
JOURNAL OF AIRCRAFT
Vol. 36, No. 2, March-April 1999

Wake Integration for Three-Dimensional Flowfield
Computations: Theoretical Development

Michael B. Giles*
Oxford University, Oxford OX1 3QD, England, United Kingdom

and
Russell M. Cummingst

California Polytechnic State University, San Luis Obispo, California 93407

This paper examines the analytical, experimental, and computational aspects of the determination of
the drag acting on an aircraft in flight, with or without powered engines, for subsonic/transonic flow.
Using a momentum balance approach, the drag is represented by an integral over a crossflow plane at
an arbitrary distance behind the aircraft. Asymptotic evaluation of the integral shows the drag can be
decomposed into three components corresponding to streamwise vorticity and variations in entropy and
stagnation enthalpy. These are related to the established engineering concepts of induced drag, wave
drag, profile drag, and engine power and efficiency. This decomposition of the components of drag is
useful in formulating techniques for accurately evaluating drag using computational fluid dynamics cal-
culations or experimental data.

Nomenclature
a - speed of sound
C — area of integration
cp — specific heat at constant pressure
cv — specific heat at constant volume
D = drag (force parallel to freestream direction)
E = rate of energy input as a result of fuel

combustion
F = aerodynamic force vector
H = stagnation enthalpy
y, k = grid indexes
L = lift (force perpendicular to freestream

direction)
n = surface normal unit vector
p = pressure
q = flow speed, = u2 + v2 + w2

R = universal gas constant
r - radius in polar coordinates
5 = surface of integration
s - entropy
J7oo = freestream velocity vector
u = velocity vector
u, v, w = velocity components in x, y, z directions,

respectively
x, y, z = Cartesian coordinate system
a = computational cell index; angle of attack
^ = computational cell centroid
F = circulation
y = vorticity
f = streamwise vorticity, distributed line source
6 = angle in polar coordinates
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p = density
cr = crossflow function, =(32(f)/dy2) + (32(f>/dz2)
T = stress tensor
4> = velocity potential
t// = stream function

Introduction

T HE two most important aerodynamic quantities affecting
an aircraft in flight are lift and drag. Nearly all aerody-

namic analysis is an attempt to maximize the lift for a given
amount of drag, or conversely to minimize the drag for a given
amount of lift. The analysis of these quantities for various
aircraft configurations forms the basis of most aerodynamic
research. Because of this, reliable methods to compute these
forces from available experimental or computational data are
essential.

Traditionally, aerodynamic forces have been measured in
wind tunnels using strain-gauge balances. This approach is
very good for measuring the lift, but the drag of a typical
aircraft at reasonable angles of incidence is often an order of
magnitude less than the lift, and therefore, more difficult to
measure. In particular, the presence of the model sting or sup-
port makes accurate drag measurement very difficult using this
approach.

This led to attempts to measure drag using techniques based
on a control volume approach. The simplest application of this
is to measure the momentum deficit parallel to the freestream
within the wake of a model. The main drawback to this ap-
proach, however, was the need to perform the wake survey
throughout the downstream flowfield, as well as various dif-
ficulties associated with the presence of the wind-tunnel walls.
An approach developed by Betz1 modified the integral for-
mulation to take into account the presence of the wind-tunnel
walls, and reduced the area of integration to the region directly
behind the model. Unfortunately, Betz did not include terms
that would account for the drag resulting from vortices, an
important aspect of measuring the drag of a finite span wing.
His approach was also found to have certain measurement dif-
ficulties, as shown by Maull and Bearman.2 In an attempt to
correct some of the problems in Betz's approach, Maskell3

showed that an integral formulation could be obtained that
would allow the measurement of both profile and vortex drag,
both of which could be obtained from measurements in a re-
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duced region behind the aircraft. Since that time, various im-
provements to the Betz-Maskell model have been made for
experimental measurements of drag.4'5

As computational fluid dynamics (CFD) has matured over
the years, it has become a goal of CFD researchers to be able
to predict aerodynamic drag from numerical simulations. Early
attempts at doing this were usually met with frustration, as
most approaches involved integrating the pressure and skin
friction over the surface of the body to calculate forces (the
computational equivalent of force measurement in the wind
tunnel). Surface integration has met with difficulties because
of the need to approximate the curved surface with flat facets,
and the difficulty in accurately predicting the skin friction. This
has led various researchers to attempt to apply the experi-
mental wake integral methods to CFD computations. Methods
involving wake integration have been shown to be reasonably
accurate at predicting profile and vortex drag.6'7 An equivalent
lifting-line approach by Mathias et al.8 has also been shown to
be able to accurately compute induced drag.

The problem with the current approaches used to compute
aerodynamic forces from CFD solutions is that various terms
are usually neglected. These terms are known to be small far
downstream of the aircraft, but in CFD calculations, the wake
becomes increasingly diffuse downstream because of numeri-
cal smoothing, and so the integral methods need to be applied
much closer to the aircraft. This paper looks carefully at the
drag wake-survey methods, and comes to an improved un-
derstanding of the importance of the vari6us integrals and the
terms that are often neglected. The first approach is to take the
crossflow plane to be far downstream of the aircraft, so that
all flow components can be assumed to be approximately in-
variant in the freestream direction. This leads very simply to
an integral form of the drag showing the different contributions
caused by streamwise vorticity and variations in entropy and
stagnation enthalpy. Next, an analysis is performed for a plane
that is much closer to the aircraft, and at which there is still
significant flow variation in the freestream direction. The same
drag result is eventually obtained after careful analysis and
appropriate asymptotic approximations. The purpose of this
section is to relate the current analysis to the work of Refs. 1,
3, 4, 6, and 8-10. In practice, experimental measurement
planes are always in this near-field region and there has been
considerable discussion in the literature regarding the terms
that should be included in the drag computation. It is shown
in the analysis presented here that the terms resulting from the
potential flow component of the velocity field cancel. A con-
nection is also shown between the control volume formulation
and the classical lifting-line theory of induced drag, showing
that the current analysis reduces to the classical analysis under
certain limiting conditions. The final sections discuss the ap-
plication of the theory to the determination of drag from ex-
perimental measurements or computational results, including
two analytic test cases.

Control Volume Formulation
The combined aerodynamic force, F, can be written as an

integral over the surface of an aircraft as

(1)F = (-pn + T-n) dS

Using the integral form of the momentum equations, the force
can also be expressed as an integral over the surface of any
control volume enclosing the aircraft:

' = I l-pn -
JS

p(u*ri)u + T-n] dS (2)

If the far-field velocity relative to the aircraft is Ux aligned
with the jc-coordinate direction, then an equivalent form of the
force integral is obtained using the conservation of mass:

- p(u-n)(u - UJ + T-n] dS (3)F = [~(p

The control volume is now taken to be a cube aligned with
the (x, v, z) coordinate axes, and with the downstream face a
fixed distance downstream of the aircraft. As the size of the
cube increases, the contribution to the drag component of the
integral from the other five faces tends to zero. If the control
volume surface is sufficiently far from the aircraft, the viscous
stress terms may be neglected, and the final expression for the
forces becomes

L= - puw dy dz

— p~ + pu(u — dy dz

(4)

(5)

These equations are the common starting point for the de-
velopment of methods of estimating the drag from experi-
mental data.11 It is interesting to note that Lighthill11 preferred
this formulation of the control volume integral for drag be-
cause the integrand only contains departures of flow quantities
from their freestream values. This feature of the formulation
may be very important when making force calculations using
CFD solutions, where the far-field boundaries may not have
freestream conditions. While the forces are often obtained di-
rectly by mounting the aircraft model on a sting and measuring
the force using a balance, the drag is substantially smaller than
the lift. This direct measurement of drag is more prone to
measurement error, and so methods based on the control vol-
ume approach are often more accurate.

When using CFD methods, the aerodynamic forces on the
aircraft can be evaluated by direct numerical approximation of
the integral in Eq. (1), but even here there are benefits in using
the drag integrals that result from the crossflow plane analysis.
These include elimination of spurious drag because of numer-
ical smoothing; potentially faster steady-state convergence of
the drag estimate in time-marching computations, avoidance
of possible errors because of far-field boundary conditions, and
improved physical insight into the sources of drag for a par-
ticular aircraft configuration. These aspects are all discussed
later in their relevant sections.

An additional integral that will be important for powered
engines comes from the principle of energy conservation. If
thermal diffusion and work resulting from viscous stresses are
both negligible in the far field, then energy conservation over
the control volume surface gives

(6)E= p(ww)A//(

where A// = H — Hx. Taking the control volume to be the
same cube as before leads to the integral

E = pwA// dy dz (7)

evaluated on the downstream crossflow plane.

Far-Field Analysis
Sufficiently far downstream of the aircraft, the flow is ap-

proximately invariant in the x direction. First, we consider a
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flow in which there is no streamwise vorticity. In this case, the
flow velocity is purely in the x direction:

ii = [U(y9 z\ 0, 0] (8)

and the drag force is

w2) dy dz (17)

and so, p(y, z) = POC, to satisfy the y and z components of the
momentum equations. Using the definitions of the stagnation
enthalpy and entropy, with the freestream entropy defined to
be zero, it follows that

p = PS, exp(-s/cp)

u = [Ul exp(s/cp) + 2[H - Hx

These values can then be used to obtain the drag as

D = - pu(u - Ux) dy dz

(9)

(10)

(11)

If the entropy and perturbation in stagnation enthalpy are both
small, then,

Ul + Ul — + 2&H - 2H^ —

1 +
AH
Ul R

(12)

and neglecting terms that are G[s2, s&H, (A//)2], Eq. (11) be-
comes

D 1 dy dz (13)

In inviscid flow without powered engines, A// is zero, and
this reduces to the standard integral for transonic wave drag,
first derived by Oswatitsch.12 In viscous flow without powered
engines, AH is usually still negligible. The increased entropy
associated with the drag now comes from the shocks and dis-
sipation in the boundary layer and wake, and so the drag in-
tegral is the combination of what is usually referred to as wave
drag and profile drag. In the outflow from powered engines,
AH is positive, corresponding to the work performed by the
engine. The entropy will also be positive as a result of the
inevitable thermodynamic cycle inefficiency and aerodynamic
losses in the engine.

We now consider a flow with uniform entropy, stagnation
enthalpy, and streamwise vorticity g(y, z). The velocity field
now has the form

, z), w(y, z)] (14)

To leading order, the density is uniform and mass is conserved.
It is therefore possible to define the crossflow velocity com-
ponents in terms of a crossflow stream function, which must
satisfy the stream function/vorticity equation:

(15)

When the entropy and stagnation enthalpy are both uniform,
the pressure is related to the flow speed, yielding:

Ap « -Tp^v2 + w2) (16)

The simple physical interpretation of this equation is that
the moving aircraft is doing work on the surrounding air at the
rate DUX, which, in its wake, must equal the rate at which it
is leaving kinetic energy associated with the crossflow.

It is possible to leave the integral in this form, but it is more
convenient to express the velocity components in terms of the
stream function and integrate by parts to obtain the following
result, first obtained by Maskell3:

// *//£ dy dz (18)

The lift integral [Eq. (4)], may also be simplified (see Ref. 13
for details of the development), resulting in:

dy dz (19)

There are many attractive features to these integrals: the
vorticity is nonzero in only a limited area of the crossflow
plane, so that the integration can be performed over a finite
region; the values of these integrals are fairly insensitive to
the streamwise location of the plane on which they are eval-
uated; and they clearly show the relationship between this
component of drag and the shed vorticity associated with the
lift on a finite span aircraft, the induced drag of the classic
lifting-line theory. These relationships are further developed in
a later section and in Ref. 13.

For a flowfield that has variations in the entropy and stag-
nation enthalpy in addition to streamwise vorticity, the two
analyses can be approximately combined by adding the re-
spective drag components, neglecting higher-order terms, to
obtain

D « D, + D, + D3 (20)

where

Dl = P" I I R 6y dZ' °2 = ~P~ I I
(21)

dy dz

This equation corresponds to the results in Ref. 10, if D3 is
kept in its crossflow kinetic energy form, as in Eq. (17).

In an experiment or computation, each of the three integrals
will be a weak function of the streamwise position of the plane
on which they are evaluated. While moving downstream, D2
will approach a constant value, —E/UX, where E is the rate of
energy addition in the engines. D3 will decay very slowly to
zero as the streamwise vorticity diffuses, until the vorticity
shed by one wing cancels the vorticity of the opposite sign
shed by the other wing. In a CFD computation, because of
numerical smoothing and coarse grids in the farfield, this will
take place within the first 100 aircraft lengths; in reality it
would take much longer. As D3 decreases, there is a corre-
sponding increase in D,, because the total drag remains con-
stant. In fact, the sum of the three components will be ap-
proximately constant well into the near field of the aircraft.
This is fortunate because experimental measurements will usu-
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ally have to be taken in the near field. Also, if a detailed break-
down of the sources of drag in a CFD calculation is required,
it is best to evaluate the three integrals in the near field before
numerical smoothing causes a shift from D3 to D{.

Near-Field Analysis
In the near field, in which there are significant variations in

the x direction, the velocity field can be expressed using a
Clebsch decomposition as

u = V</> + V X (22)

where if/ is now a vector function, which satisfies the equation

V>=-f (23)

with f being the vorticity vector. It is convenient to split i/f
into the streamwise part i/ri and the remainder, so that

u = V(f> + V X + uw (24)

The term uw associated with the transverse vorticity is nonzero
only in the wake. Its dominant component is in the streamwise
direction, and so it corresponds to the velocity defect related
to the variations in entropy and stagnation enthalpy, as dis-
cussed in the previous section. The link between transverse
vorticity, entropy, and stagnation enthalpy is also explicit in
Crocco's theorem for steady flow. The drag caused by this term
can be written as a function of stagnation enthalpy and entropy
variations, as before. Removing this term, we now concentrate
on the drag associated with the velocity field.

Considering the pressure as a function of the flow speed, it
was shown in Ref. 13 that

dp 1
(25)

Differentiating this term yields

<fp dp _ _ J_ dp _ _p_
" 2 2 ~ 2 ( *d(q2)2 " 2 d(q2) ~ 2a2 d(<?2) ~ 4a

The change in freestream speed is

A(42) = (f/oo + Aw)2 + v2 + w2 - Ul (27)

and so performing a second-order Taylor series expansion
about freestream conditions gives

Ap « - iAoA($2) + (p,/8c2)[A(<?2)]2

~ -TP~[v2 + w2 + 2^/ocAw + (1 - M2)(Aw)2] (28)

To first order, the corresponding change in density is

Ap « (Ap/fl2) « - (pxUJai)ku (29)

and so

pwAw ^ POC^AW + poc(Aw)2 + Apf/ccAw

« poot/ocAw + p^l - M2)(Aw)2 (30)

Putting these into the drag integral, gives

;2 + w2 - (1 - M2)(Aw)2] dy dz (31)

This equation corresponds to the results of Ref. 10, when there
is no variation in entropy or stagnation enthalpy. Following

the approach of Maskell,3 using a crossflow velocity potential,
<£, and integrating by parts, gives

dydz - - 4>(T dy dz

- M2)(Aw)2 dy dz (32)

The first integral is exactly the same as what appeared in
the far-field analysis. The second integral appears in the anal-
yses of Maskell3 and Wu et al.,4 but is usually ignored in prac-
tice on the grounds that or is small; this is essentially just the
far-field argument used in the previous section. The third in-
tegral has been derived previously by Betz1 for incompressible
flow, and by Lock9 and van der Vooren and Slooff10 for com-
pressible flow. Again, it is usually argued that this term is
negligible.

In fact, to leading order, the second and third integrals can-
cel. To prove this requires the use of the mass equation which,
to leading order, can be written as

do
— +
dx

From Eq. (29)

dp
dx

= 0

du_
dx

(33)

(34)

(35)

Hence, using integration by parts in both the y and z directions:

and so it follows that

(36)

Integrating this ordinary differential equation in the x direction,
with the boundary condition that both integrals tend to zero as
x —> oo, gives the final result that

I (fro- dy dz + I 1 0 - Af2)(Aw)2 dy dz = 0 (37)

Thus, this analysis shows that it is correct to drop the po-
tential flow term in Maskell 's3 analysis, and keep only the
terms resulting from the trailing axial vorticity and the entropy
and stagnation enthalpy variations, as derived in the previous
section. This result should not be surprising: in the absence of
any shed vorticity or variation in entropy or stagnation en-
thalpy, all flow quantities must approach freestream conditions
in the farfield, and so there must be zero drag. As a conse-
quence, the drag integral at any axial location in the near or
far field must be identically zero.

Incompressible Flow
The drag expressions need to be modified if the numerical

solution is obtained using an incompressible formulation, be-
cause variations in density and temperature may be negligible.
To accommodate this case, the entropy is related to the stag-
nation pressure and enthalpy as

Pa*

y A//
y- I HI

(38)
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Substituting this into the expression for the drag components
D! and D2, Eq. (21), yields

A + D2 - - ̂  I Ap0 dy dz - i p^ I I A// dy dz

Integrating by parts once gives

(39)

For Moo —> 0, assuming no significant enthalpy variations, Eq.
(39) becomes

Dl + D2 = - I I Ap0 dy dz (40)

which is the well-established result for incompressible flow.11

Connection to Lifting-Line Theory
In classical lifting-line theory, the wing is assumed to have

a high aspect ratio and a flat sheet of streamwise vorticity shed
behind it. The resulting drag caused by the shed vorticity is
given by14

fbll fb/2 fb/2
n ^ r(y0)y(y)D = ~~ 7~ ————— d^ dy° =4/77 J-*/2 J-*/2 :vo - y J-b/2

where

- y

Now consider the drag component, £)3, in Eq. (21):

dy dz

(41)

(42)

(43)

where the stream function satisfies Poisson's equation. The
general solution to this equation, subject to the boundary con-
dition that Vi// — > 0 as (y2 + z2) — » °°, is

11 = ~ 7Z I I £(y°' zo)log[(y - ya)- + (z - Zo)] dya dz0

(44)

where £ represents a distributed line source of strength y(y)
along ZQ = 0. The stream-function solution may be obtained by
integrating by parts, using the fact that the circulation goes to
zero at each wing tip, and taking the limit as z —» 0. The
resulting relationship for the induced drag is (see Ref. 13 for
details)

y(y)/(y)dy (45)

which corresponds to the drag integral from lifting-line theory
[Eq. (41)]. The lift per unit span is pxUxT(y), and so the total
lift is

L =
/•fe/2

J-b/2

T(y) dy (46)

L =
fb/2Ly

yy(y) dy (47)

This corresponds precisely to the lift integral derived earlier
for a general distribution of streamwise vorticity at the cross-
flow plane [Eq. (19)], for the case where the vorticity is con-
centrated into a vortex sheet.

Thus, in the case of a planar vortex sheet, the stream-
function-vorticity lift and drag integrals give the same result
as classical lifting-line theory. The advantage of the stream-
function-vorticity approach over the lifting-line theory is that
it is much more general in its ability to handle nonplanar trail-
ing streamwise vorticity, because of winglets, pylons, complex
boundary-layer separations, etc. The advantage of the lifting-
line theory is its extreme simplicity, and its ability to directly
prove that an elliptic lift distribution minimizes the induced
drag of a wing of fixed span and total lift.8

Experimental Applications
Experimental wake surveys have traditionally employed

four- or five-hole probes from which the static pressure, stag-
nation pressure, and all three velocity components are ob-
tained. Seven-hole probes are also being considered as a way
to obtain these properties. The generally accepted method for
computing induced drag based on such wake surveys is to
compute the streamwise vorticity by differentiating the veloc-
ity field using

(48)

This method of computing the streamwise vorticity can lead
to errors in the prediction of the induced drag because of the
differentiation of the discrete velocity measurements. One so-
lution to this problem involves curve fitting the velocity field
to obtain more accurate derivatives. An alternative approach is
to relate the crossflow vorticity to the local circulation, and
thus replace differentiation with integration.

For an arbitrary region, C, in a crossflow plane, the area
integral of the streamwise vorticity is equal to the circulation
around the boundary of C:

£ dy dz = Cb (v dy + w dz) (49)
JC JdC

Therefore, given the values of the crossflow velocity compo-
nents, Y,-,* and WM, at a uniform grid of measurement points in
a crossflow plane (as shown in Fig. la), the streamwise com-
ponent of vorticity in each measurement cell can be approxi-
mated by

£•+1/2.*+1/2 = r,-+1/2,A+1/2/AyAz

where the circulation is defined by

(50)

+ w,,,)Az (51)

For an arbitrary distribution of vorticity, the stream function is

- yo)2 + (z- Zo)2] dy() dz0

(52)
» z> = ~ ^~ I I &y*
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Fig. 1 Crossflow plane grids for the evaluation of drag integrals:
a) Cartesian, b) unstructured, and c) structured.

Approximating the integral using the formulation first de-
scribed by Lamb,15 gives

K ^ 2

io + - - j } A/z /

+ (*b + \ - *) Ar j

r /
<fe* = ~ 7Z 2 r;o+"**>+ "i lo£ ( Jo + ~ -^ >0.*b L \ z

(53)

A/

Finally, the drag integral can be approximated by summing
over each cell to give the induced drag as

D =
jjc

(54)

In the absence of powered engines and any significant level
of surface heat transfer, there is negligible variation in stag-
nation enthalpy. Therefore, the entropy can be deduced directly
from the stagnation pressure and the corresponding drag in-
tegral is easily approximated.

In wind-tunnel experiments there is usually a sting support-
ing the model aircraft. Some CFD computations also model
the sting to more accurately reproduce the experimental results
and thereby deduce wind-tunnel corrections for the presence
of the sting. Assuming that the sting is aligned with the free-
stream flow, the entire far-field control volume analysis can be
repeated to include the presence of the sting. The drag com-
ponents, D{ and D2 (resulting from entropy and enthalpy var-
iations, respectively), are unchanged, apart from the fact that
the integration is over the entire crossflow plane, except for
the cross section of the sting. The only change to the induced
drag integral, D3, comes from the integration by parts, express-
ing the drag as a product of the stream function and vorticity:

D3 = p« I (v2 + w2) dy dz = p, I W dy dz +

Here, Ts is the circulation around the sting, and i/r, is the value
of the stream function on the sting; for flows with symmetry
about the plane y = 0, both of these are zero, but for flows
with sideslip these terms may be nonzero.

The other complication is the presence of the sting in cal-
culating the stream function associated with the vorticity. The
simplest approach is to treat the sting as a region of flow with
zero crossflow velocity. Thus, the surface of the sting becomes
a vortex sheet, whose strength is equal to the tangential ve-
locity of the flow around the sting. Equation (18) therefore
remains valid if the contribution from the vortex sheet is in-
cluded; the lift integral [Eq. (19)], is also unchanged if the
vortex sheet contribution is included.

CFD Applications
For CFD calculations using unstructured grids, there is no

crossflow plane in the computational grid, and so the most
natural approach for the evaluation of the crossflow drag in-
tegrals is to adopt techniques from flow visualisation. A cross-
flow cutting plane can be defined orthogonal to the freestream
flow and at a fixed distance downstream of the aircraft. The
grid nodes on this cutting are defined by the intersection of
the plane and the edges of the three-dimensional grid, and all
flow variables can also be defined at the new grid nodes by
linear interpolation along the cut edges. The nodes of the cut-
ting planes are connected into triangles, based on the relation-
ship of the cutting plane to the original cut cells. The full
details for unstructured grids composed of tetrahedra, prisms,
pyramids, and hexahedra are given by Giles and Haimes.16 An
example of the resulting unstructured triangular grid is shown
in Fig. Ic.

Once the triangular cutting-plane grid has been constructed,
the evaluation of the drag integral is quite straightforward. The
circulation around a triangular cell is

(56)
edges

(55)

where v and w are the average velocity components on an
edge, and Ay and Az are the changes in y and z along the edge
(going around the cell in a counterclockwise direction as
viewed from x — °°). The stream function at an arbitrary node
is given by

^=-•^-^^13 logt(^ - y?f + (zj - Zp)-] (57)

where j>p, z? are the coordinates of the centroid of the cell. The
induced drag integral is then obtained from a summation over
all of the triangular cells:

(58)

where i/>a is the average of the stream-function values at the
three corner nodes.

Two refinements to the preceding formulation reduce the
computational cost of evaluating the drag. The first addresses
the problem that each stream-function value requires a loop
over all of the cells in the crossflow plane. Therefore, the total
computational cost is proportional to the square of the number
of cells, which can be large for very fine grids. However, in
general, only a few cells have significant levels of circulation,
and it is only these cells that are needed for an accurate drag
evaluation. Substituting Eq. (57) into Eq. (58) gives

(59)
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where

1 -
1277'

(60)

with the j summation being over the three nodes at the corners
of cell a. The drag summation [Eq. (59)] can be restricted to
those values of a and /3, for which the magnitudes of Fa and
F0 exceed some minimum threshold. Setting a threshold can
give a large reduction in the computational cost; detailed dis-
cussion of this concept are presented in Ref. 17.

The second refinement is for the common case in which the
CFD computation is performed for a half-plane that is sym-
metric about y — 0. Rather than constructing the other half of
the flowfield and then applying the preceding procedure, it is
simpler to account for the image vorticity in defining the
stream function as

-log[(;y,-f (61)

For calculations on single- and multiblock-structured grids,
it is unlikely that there exists a suitable grid coordinate plane
that is at a uniform streamwise distance downstream of the
aircraft. One option is to use the same cutting plane approach
that was just presented, creating an unstructured triangular grid
on the crossflow plane, with data interpolated along the cut
edges of the structured grid. Further details about the appli-
cation methods for CFD calculations can be found in Ref. 13.

The next issue is the interpretation of the values obtained
from the drag integrals. Using CFD methods, it is possible to
directly evaluate the aerodynamic force on the aircraft using a
numerical approximation of the surface integral of Eq. (1).
Almost all CFD methods are conservative, so that if the surface
force integration is performed in a manner consistent with the
CFD discretization of the cells with surface faces, then it is
possible to sum over a very large number of computational
cells surrounding the aircraft. Then it would be possible to
deduce that the numerical surface force integral is exactly
equal to that which would be obtained by a numerical force/
momentum integral corresponding to Eq. (3), applied on the
enclosing control surface. In the far field, numerical smoothing
effects, such as the real viscous effects, are very small. There-
fore, the far-field asymptotic analysis remains valid, showing
that the numerical force integral on the aircraft surface can be
equated to the drag integrals on the crossflow plane.

This raises the question of what is to be gained from eval-
uating the drag using the crossflow plane integrals rather than
the direct surface integration. There are, in fact, four benefits
in using the crossflow integrals:

1) In subsonic Euler calculations, the far field drag analysis
shows two contributions. The one resulting from the stream-
wise vorticity, arising as a consequence of the spanwise lift
distribution, is physically meaningful and should have very
nearly the correct physical value because Euler calculations
give relatively accurate lift predictions. The second contribu-
tion resulting from entropy variations is almost entirely spu-
rious. Physically, there should be a slight level of entropy rise
because of some early diffusion of the shed vorticity, but in
the CFD computation almost all of the entropy will be a result
of numerical smoothing in regions with high flow gradients
and inadequate grid resolution, particularly near the leading
edge of the wing. As a consequence, a more accurate predic-
tion of the real aircraft drag is obtained by entirely neglecting
the entropy drag integral, keeping only the induced drag
streamwise vorticity integral. For transonic Euler calculations
with shocks, and for Navier—Stokes calculations with entropy
generation in the boundary layer, it is much harder to distin-

guish between physically correct entropy generation and spu-
rious numerical generation, and so it may not be possible to
apply such a correction.

2) If the boundaries are not sufficiently far from the aircraft,
or if the boundary conditions are not sufficiently accurate, e.g.,
do not incorporate the far field correction caused by the lift on
the aircraft, then there may be a very small error in the effec-
tive freestream flow angle. This will produce only a small error
in lift, but can produce a more significant error in drag because
the effective rotation of the lift vector means that the lift will
contribute an apparent drag component of magnitude LA a.
This problem is totally avoided by use of the downstream
plane representation of the drag. The streamwise component
of vorticity is only very slightly altered by a slight error in the
freestream flow angle, and so the relative drag error will be
extremely small.

3) When there are no powered engines, or when the stag-
nation enthalpy variation is sufficiently mixed so that it can be
equated to the energy input to the engines, the drag depends
solely on the entropy variations and the streamwise vorticity.
These quantities change very little during the final stages of
time-marching convergence to the steady-state solution. There-
fore, the drag integral based on the downstream crossflow
plane will converge to the final steady-state value quicker than
the force integral over the surface of the aircraft. In practical
CFD computations, this should allow fewer computational it-
erations to be required to obtain a given level of convergence
of both the lift and drag.

4) Even if there were no quantitative advantages in express-
ing the drag in terms of the crossflow integrals, there is still a
major qualitative benefit. Engineering analysis is simply one
step in the process of engineering design: creating a better
product. From this design viewpoint, it is important to not only
know the value of overall drag, but to also understand the
causes of the drag so that design decisions can be made to
accomplish drag reduction. For example, a high level of in-
duced drag for a given span and overall lift would suggest a
poor spanwise lift distribution, which might be improved by
changing the spanwise variation in the angle of attack or re-
cambering certain parts of the wing. Alternatively, a large en-
tropy drag might be caused by either poor wave drag because
of shocks or poor profile drag because of a boundary-layer
separation. This would therefore suggest areas of further study
of the detailed CFD computation.

Evaluation of Drag Computations
Two test cases are used to validate the numerical discreti-

zation and programming implementation of the induced drag
integral. The first is the wake behind an elliptically loaded
planar wing. Using a unit semispan, the spanwise lift distri-
bution- is taken to be F(0) = sin 9, where the spanwise coor-
dinate is y = cos 9 (see Fig. 2a). The crossflow velocity field
in the wake is then given by

v(y, z) = -
277 J0 (J

- cos 9 d9 (62)(y ~ cos 0)- + r

(y - cos 9)2

and the exact value for the drag is 77/8, assuming unit free-
stream density.

Using a Cartesian grid of size 20 X 40 for the region 0 <
y < 2, — 1 < z < 1, with clustering to accurately capture the
vortex sheet and the large velocity gradients around the wing
tip, as shown in Fig. 2b, the error from the numerical induced
drag integral is only 1.1%. With a uniform Cartesian grid of
the same size over the same region, as shown in Fig. 2c, the
error increases to 15%, showing the effect of the decreased
wake resolution.
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a)

c)
Fig. 2 Analytic test case no. I: wake of an elliptically loaded
planar wing: a) velocity vectors, b) stretched grid, and c) uniform
grid.

Fig. 3 Analytic test case no. 2: wake of a nonaligned engine: a)
velocity vectors, b) stretched grid, and c) uniform grid.

The second case is the wake behind an engine, whose ex-
haust is not aligned with the freestream, as shown in Fig. 3a.
Using polar coordinates, and assuming a unit radius for the
engine, the crossflow velocity field is

C 0, r < 1
v = sin 26

-1, r< 1
cos 20 (64)

-, r > 1

By integrating the crossflow kinetic energy, the exact value for
the drag is found to be TT, again assuming a unit freestream
density.

Using a polar grid of size 20 X 40 for 0 ^ r ̂  2, as shown
in Fig. 3b, with clustering to accurately capture the vortex
sheet at r = 1, the error from the numerical induced drag in-
tegral is only 1.4%. With a uniform Cartesian grid of the same
size over the region 0 ^ y ^ 1.5, — 1.5 ^ z ^ 1.5 (see Fig.
3c), the error increases to 4.4%, again because of the effective
smoothing of the velocity discontinuity across the vortex sheet.

Applications of these concepts to a variety of CFD solutions
are performed in Ref. 17. The force integration method is ap-
plied to a variety of configurations, and the accuracy of the
resulting drag calculations is related to various computational
aspects, including grid type (structured or unstructured), grid
density, flow regime (subsonic or transonic), boundary condi-
tions, and the level of the governing equations (Euler or
Navier-Stokes).

Conclusions
Analytical, experimental, and computational aspects of the

determination of the forces acting on an aircraft in flight, with
or without powered engines, for subsonic or transonic flow has
been evaluated. Using a momentum balance approach, an in-
tegral over a crossflow plane at an arbitrary distance behind
the aircraft is used to compute the lift and drag of an arbitrary
aircraft configuration. Asymptotic evaluation of the integral
shows that the drag can be decomposed into three components
corresponding to streamwise vorticity and variations in entropy
and stagnation enthalpy.

Terms in the near-field formulation that have previously
been included in wake-integration formulas have been shown
to cancel, leading to a unification of the near- and far-field
formulations. The integrals are therefore related to the estab-
lished engineering concepts of induced drag, wave drag, pro-
file drag, and engine power and efficiency. The integrals are
also shown to be equivalent to the results of lifting-line theory
for a planar wing.

The decomposition of the components of drag is useful in
formulating techniques for accurately evaluating drag using
CFD calculations or experimental data. Suggestions have been
made to improve the crossflow plane integration from discrete
information by use of integration rather than differentiation.
These suggestions apply to both computational and experi-
mental applications. The crossflow plane evaluation of drag
may prove to be highly useful in conjunction with numerical
optimization schemes that are minimizing drag or maximizing
lift-to-drag ratio.
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