. Spending more time on refining
a design also has manpower and experimental testing costs; these have to be
weighed against the possible benefits to be gained. The key to the successful
adoption of a tightly coupled design system in the future lies in software engi-
neering and ever increasing computational power. Good software engineering will
minimise the time spent by designers in the coupling between system design and
component design. The continuing doubling of computational power every 18-24
months will ensure decreasing execution times for the more expensive analysis
tools, allowing more cycles of the coupled design process to be completed within
a given time.

'Readers familiar with numerical methods might like to note that this hierarchical design
is similar to multigrid in that the very approximate representation of the system (the ‘coarse
grid’) is used for global tradeoffs and the design of the overall system, while the fully de-
tailed representation of each component (the ‘fine grid’) is used for the detailed design of each
individual component.
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Figure 2: Future tightly-coupled two-level design process

2.3 Parametric variations and grid generation

In the design system, geometric design parameters will be handled by considering
changes to their values and determining, in a nonlinear or linear manner, the ef-
fect of those changes on the engineering system. To properly appreciate the later
discussion of the different numerical approaches, it is important to understand at
a more detailed level how these parametric variations change the geometry of the
component and how those geometric changes change the resulting computational
grids used by the analysis packages.

In CAD systems, objects used to be defined by a collection of surfaces. For
example, a turbine vane and the hub and tip annuli to which it is attached could
be defined by a set of bi-cubic spline patches. However, in practice there were
problems with this approach because at intersections, such as at the root of the
vane, there could be slight gaps between the two surfaces which would cause
enormous difficulties, especially for grid generation packages.

At the heart of most CAD systems these days is a solids modelling package
(e.g. ParaSolids, Pro Engineer [6,13]), which defines each object as a composite
built from simpler solids using rules of union, intersection and exclusion. For
example, a turbine vane is a solid which is a union of three parts, the blade itself
and the ‘fir trees’ which attach it to the hub and tip annuli. The blade part
can be defined as an intersection between two solids, one a body of revolution
corresponding to the volume between the hub and tip annuli, and the other a
parametric cylinder part of whose cylindrical parametric surface corresponds to
the vane surface. The hub fir tree part is an intersection between a hub solid of
revolution, and a standard fir tree solid (possibly defined as a parametric cube)
whose location depends on the minimum radius along the line of the hub/blade
intersection. This may seem quite complex, but it is the task of modern CAD
systems to make the definition and handling of such objects as simple as possible.
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Once the designer has input the solid definition, the CAD system can deter-
mine its surfaces, lines of intersection (such as the vane/hub root) and points
of intersection (such as where the trailing edge line intersects the hub and tip
annuli). The CAD system can output these as cubic spline patches (for surfaces),
or cubic splines (for lines) of the requisite accuracy for use by grid generators
[6]). Alternatively, it is becoming more common to be able to access the EPD
database directly through a programming interface, so that the grid generator
can directly interrogate the EPD database to find, to a specified accuracy, the
location of points on the surfaces and along surface lines.

If the designer, or design system, then changes one or more design parameters
in the definition of the solids in the EPD database, the CAD system can compute
the new surfaces and lines of intersection. The grid generator can then use
the new information to construct an entirely new grid. Alternatively, the grid
generator can determine from the CAD system the perturbations to the surfaces
and lines of intersection, and use these to perturb the surface grid points of the
original grid so that they lie on the surfaces and lines of intersection of the new
geometry. Having done so, the grid generator can then perturb the interior grid
points to produce a valid perturbed grid with the same topology as the original
grid. For reasons to be discussed in the next section, this second approach is
preferable in many cases even though it involves additional programming in the
grid generation package.

3 Design approaches

3.1 Preliminaries

Before starting to discuss specific design methods, it is necessary to define the
design task and some of the nomenclature which will be used.

The design parameters are labelled aq, a5, a3, ... and are referred to collec-
tively as a. ey, is defined to be a vector whose elements are zero except for its k"
element which has value unity. Therefore, Aa = €,e; represents a perturbation
of magnitude €, to the k' design parameter, keeping the others unchanged.

The dependent variables are labelled U. In the original mathematical mod-
elling, this would be a collection of continuous variables in various regions. For
example, depending on the application, this may include flow variables, struc-
tural displacements and stresses, temperatures, etc. For simplicity, however,
we will take U to be a set of discrete values of these quantities related to the
computational grids being used for the engineering analyses. Accordingly, these
dependent variables are related to the design parameters through a set of non-
linear discrete equations of the form

F(U,a)=0.
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A design usually has to satisfy a number of constraints. Some of these will
be equality constraints (e.g. fixed thrust) and will be written collectively as

EU,a)=0.

Others will be in the form of inequalities (e.g. maximum fan diameter or wing

span) and will be written as
ClU,a) > 0.

A constraint is said to be wviolated if it is not satisfied. A constraint is said to
be active if it is either an equality constraint or an inequality constraint which
is currently satisfied through strict equality. The number of active constraints
should not exceed the total number of design parameters; otherwise the problem
is over-constrained and will not have a solution in general.

3.2 Optimisation and the role of the designer

Before talking about specific numerical approaches to design, it is useful to first
discuss the aims of design and the role of the designer within the design process.

At the outset, the designer must specify the design space, the parameters in
the parametric design which are to be varied to improve the design. Since the
computational cost of some of the numerical methods discussed later is propor-
tional to the number of design parameters, it is very important that the designer
uses his expert judgement to limit the number of design parameters to those
which are most important.

The designer must also specify the design constraints. As mentioned above,
some of these will be inequality constraints (minimum and maximum values
for the design parameters, minimum blade thickness, etc.) while some will be
equalities (specified lift for a wing, or pressure ratio for a compressor).

There are then three possible design scenarios. In the first, the designer is able
to define a single scalar function I(U, ) (known as the objective function) to be
optimised subject to all of the constraints. In preliminary design this objective
function may be overall fuel efficiency, or even the financial return on investment
of the operating airline [11]. The computational design system will then attempt
to find the optimal solution to the problem, subject to the constraints, using the
most appropriate optimisation technique.

In component design, the definition of a suitable objective function can be
trickier. Ideally, the designer might wish to minimise drag (for an aircraft) or
loss (for a compressor). However, due to limitations in turbulence and transition
modelling, the time-averaged treatment of unsteadiness such as vortex shedding
and wake/rotor interaction, and numerical effects due to grids which do not yet
fully resolve all features in three-dimensional flows, CFD methods are often not
able to predict drag or loss with sufficient accuracy for the purposes of design
optimisation. Therefore, it is much more common for the designer to choose an
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Figure 3: An example of a tradeoff between two different objective functions

alternative objective function, which if optimised will lead to an improved design
with lower drag or loss. A common choice is the root-mean-square deviation
from a target pressure distribution [10,9,14,15,16,20]. CFD methods usually
do well in predicting pressure distributions, and so should be able to optimise
such an objective function quite reliably. A knowledgeable designer is able to
specify a target pressure distribution which in the case of wing design will lead
to low boundary layer growth, and in the case of turbomachinery blade design
will also reduce the secondary flow and hence the losses. Thus, the designer
plays a critical role in formulating a well-behaved objective function which can
be reliably optimised by the available computational analysis tools.

During the optimisation process, the designer’s task is to monitor the evo-
lution of the design parameters, making sure that the design remains sensible.
This may prove to be a much harder task than it appears. Aerospace design is
very multidisciplinary and highly constrained. Initially, one might ignore a large
number of inequality constraints, believing them to be unimportant because they
will not be active in the final design, and wishing to minimise the computational
cost of each step in the design process. One may even forget a large number of
‘obvious’ constraints (such as minimum blade thicknesses). The designer must
therefore watch the evolution of the design to see if new constraints should be
added [17]. In component design, it may also be necessary to examine the de-
tailed results from the engineering analyses to ensure that the design does not
produce flow fields or other features which violate basic modelling assumptions
inherent in the analyses. For example, the use of potential flow modelling would
no longer be appropriate if the design led to the presence of strong shocks.

In the second design scenario, it is appropriate to work with more than one ob-
jective function. For example, in preliminary aeroengine design one might choose
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to perform a design which optimises fuel efficiency at a fixed manufacturing cost.
However, the airlines considering purchasing the engine will be considering their
own profit optimisation, taking into account the running costs due to both fuel
consumption and interest payments on the capital costs. Therefore, in prelimi-
nary design it may be more helpful to plot the trade-off between fuel efficiency
and unit engine cost, as illustrated in Figure 3. Each point on this curve rep-
resents the optimum fuel efficiency for a fixed cost, and the optimum cost for a
fixed fuel efficiency. The designer would have the responsibility of studying this
tradeoff curve and deciding on the optimum tradeoff.

Similarly, at the component design level, the thickness of a compressor blade
is a tradeoff between aerodynamic performance, which decreases with increas-
ing thickness, and structural integrity which improves with increasing thickness.
Rather than fixing one and optimising the other, the designer may prefer to study
the tradeoff between the two before making a judgement about the best compro-
mise. This need to assess multidisciplinary tradeoffs is emphasised in Reference
[17] in the context of aircraft design.

If the relative importance of the two objective functions is known beforehand,
then a single composite objective function of the form I+ AI; can be created.
Referring to Figure 3, optimising Io—I; corresponds to finding the point A on the
curve which has the maximum value of I, —I;, and for which there is a tangent
line of the form I, —I; = const. The drawback of this approach is that the
designer may not have a good idea of the appropriate value of A\, and optimising
in this fashion would give no information about how the optimum would change
if the value of A were changed.

In the first two design scenarios, the engineering design system was responsi-
ble for some, or all, of the optimisation of the design, with the designer monitor-
ing the design evolution in the first, and making some critical design decisions
in the second. In the third design scenario, the designer performs the optimisa-
tion, with the design system supplying the designer with sensitivity information
about the consequences of design changes. This assumes that there is an exist-
ing design and the objective is to improve upon it. The designer specifies the
active design parameters and the constraint functions and objective functions
he considers important. The design system returns the sensitivity of each of the
functions to changes in each of the parameters, and invites the designer to decide
upon suitable parameter changes. The design system may also aid the designer
by ensuring that the changes are compatible with the constraints in the problem.

This scenario gives the designer the greatest flexibility, allowing the designer
to take into account other factors and constraints which may be hard to specify
in a computerised design system [17]. In particular, during the development of
an integrated design system, when not all of the analysis modules have been
developed or integrated into the system, this third approach may be the only
feasible option.

Sensitivity analysis is a crucial component of the tightly coupled two-level
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Figure 4: An example of an objective function depending on one continuous
parameter, ay, and one integer parameter, as.

design system described earlier. It is unlikely that at the component level one
would simultaneously optimise the size and shape of different blade rows in an
engine. However, sensitivity analysis at the component level could determine,
for example, the change in the aerodynamic efficiency due to a change in chord
length. With this information, the system level design could consider tradeoffs,
increasing the chord of one blade row while simultaneously decreasing the chord
length of another to retain a fixed overall engine size.

The whole approach of sensitivity analysis also has spinoff benefits in other
areas, such as risk management and strategic research planning; this is discussed
later.

3.3 Methods for global optimisation

Global optimisation is particularly appropriate to the preliminary design task of
finding the optimum configuration of the overall system. The objective function
to be optimised will usually be something relatively simple of clear engineering
importance, such as aiming to maximise fuel efficiency. In addition to constraints
such as fixed thrust, there may also be inequality constraints to ensure that the
design remains within the design space for which the empiricism is thought to
be valid.

The aim then is to find the optimal solution over the entire permissible design
space. Figure 4 illustrates two of the important features of this problem. The first
is that some of the design parameters may be integers. In the case of aeroengine
design, the number of stages in the compressor, the number of blades in each
blade row and the material type of different parts of the engine are all examples
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of integer design variables. In aircraft design, the number of engines, the number
of high-lift flap and slat components and the material type (metal or composite)
of various components are all integer parameters. The problem with integer
parameters is that for each set of values for the integer parameters there will be
an optimal solution for certain values of the real (i.e. continuous) parameters.
How does the optimisation procedure select the correct global optimum? The
second feature, illustrated by the curve for ay =10, is that even when there are
only continuous parameters there is the possibility that the objective function
may have multiple local optima. This again raises the problem of how to find
the global optimum.

Because the optimisation procedure must to some extent search the entire
design space, it is vital that the computational cost of determining U, and hence
E.,C and I, for a given set of design parameters « is quite low. This is why global
optimisation is best suited to preliminary design using inexpensive empirical
modelling. Assuming this low computational cost, genetic algorithms and other
stochastic evolutionary methods are a particularly appropriate choice to find the
global optimum [7,11]. With genetic algorithms, one starts with an initial family
of solutions, some of which may not be feasible because they violate one or more
of the constraints. The genetic algorithm then produces new families of solutions
in a way that gives a preference towards solutions which are feasible and more
optimal. The process can handle integer variables as well as continuous variables,
and with a large initial family one gets effective cover of the entire design space
making it likely that the process will converge to the global optimum rather than
an incorrect local optimum [18]. Another good feature of genetic optimisation
is that the computational cost increases rather slowly as the number of design
parameters increases so there is little need for the designer to prune the design
space.

3.4 Local Optimisation

In local optimisation, within either system or component design, one has an
initial design which one wishes to improve upon through evolution, looking at
the neighbourhood of the current design within the design space.

There are three broad categories of optimisation methods:

stochastic Like genetic algorithms and related evolutionary algorithms, these
methods introduce a random element in the evolution of the design. They
evaluate whether or not the new designs are better and feasible, allow-
ing some infeasible and poorer solutions in the short term but aiming for
feasibility and optimality in the long term.

gradient-based There are a huge number of methods designed to optimise a

smooth function /() given the ability to evaluate both I(e) and its vector

gradient V,I whose k' element is 2L.
k
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In unconstrained optimisation, the simplest method is to choose V,I as
a search direction and use a simple one-dimensional optimisation method
to find a local optimum, and then repeat with the new gradient. More
efficient methods approximate the Hessian matrix of second derivatives,

Ba(?z[ak’ effectively constructing a local quadratic approximation to I(a).
J

There are modifications to the standard unconstrained optimisation meth-
ods to handle constraints, often through the use of Lagrange multipliers.
However, when there are a large number of constraints, other approaches
may be preferable. In particular, when the number of active constraints is
equal to the number of active design parameters, the best approach may
be to use a linear approximation to the objective function and constraints.
The optimal solution to this linear programming problem can be found
using the simplex method, and then the process is repeated using the new
solution and gradient information.

other There are other optimisation methods which are deterministic, but do not
utilise gradient information. One of the most popular is, confusingly, also
called the simplex method (or sometimes ‘the other simplex method’ to
distinguish it from the linear programming problem. In a N-dimensional
design space this method uses a N-dimensional simplex having N+1 ver-
tices. This is a triangle in 2D, a tetrahedron in 3D, and a generalisation of
this in higher dimensions. At each step of the procedure, all of the vertices
are held fixed apart from the one which is least optimal which is reflected
in the opposing face. If the new vertex is better than the poorest of the
rest the procedure is repeated; if not, it indicates the simplex is close to
the optimum and so the size of the simplex is reduced.

In general, when dealing with a small number of design parameters the
gradient-based methods are computationally more efficient than the other meth-
ods, but they can also be less robust, getting confused much more easily when the
objective function is not very smooth, and getting stuck in local optima. When
there is a larger number of design parameters, and a large number of constraints,
the stochastic methods are more competitive. Their randomness gives them the
ability to escape small local optima en route to a global optimum. Therefore, for
local optimisation within system level design I would tend to prefer stochastic
optimisation methods; even if the number of active design parameters is small
the computational cost of the system-level analysis is so small that the compu-
tational expense of using the stochastic methods is perfectly acceptable.

For local optimisation within component design the choice is harder. If there
are many active design variables the cost of almost any of the optimisation meth-
ods will be substantial. As explained later, the use of adjoint methods to compute
the linear sensitivities can greatly decrease the cost, but only if there are very
few active constraints. In practice, the designer should attempt to minimise the
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Figure 5: Discontinuities and ripples in an objective function due to discretisation
effects

number of active design variables by careful selection of the most appropriate
design parameters for a particular optimisation.

Once the number of design parameters is reduced, the gradient-based meth-
ods become the natural choice, but here one encounters another problem, the
fact that the objective function is often not smooth. In fact, for many engi-
neering analyses, it is not even continuous. The origin of the problem is not
in the mathematical modelling but in the numerical discretisation of the partial
differential equations in the fluid and structural modelling. There are in fact
two problems. The first is that as the design changes the grids produced by the
grid generator will usually not vary continuously. The number of grid points
will often change, and in the case of unstructured grids the grid connectivity
will also change. Both of these will produce small discontinuities in all objective
and constraint functions. The second problem is discontinuities in the solutions
(such as shocks) or very rapid variations which are inadequately resolved (such
as wakes and free shear layers). The position of these features relative to grid
points will vary as the design parameters changes, and this variation in position
relative to the grid can produce a small ‘ripple’ in the objective and constraint
functions. The magnitude of the ripple is small, but its ‘wavelength’ corresponds
to the variation in the design parameter necessary for the feature to move one
grid point. Thus the wavelength is small and so the variation in the gradient of
all of the functions may be appreciable. Both of these features are illustrated in
Figure 5 which shows a function of a single design variable.

In practice, the difficulties associated with these two problems may not be-
come significant until one is very close to the optimum solution, in which case one
might reasonably argue that it is not important since the solution one obtains



19

may be sufficiently close to optimal. However, it may also be true that certain
objective functions (such as drag and loss) are inherently more sensitive than
others (such as lift, deviation from a target pressure distribution, etc.)

One solution to this problem of ‘noise’ superimposed upon the objective func-
tion is to construct a smooth function (sometimes called a ‘response surface’ or
‘regression surface’ [5,12]) which is a good approximation to the noisy objec-
tive function. At its simplest, this involves a least-squares fitting of a quadratic
function to the noisy data. The smooth approximating function can then be
optimised reliably by standard gradient-based methods.

Another problem of local optimisation within component design is that iter-
ative methods are often used to solve the finite difference equations that arise
from the discretisation of the partial differential equations. The iterative pro-
cess is almost always terminated before the solution has converged to the level
of machine accuracy, and so there is a residual error corresponding to the fact
that the nonlinear discrete equations are not satisfied exactly. This residual error
will mean corresponding errors in all of the objective and constraint functions.
When the design process has come close to the optimum, these residual errors
may become significant and one may need to use a tighter convergence criterion
at the expense of increased computational costs. In practice, however, I suspect
that this is not an important problem.

3.5 Sensitivity analysis
3.5.1 Nonlinear analysis

In nonlinear sensitivity analysis, one obtains approximate linear sensitivities by
simple finite differencing of the solutions from a number of nonlinear computa-
tions [22,23, 21]. For each set of design parameters a, the discrete equations

F(U,a) =0,

can be solved to implicitly obtain U as a function of «. Using simple one-sided
differencing, we can define the approximate sensitivity of the flow solution to
variations in the k* design parameter as

dU - U(a+6k6k) — U(a))
dozk - €L '

Similarly, the approximate gradient of an objective function I(U, ) is given by

dl  1(U(a+eer), ateer) — 1(U(a), a)
dozk - €L )

A question that arises is what should be the magnitude of the perturbations
€ ! Since the finite difference corresponds to a secant approximation to the gradi-
ent, it is intuitively clear from Figure 5 that a large value of ¢; has the advantage
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of minimising the errors due to discontinuities and ripple in the function. How-
ever, a large value of ¢, would have a significant error due to the one-sided nature
of the differencing and so it might be necessary to use central differencing,

dl -~ I(U(a—l—ekek), a—i—ekek) — I(U(a—ekek), a—ekek)
dak - 2€k

doubling the computational cost.

Using an extremely small value of ¢, would theoretically lead to a finite dif-
ference value approaching the analytic derivative, but in practice there is the
problem of rounding errors due to finite precision floating point arithmetic if the

ratio
(U (a+erer), ateer) — [(U(a), @)

I(U(a), @)
becomes too small. However, 64-bit arithmetic is being used increasingly, and
for this the rounding errors would be acceptable for values of ¢, for which the
above ratio is larger than 10710,

There is still the problem of the ‘ripple’. If this is a major problem, the best
solution may be to use an intermediate value for €, one which is small but not
very small. The danger in this is that differencing across a discontinuity in the
objective function could produce a very large error. To avoid this, it would be
necessary to use a perturbed grid of the same size and topology as the base grid.
The construction of such a grid was discussed in Section 2.3.

The main advantage of the nonlinear sensitivity approach is its simplicity.
There are no major new analysis codes to be written, just a small amount of
programming to evaluate the objective and constraint functions. With the ap-
propriate design software to manage the construction of the approximate sensi-
tivities it is then possible to build the analysis codes into a design system very
rapidly.

The direct sensitivity approach also has a big advantage when the objective
function comes from a least-squares minimisation problem, in which case it has

the form
:%Z(fn( ) an)Qa

where f,(U) is some nonlinear function of the flow variables, such as the pressure
at a particular surface point, and f,o is the target value for the design.
Linearising about a base solution U, gives

23S (U0~ fuo + X ((U0) ~ fuo) T+ z( )

n

where U is the flow perturbation. Putting

U= Z .az,
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then gives
ol 01
I~ ] - ~i 1 P u-a— ~i~ iy
0+;3aia+z%6ai8ajaa7
where o1 o1, dU
8ai = ; (fn(UU) - nO) Wdai,
and

P _ 5~ (06 dUY (04 dU
80@804]- N n oU dozi oU daj )

Thus, the direct sensitivity approach gives both the gradient and the approxi-
mate Hessian of the least-squares objective function [8,21,22, 23], enabling the
approximate quadratic function to be minimised by solving the linear equations

0’ oI
Zaaiaaj % + 8ai_

J

0.

The main disadvantage of the nonlinear approach is its cost when the number
of design parameters is large. This is why it is important that the designer
exercises good judgement in limiting the number of active design parameters.

Another way of reducing the computational cost is to use coarse computa-
tional grids for the purpose of evaluating approximate sensitivities. Starting
with the fine grid solution U, a coarse grid solution U, could be defined by
interpolation onto the coarse grid. Defining the coarse grid residual vector as

Rc - Fc(Uc(]a a)a
the coarse grid equations defining perturbed solutions would be
F.(U.(a+Aa),a+Aa) = R..

The purpose of the residual vector on the r.h.s. of this equation is to ensure that
U.=U,, when Aa = 0.
The approximate sensitivities can then be obtained with the same one-sided
approximation as before,
dI I (U (a+eper), aterer) — I (Uo(a), @)

~
~

dozk €L

3.5.2 Linear analysis

Mathematically, the simplest form of linear analysis is equivalent to the nonlinear
analysis in the limit as ¢, — 0. If we define U, to be the sensitivity of U
to changes in the k'® design parameter, then linearising the nonlinear discrete
equations yields
OF — oF
—— Ui+ -—=0.
ou " oy
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This can be solved, directly or iteratively, to obtain U, for each design pa-
rameter. The total derivative of an objective function with respect to the &
design parameter is then given by

a0l = oI

dOék N oU et 8ak '

There are also linear methods in which the original nonlinear partial differ-
ential equation is linearised first, and then discretised. These do not have any
particular advantages over the approach above, starting with the nonlinear dis-
cretisation and then linearising. Indeed, there are some disadvantages in that it
can be harder to understand how best to treat the perturbations to the boundary
conditions.

The big disadvantage of the linear methods compared to the nonlinear meth-
ods is the need to develop an entirely new analysis code to solve the linear
perturbation problem. In CFD applications, the task of linearising the discrete
Navier-Stokes equations together with the turbulence modelling is at best te-
dious and error-prone, although automatic differentiation software may be very
helpful.

In CFD applications, the cost of solving the linear system of equations is com-
parable to the cost of solving the nonlinear system, so there are no computational
savings from using the linear approach. The one exception to this is an unusual
turbomachinery application in which one designs a blade row with a sinusoidal
circumferential variation in camber with the aim of producing a corresponding
pressure variation cancelling that produced by a single large pylon. In this case
the nonlinear analysis must be performed for the full annulus whereas the linear
analysis can be performed using complex variables on a single blade passage with
a complex phase shift between its two periodic boundaries [21, 22, 23].

In structural applications the linear approach may be much cheaper, partic-
ularly if the nonlinear equations are solved by a Newton-Raphson method which
involves the computation of the LU decomposition of the matrix g—g.

As with the nonlinear sensitivity approach, it is possible to reduce the com-
putational cost of the linear analysis by using coarser grids.

3.5.3 Adjoint methods

The simplest form of the adjoint approach starts from the linear equations above,
and then eliminates U to obtain [10, 9]

dI oI (ap)l OF oI

doy  OU\IU) Oy Doy’

This can then be written as

dI_ yrOF | OT
aak aak’

doy,
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where the vector V satisfies the equation

T T
(3_1*") v (ﬂ) —o.
oU oU

The great advantage of this approach is that one only needs to solve a single
finite difference equation to get the sensitivities of I with respect to all of the
design parameters. This is because the same solution V' is used for each value
of k. The only additional cost for each design parameter is the computation of
gTZ; and a‘%, which is inexpensive, and the dot product VTng'; which is even
cheaper.

The main drawback of the adjoint approach is that a separate adjoint equation
must be solved for each objective function or constraint function. Hence, in a
highly constrained design in which the number of active constraints is comparable
with the number of active design parameters, there is little to be gained from
the adjoint approach.

A second weakness of the adjoint approach is that there is no simple way
in which to compute the Hessian matrix §°1/da;0a; even when the objective
function comes from a least-squares minimisation problem. Instead, the gradient-
based optimisation methods must construct an approximation to the Hessian
matrix using information about the variation in the gradient at different points in
the design space. In addition, such methods usually determine a search direction
and then find the optimum along this direction using a line search algorithm.
Both of these aspects result in more steps in the optimisation procedure than are
required when for the direct sensitivity approach using its approximate Hessian.

The label ‘adjoint’ comes from the alternative treatment in which one starts
with the linearised partial differential equation and converts the linear sensitivity
of the objective function into an equivalent form involving the solution of the
adjoint partial differential equation with appropriate boundary conditions [19].
This can then be discretised and solved numerically [2,3, 4,14, 15, 16, 20, 24].
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4 Other related topics

4.1 Manufacturing considerations

Reducing the cost of manufacturing is a major concern in the aerospace industry
today. Many years ago it might have been the case that a design team would
aim to design the best possible product, and then a manufacturing team would
face the task of trying to fabricate the product. Nowadays, the design team is
much more aware of the manufacturing implications of their design decisions.

In preliminary design, the cost/weight/strength tradeoffs of using different
materials may be considered through integer optimisation by assigning each ma-
terial a unique integer value.

In detailed component design, sensitivity analysis could reveal the probable
performance deterioration due to manufacturing tolerances. This information
could then be used in considering the cost/benefit tradeoff in using more expen-
sive manufacturing techniques to reduce the manufacturing tolerances.

4.2 Risk management

Aerospace companies invest huge amounts of money in developing new aircraft
and new aeroengines. They are also competing fiercely to reduce the product
development cycle and deliver a new product to customers as quickly as possible.
In this climate, project managers are very concerned with risk management,
trying to minimise the risks in developing a new product, avoiding problems
which might seriously delay the project. However, at the same time there is still
the goal of developing improved products and so some level of risk is inevitable.

In deciding where to focus development effort, sensitivity analysis can reveal
the improvement in overall system performance due to a possible improvement
in a particular component. Engineering judgement gives the likely development
cost to achieve this improvement in the component, and the probability that,
despite everyone’s best efforts, the improvement cannot be achieved. With this
information, the project management can focus development effort on those areas
which offer the greatest potential benefit for the lowest development cost and with
the lowest level of risk.

4.3 Strategic research planning

Large aerospace companies have large research budgets, and an important prob-
lem is deciding on the relative importance of different research areas. One con-
sideration is the relative costs and benefits of technological advances in different
areas. For example, in military aircraft one might consider the merits of reducing
the weight of the avionics by 50% compared to the introduction of a new com-
posite material weighing 10% less than the current one. In the turbomachinery
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context, one might consider the benefits of improved CFD modelling leading to
improved turbine film cooling, compared to the development of a new alloy for
the turbine blade which would also allow an increase in the flow temperature.
In each case, sensitivity analysis can give the overall system benefits from the
possible technological advance. Engineering judgement is needed to assess the
likelihood of the technological advance, and its cost. From this, rational decisions
can be made about how best to spend one’s research budget.

4.4 Distributed and parallel computing

Distributed computing on multiple workstations, and parallel computing on
shared-memory and distributed-memory multiprocessors, is the underlying tech-
nology which makes an integrated design system possible by providing the com-
putational resources necessary to achieve acceptable execution times. Determi-
nation of approximate linear sensitivities through the computation of multiple
perturbed nonlinear solutions is an ideal task-parallel application, in that each
calculation is independent of the others and so they can all be executed in parallel
with one on each workstation.

If some calculations using very fine computational grids will take too long
if executed on a workstation, or require too much memory, then they are good
candidates for execution on a multiprocessor system using a data-parallel ap-
proach in which the computational domain is divided into a number of pieces,
each running on a different processor with extensive communication between all
of the processors.

Companies with very large distributed-memory parallel computers (such as a
128-processor CRAY-T3D) might well choose to pursue both approaches at the
same time, executing 16 sensitivity calculations simultaneously with each one
using 8 processors. This would probably be much more efficient than carrying
out the 16 sensitivity calculations one after another, with each one using all 128
processors.
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