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Algorithm Developments for Discrete Adjoint Methods

Michael B. Giles¤ and Mihai C. Duta†

Oxford University, Oxford, England OX1 3QD, United Kingdom
Jens-Dominik Müller‡

Queen’s University, Belfast, Northern Ireland BT9 5AG, United Kingdom
and

Niles A. Pierce§

California Institute of Technology, Pasadena, California 91125

A number of algorithm developments are presented for adjoint methods using the “discrete” approach in which
the discretization of the nonlinear equations is linearized and the resulting matrix is then transposed. With a
new iterative procedure for solving the adjoint equations, exact numerical equivalence is maintained between the
linear and adjoint discretizations. The incorporation of strong boundary conditions within the discrete approach
is discussed, and dif� culties associated with the use of linear perturbation and adjoint methods for applications
with strong shocks are also examined.

Nomenclature
B = boundary condition projection operator
I.z/ = imaginary part of complex variable z

i =
p

¡1
J = nonlinear output functional, for example, lift
QJ = linear perturbation to functional
L = linearized discrete operator
R = nonlinear discrete residual operator
U = nonlinear variables
u = linear perturbationvariables
v = adjoint variables
® = design/sensitivity variable

Subscripts

? = orthogonal to boundary conditions
k = parallel to boundary conditions

Superscripts

.m/ = subiteration index
n = iteration index
T = transpose

Introduction

T HERE is a long history of the use of adjoint equations in op-
timal control theory.1 In � uid dynamics, the � rst use of ad-

joint equations for design was by Pironneau,2 but within the � eld of
aeronauticalcomputational� uid dynamics (CFD), the use of adjoint
equationsfor design optimizationhas beenpioneeredby Jameson3;4

and Jameson et al.5 for the potential � ow, Euler, and Navier–Stokes
equations. The complexity of the applications within these papers
has also progressed from two-dimensional airfoil optimization, to
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three-dimensional wing design, and � nally to complete aircraft
con� gurations.6¡8 A number of other research groups have also
developed adjoint CFD codes9¡13 using the same “continuous” ap-
proach in which the � rst step is to linearizethe originalpartialdiffer-
ential equations.The adjoint partial differentialequation (PDE) and
appropriateboundaryconditionsare then formulated,and � nally the
equations are discretized. Although this minimizes the memory re-
quirementsand the CPU cost per iteration,it requiresone to develop
an appropriateiterative solution procedure,and this may not give as
good a convergencerate as the original nonlinear code. In addition,
the debugging and validation of the adjoint code is complicated by
the lack of a suite of benchmark test cases.

The alternative “discrete” approach, which we use, takes a dis-
cretization of the Navier–Stokes equations, linearizes the discrete
equations, and then uses the transpose of the linear operator to
form the adjoint problem. This approach has been developed by
Elliott and Peraire,14 Elliott,15 Nielsen and Anderson,16 Anderson
and Bonhaus,17 Mohammadi and Pironneau,18 and Kim et al.19 The
main advantageof this approach, in our opinion, is that the code de-
velopment becomes a more straightforwardprocess. The lineariza-
tion of the nonlinear discrete equations can be performed either
manually or by automatic differentiation software, and the linear
code can be validatedby direct comparisonwith the nonlinearcode.
Similarly, because the adjoint code is obtained by transposing the
linear operator, it must yield exactly the same values for the lin-
earized objective function and so can be validated against the linear
code. For an excellent review of research on both continuous and
discrete adjoint design methods, see the paper by Newman et al.20

In this paperwe contribute to the developmentand understanding
of discrete adjoint methods in four respects:

1) We discuss the implementation of the adjoint code in a way
that minimizes the memory and CPU requirements and that can be
automated using automatic differentiation tools.

2) We develop an adjoint multigrid iteration procedure with pre-
conditionedtime steppingthat maintainsexact equivalencebetween
the linear and adjoint codes at all times during the evolution of their
respective solutions.

3) We present a detailed discussion of the imposition of strong
boundary conditions and the inclusion of viscous stresses in objec-
tive functionsand the consequencefor the formulationof the adjoint
code.

4) We present a numerical investigation indicating the potential
for problems with strong shocks.

This research forms part of the development of the HYDRA
suite of codes. The foundation is a nonlinear code that approxi-
mates the Reynolds averaged Navier–Stokes equations on unstruc-
tured hybrid grids, using an edge-baseddiscretization.The solution
procedure uses Runge–Kutta time-marching accelerated by Jacobi
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preconditioningand multigrid (see Ref. 21), with dual time stepping
for unsteady � ows.

The second code in the suite is the steady adjoint code, which is
based on a linearizationof the � ow equations around the nonlinear
steady-state � ow conditions. It is the development of this code that
is the primary subject of this paper.

The third code is for the linear analysisof unsteady � ows. This is
also based on a linearizationof the unsteady � ow equations around
the steady-state � ow conditions calculated by the nonlinear code.
Because of linearity, unsteady periodic � ows can be decomposed
into a sum of harmonic terms, each of which can be computed inde-
pendently.Thus, the linear harmonic code considers just one partic-
ular frequency of unsteadiness, resulting in a formulation in which
the purpose is to compute a complex � ow solution that represents
the amplitude and phase of the unsteady � ow.

The fourthcode,which is an extensionof the second,is the adjoint
counterpart of the linear harmonic code. The development and ap-
plication of these harmonic analysis and adjoint codes is discussed
elsewhere,22¡24 but in this paper the harmonic analysis code is used
with zero frequency to obtain steady linearized � ow results.

Discrete Adjoint Formulation
We start by considering the discrete nonlinear Euler equations

with a weak imposition of boundary conditions on solid walls
through the speci� cation of zero mass � ux through faces on the sur-
face. If the far-� eld boundary conditions are also imposed through
far-� eld � uxes, then the discrete system of equations that is solved
is of the form

R.U; ®/ D 0

whereU is the vectorof � ow� eldvariables,® representsone or more
designvariablesthat control the geometryof the airfoil orwing (and,
hence, the grid coordinates), and R.U/ represents the discrete � ux
residuals that are driven to zero by the iterative solution process.

If there is justonedesignvariable,then linearizingthe steady-state
equations with respect to a change in that design variable yields

Lu D f

where

L ´
@R
@U

; u ´
dU
d®

; f ´ ¡
@R
@®

The correspondingperturbation in a nonlinearobjective function
J .U; ®/ is

QJ D gT u C
@ J

@®

where

gT ´
@ J

@U

In the adjoint approach, this same quantity can be obtained by
evaluating

QJ D vT f C
@ J

@®

where the adjoint solution v satis� es the equation

LT v D g

The equivalence of this formulation comes from the identity

vT f D vT Lu D .L T v/T u D gT u

If there are many design variables (each giving rise to a different
vectorf ) and only one objective(yieldinga singlevectorg), then the
bene� t of the adjoint approach is that the objective sensitivity QJ can
be obtained following a single evaluation of v instead of separate
evaluations of u for each f .

Implementation of Adjoint Discretization
In the implementation,the linearoperator L is split into two parts,

Lu D Cu C Du (1)

The � rst part representsthe convective� uxes due to a Galerkin � nite
element discretization. The second part represents the smoothing
� uxes (to which the viscous � uxes are added later for the Navier–
Stokes equations).The operator D can be further broken down into
the product of two operators,

Du D V Gu

where G computes the gradientand a pseudo-Laplacianof u at each
node, in addition to u itself.

The correspondingadjoint operator is

L T v D C T v C DT v

with

DT v D GT V T v

indicatingthat theadjointgradientroutine is appliedafter the adjoint
smoothing routine, which at � rst seems counterintuitive.

At an even more detailed level, the action of each of the operators
C , V , and G is computedby a loop over all edges in the unstructured
grid. Therefore, takingCu as an example,we can express it as a sum
of elemental edge matrices whose only nonzeroentries corresponds
to the two nodes at either end of the edge,

Cu D
X

e

Ceu

The adjoint version of this is simply

CT v D
X

e

CT
e v

corresponding to a similar loop over all edges.
For the convective � uxes, it is easy to compute the edge product

C T
e v directly without explicitly forming the matrix Ce . The trans-

posed gradient operator GT is also easily formulated. The product
V T v presents greater dif� culties. Elliott and Peraire14 and Elliott15

precomputedand stored the nonzero entries in the elemental matri-
ces Ve and thenevaluatedthematrix–vectorproductsV T

e v. However,
the storage of these matrices for each edge requires a substantial
amount of memory. Anderson and Bonhaus17 avoided the mem-
ory cost by recomputing the matrices during each iteration, but this
greatly increases the CPU cost.

To minimize both the memory and CPU requirements, it is nec-
essary to calculate the edge product V T

e v directly, as with CT
e v. The

dif� culty is in working out how best to do this. One approach is
to use automatic differentiation (AD) software such as Odyssée,25

ADIFOR,26;27 or TAMC.28 In forward mode, AD software takes
the original nonlinear code and then uses the basic rules of lin-
earization to construct the code to evaluate Veu. In reverse mode, it
produces the code to calculate V T

e v; it may seem that this is a much
harder task, but in fact it is not. Furthermore, there are theoretical
results that guarantee that the number of � oating point operations is
no more than three times that of the original nonlinear code.29

Mohammadi and Pironneau used Odyssée to generate much of
his adjoint code,18 but a lot of hand-coding was still required. In
our work, we have written the adjoint code manually, but follow-
ing many of the techniques of AD. To simplify the expressions for
the partial derivatives,we chose to use the primitive variables (den-
sity, velocity, and pressure) as our working variables, rather than
the usual conservative variables. The equations are still in conser-
vative form so that this choice of working variables has no effect on
the � nal solution.

The memory requirements for the adjoint code are 20–30%
greater than for the nonlinear code and depend on the grid that
is used. The CPU cost per iteration is only 10–20% greater than for
the nonlinearcode, with the increased cost of evaluating the adjoint
residualspartiallyoffset by that the Jacobianfor the preconditioning
remains � xed.
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Another important point concerns the evaluation of the term f ,
which is the source term for the linear perturbation equations, and
also appears in the linearized objective function in the adjoint ap-
proach. Again, forward mode AD software could be used, but a
very much simpler alternative is to use the complex Taylor series
expansion method (see Ref. 30) used by Anderson and Nielsen.31

The essence of the idea is that

lim
² ! 0

IfR.U; ® C i²/g
²

D
@R
@®

In this equation, R.U; ®/ has been taken to be a complex analytic
function, and the notation If g denotes the imaginary part of a com-
plex quantity. The equation itself is an immediate consequence of
a Taylor series expansion. The convergence to the limiting value is
second order in ² so that numerical evaluationwith ² < 10¡8 yields
double-precisionaccuracy.In practice,we use ² D 10¡20 . Unlike the
usual � nite difference approximation of a linear sensitivity, there is
no cancellationeffect from the subtractionof two quantities of sim-
ilar magnitude and, therefore, no unacceptable loss of accuracy due
to machine roundingerror. Applying this technique to a FORTRAN
code requires little more than replacingall REAL*8 declarationsby
COMPLEX*16, and de� ningappropriatecomplexanalyticversions
of the intrinsic functions min, max, abs.

We have also found this complexvariablemethod to be extremely
helpful during program development.Because we have also written
a linear perturbationcode, we have used it to verify that each of the
linear � ux subroutines is consistentwith the original nonlinear � ux
subroutines,by checking the identity

Lu D lim
² ! 0

IfR.U C i²u; ®/g
²

for arbitrary choicesof u. The left-handside is computed by the lin-
ear � ux routines, and the right-hand side is computed by applying
the complex variable method to the nonlinear � ux routines. Having
performed these checks, we then veri� ed that the adjoint � ux rou-
tines were consistent with the linear routines by checking that the
identity uT .LT v/ D vT .Lu/ holds for any u and v.

If one were developing an adjoint code without � rst writing a
linear perturbation code, then these two steps could be combined
intoone to compare theadjoint routinesto the nonlinear� ux routines
to check for consistency.

Adjoint Solution Procedure
An important issue is how best to solve the adjoint equations.The

eigenvalues of the adjoint matrix LT are the same as those of the
linearmatrix L , and therefore,one is guaranteedto get the same con-
vergence rate when using Krylov subspace iteration methods such
as GMRES, as used by Nielsen and Anderson16 and Anderson and
Bonhaus.17 On the other hand, if one uses standard time-marching
methodswith multigrid,as are commonlyused to solvethenonlinear
equations,it is not necessarilythe case that the iterativeconvergence
rate for the adjoint solver will match that of the linear solver.

We have analyzed this for our time-marching method, which
uses Jacobi preconditioning with partial updates of the numeri-
cal smoothing � uxes (and the viscous � uxes for the Navier–Stokes
equations) at selected stages in the Runge-Kutta iteration.3 One full
step of the M-stage procedure for the linear equations can be ex-
pressed as

u.0/ D un

d.m/ D ¯m Du.m ¡ 1/ C .1 ¡ ¯m/d.m ¡ 1/

u.m/ D u.0/ C ®m P
¡

f ¡ Cu.m ¡ 1/ ¡ d.m/
¢

un C 1 D u.M /

where ¯1 D ®5 D 1, P is the Jacobi preconditioning matrix, and C
and D are again the convective and diffusive matrices whose sum
is the linear matrix L , as in Eq. (1).

The outcome of this analysis32 is that if the adjoint equations are
solved using the following M-stage iterative procedure:

Qv.M / D PT .g ¡ L T vn/

Qd
.M /

D ¡®M Qv.M /

Qv.m/ D PT
¡
¡®m C 1CT Qv.m C 1/ C ¯m C 1 DT Qd.m C 1/

¢

Qd.m/ D ¡®m Qv.m/ C .1 ¡ ¯m C 1/ Qd.m C 1/

vn C 1 D vn C
MX

m D 1

®m Qv.m/

Then the value of the linearized objective function from the linear
and adjointcodesis notonly identicalonce theyhave each converged
to the � nal steady state, but it is also identical after each Runge–
Kutta timestep. Note that this iteration uses the transpose of the
Jacobi preconditioningmatrix and works “backward” from m D M
to m D 1. If partial updating of the dissipative � uxes is not used,
then it can be shown that this reduces to the standard Runge–Kutta
method but with the transposed preconditioner.However, with the
use of partial updating, which is commonly employed to lower the
CPU cost, it requiresquite a lengthyanalysis to determine this form
for the adjoint iteration.

Furthermore, the analysis also extends to the use of multigrid and
shows that the key here is that the restrictionoperator for the adjoint
codemust be the transposeof theprolongationoperatorfor the linear
code, and vice versa, and the number of presmoothing iterations for
the adjoint code must equal the number of postsmoothingiterations
for the linearcode,andviceversa.Providedthatthese two conditions
are satis� ed, the linear and adjoint codes produce identical values
for the functional after the same number of multigrid cycles.

This result is important for two reasons. The � rst is that it guar-
antees that the adjoint code converges and that it does so with the
same rate of convergence as the linear code, which is itself equal to
the asymptotic rate of convergenceof the nonlinear code. Thus, the
adjoint code bene� ts from the wealth of experience and � ne tuning
of iterativeproceduresfornonlinearcodes.The secondreasonis that
it provides another validation check on the correct implementation
of the adjoint code. If the linear and adjoint codes do not produce
identical values for the functional after one time step, it indicates a
programming error.

Strong Boundary Conditions
Although it is possible to solve the Euler equations with solid

wall boundary conditions imposed weakly by specifying zero mass
� ux through the wall faces, it is more common when there are grid
nodes on the wall to use strong boundary conditions and force the
normal component of the velocity at surface nodes to be zero. In
doing so, the normal component of the momentum equation � ux
residual is discarded.Similarly, when the Navier–Stokes equations
are discretized,the entire velocity at the surface nodes is set to zero,
and all components of the momentum residual are discarded.Thus,
in both cases the equations that are solved are actually of the form

.I ¡ B/R.U/ D 0; BU D 0

where I is the identity matrix and B is a projectionmatrix, which in
the case of the Euler equationsextracts the normal componentof the
boundaryvelocityand in thecaseof the Navier–Stokesequationsex-
tracts the entireboundaryvelocity.The presenceof the term .I ¡ B/
re� ects the discarding of the appropriate � ux residual components,
to be replaced by the strong boundary conditions BU D 0.

When considering linear perturbations to these equations, we
obtain

.I ¡ B/.Lu ¡ f/ D 0; Bu D b

where b is a boundary velocity that is zero for the Navier–Stokes
equations but nonzero for the Euler equations due to a rotation in
the surface normal.

These two equations can be combined to form

[.I ¡ B/L C B]u D .I ¡ B/f C b (2)
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and the appropriate adjoint equation is then found by transposing
the linear operator, noting that B is symmetric, to obtain

[LT .I ¡ B/ C B]v D g (3)

At this point it is convenient to decompose both v and g into
orthogonal components as

v D .I ¡ B/v C Bv D vk C v?; g D .I ¡ B/g C Bg D gk Cg?

PremultiplyingEq. (3) by .I ¡ B/ shows that vk satis� es the adjoint
equations

.I ¡ B/LT vk D gk; Bvk D 0

These are the equations that are solved iteratively by the adjoint
code. Then, once vk has been computed, v? is calculated in a post-
processingstepusinganequationobtainedbypremultiplyingEq. (3)
by B:

v? D g? ¡ BLT vk (4)

Having computed vk and v? , the linearizedfunctional is given by

QJ D vT [.I ¡ B/f C b] C
@ J

@®

D vT
k f C vT

?b C
@ J

@®

This shows that v? gives the sensitivity of the functional to the
boundary condition b that arises from the rotation of the boundary
normal in the case of inviscid � ows.

Note that v? does not correspond to the normal momentum com-
ponent of the analytic adjoint solution at the boundary. Hence for
visualization,purposes, it is desirable to replace v? by the analytic
boundary condition

v
analytic
? D h

which would normally be employed using a continuous formula-
tion. Here h is zero everywhere except on the solid wall, where it
correspondsto the sensitivityof the functionalto the additionof mo-
mentum on the surface. In the case of a lift functional, for example,
the element of h at a surface node n is

hn D

0

@
0

j

0

1

A

with j being the unit vector in the lift direction.

Residual Contributions to the Functional
If the functionalof interest is a force, such as lift or drag, we have

to include the surface momentum residuals, which are discarded
in imposing the strong boundary conditions, to have a complete
force balance. Indeed, for viscous calculations, it is the tangential
component of these residuals that corresponds to the viscous shear
stress that is, one de� nes the surface shear stress to have the value
that is necessary to make the tangential momentum residual equal
to zero.

The nonlinear functional is, thus, of the form

J D Jp.U/ C hT BR.U/ (5)

where Jp corresponds to the force due to the pressure distribution
on the body and h is again the vector that takes the componentof the
discarded momentum residuals in the selected force direction, for
example, the direction normal to the freestream in the case of lift.

The corresponding linearized functional is

QJ D gT
p u C hT B Lu C

@ J

@®
(6)

where

gT
p ´

@ Jp

@U
(7)

With residuals

Without residuals

Fig.1 Variationin thirdadjointcomponentin y direction fora subsonic
NACA 0012 test case, with and without residual contributions to the
functional.

Fig. 2 Three possible locations of momentum injection close to a wall.

and so we obtain

g D gp C LT Bh (8)

Fortunately, the second term in this equation can be computed in a
preprocessingstep using the adjoint � ux routines.

The inclusion of the extra term makes a dramatic improvement
to the quality of the adjoint solution near the surface, as illustrated
in Fig. 1 for a subsonic NACA 0012 test case to be discussed later
in more detail. To understand why it makes such a difference, note
that the adjoint variablescorrespondto the linearizedeffect of mass,
momentum, and energy sourceson the functionalof interest.There-
fore, it is helpful to consider what happens in the linearized � ow
calculation when normal momentum is added close to a wall, as
shown in Fig. 2.

The effect of themomentumadditionon the far-� eld � ow solution
will be negligible.Therefore,with a conservativetreatment, through
the inclusion of the discarded momentum residuals, the linear code
will correctlypredict that the change in the lift is equal and opposite
to the addition of normal momentum, regardless of the location of
the momentum addition.On the other hand,without the inclusionof
the discarded residuals, the addition of momentum at point A, right
next to the wall, will have zero effect on the functional because it
will contribute solely to the momentum residuals at surface nodes.
Similarly, addition at point B will have some effect on the residuals
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at nearby surface points; if these are not included in the functional,
then the in� uence on the functionalmust be incorrect.Only at point
C, well away from the surface,will the effect on the surfaceresiduals
bevery small,andso theeffecton the functionalis correctlycaptured
without the inclusion of the discarded residuals.

Numerical Results
The nonlinear HYDRA code has been validated previously.21;33

In this section,we are interestedin verifyingtheequalityof the linear
and adjoint sensitivitiesand the iterativeconvergencerates. We also
examine an interestingdif� culty concernedwith the linearizationof
strong shocks.

Inviscid Flow over NACA 0012 Airfoil
The � rst two cases consider steady inviscid � ow over a NACA

0012 airfoil. The circles in Fig. 3 show the lift coef� cient ob-
tained from the nonlinear code plotted against angle of attack at
a freestreamMach number of 0:68. The angle-of-attackvariation is
achieved by rotating the airfoil as well as the points on and near the
airfoil surface. Doing this in a linearized sense gives the geometric
perturbationsrequired for the source terms in the linear code and the
functional in the adjoint code. The lines in Fig. 3 are the lift slope
obtainedfrom the linearand adjointcodes,with thebase � ow in each
case being the nonlinear � ow conditions at the angle of attack at the
midpointof the line. The linear and adjoint codes producevalues for
the lift slope that are identical to machine accuracy, as they should
for the fully discrete adjoint approach. They also match well the
slope of the nonlinear results. Finite differencing of the nonlinear
values yields a slope that agrees to within an error of 10¡4 .

An interesting situation arises at higher Mach numbers at which
there are strong shocks. Figure 4 shows the Mach contours for the

Fig. 3 Cl vs angle of attack for a NACA 0012 pro� le at M = 0.68.

Fig. 4 Mach contours for NACA 0012 at M = 0.85.

Fig. 5 Cl vs angle of attack for NACA 0012 at M = 0.85.

Fig. 6 Cl ¡¡ Cl(regression) for NACA 0012 at M = 0.85.

NACA 0012 at an angle of attack of 1 deg and an increased Mach
numberof 0.85.There are now two shocks,with the maximum local
Mach number reaching approximately 1.45 on the supersonic side
of the suctionsurfaceshock.The circles in Fig. 5 show the nonlinear
lift coef� cients over a limited range of angles of attack. The line in
Fig. 5 is a linear regression least-square � t of the nonlinear data.
The results indicate a peculiar lack of smoothness in the nonlinear
data; this is shown more clearly in Fig. 6, which plots the difference
between the nonlinear data and the linear regression.

The key point is that there is no physical justi� cation for the loss
of smoothness. It appears to be a purely numerical artifact that is
probably related to the displacement of the shock as the angle of
attack changes. Therefore, the slope of the linear regression line
is probably the best representation of the true lift slope. However,
the linear/adjoint codes give lift slopes that correspond to the local
derivative of the nonlinear data. Figure 7 plots the difference be-
tween the linear/adjoint slopesand the slopeof the linear regression,
showinga largediscrepancyaround1.17 deg,where the localderiva-
tive of the nonlineardata differs signi� cantly from the linear regres-
sion value.Figure 8 plots the number of multigrid cycles required to
converge the nonlinear code to a very tight tolerance. Interestingly,
the number of cycles increases substantially around 1.17 deg. This
suggests that the linearizationmatrix may be almost singular,which
could be related to that small changes in the angle of attack produce
larger changes in the lift than one would otherwise expect.

A similarphenomenonhasbeenobservedbyElliott,who reported
problems with instabilities in the iterative solution of the adjoint
Euler equationswhen the underlyingnonlinear � ow solver failed to
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Fig. 7 NACA 0012 at M = 0.85, dCl /d®(linear)¡¡ dCl/d®(regression).

Fig. 8 Number of multigridcycles for nonlinearcalculationsfor NACA
0012 at M = 0.85.

Fig. 9 Mach number distributions for quasi-one-dimensionaltest case
for a range of exit pressures with uniform grid spacing ¢x = 1/100.

converge to machine accuracy.15 These problems were avoided by
increasing the level of smoothing, at the expense of losing shock
resolution.

Anotherperspectiveon this issue is providedby Figs. 9–11,which
show results for a quasi-one-dimensional test case with transonic
� ow in a divergingduct. The quasi-one-dimensional � ow equations
in the form

dF
dx

C A¡1 dA

dx
.F ¡ P/ D 0

Fig. 10 Lift error for quasi-one-dimensional test case with uniform
grid spacing ¢x = 1/N.

Fig. 11 Lift slope error for quasi-one-dimensional test case with uni-
form grid spacing ¢x = 1/N.

where A.x/ is the duct area and

F D

0

@
½u

½u2 C p

½u H

1

A ; P D

0

@
0

p

0

1

A

are approximated using Roe’s � rst-order � ux difference splitting34

and solved by a Newton iteration.Results are obtained for three dif-
ferent grid resolutions and over a range of exit pressures. Figure 9
shows the Machnumberdistributionson thecentralpartof thecoars-
est grid for � ve different values of the exit pressure. The very sharp
natureof the shockcapturingis evident.Figure 10 shows the error in
the computed value of the lift, the integral of the pressure along the
duct. There is clear � rst-order convergence in the maximum error
as the grid is re� ned. However, the variation in lift with exit pres-
sure is not smooth. Because of the dependence of the Roe � ux on
the absolutemagnitude of the characteristicspeed u ¡ c at the faces
between computationalcells,when the sign of this quantity changes
there is a correspondingdiscontinuityin the slope. This leads to the
“scalloped” appearance of the lift error, with the spacing between
peakscorrespondingto the change in exit pressure required to move
the shock through one cell. This results in the error in the lift slope
failing to converge as the grid is re� ned, as shown in Fig. 10. Mod-
i� cations to the absolute magnitude, such as the use of a smooth
“entropy � x,” to ensure the continuity of the slope, would not alter
the basic problem that, as the shock moves a distance 1x due to
changes in the exit pressure, the variation in the lift error is O.1x/,
and hence, the lift slope error (which is equal to the slope of the lift
error) is O.1/, that is, it does not converge as 1x ! 0.

The fact that grid convergenceof nonlinear� ow calculationsdoes
not guarantee convergence of linear sensitivities is a fundamental
problem for the discrete approach to adjoint calculations. On the
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other hand, the mathematicalformulationof the adjoint PDE for the
continuousapproachrequires the impositionof an adjointboundary
conditionalong the shock,35;36 and if this is not speci� ed, then again
one is not guaranteed to converge to the correct value as the grid is
re� ned.

However, this observationof limitations with the linearizationof
� ows with strong shocks may be primarily of academic interest and
not of engineering concern. Most aeronautical applications do not
have such strong normal shocks, and with weak shocks we have not
observeda similar phenomenon.If one is interestedin an application
with a strong shock, then it may be possible to use more numerical
smoothing at shocks to obtain a convergent linear sensitivity.36;37

Turbulent Flow over RAE 2822 Airfoil
Figure 12 presents the Mach contours for the Reynolds averaged

� ow over the Royal Aircraft Establishment (RAE) 2822 airfoil at
angle of attack ® D 2:4 deg, freestream Mach number M D 0:725,
and Reynolds number Re D 6:5 £ 106 . The turbulence is modeled
using a Spalart–Allmaras single-equation model.38 The circles in
Fig. 13 show the sensitivity of the variation in the lift coef� cient
with changes in the angle of attack. The lines correspond to the lift
slopes computed by the linear and adjoint codes, which are again
in perfect agreement with each other. There is no evidence of any

Fig. 12 Mach contours for an RAE 2822 pro� le at M = 0.725 and
Re = 6.5££106.

Fig. 13 Lift vs angle of attack for an RAE 2822 pro� le at M = 0.725
and Re = 6.5££106.

Fig. 14 Convergence histories for the nonlinear, linear and adjoint
codes for an RAE 2822 pro� le at M = 0.725 and Re = 6.5££106 .

lack of smoothness in the nonlinear lift predictions, and the linear
and adjoint codes again give lift slopes that are identical to machine
accuracyand are in very good agreement with the nonlinear results.

Figure 14 shows the convergencehistories for the nonlinear, lin-
ear, and adjoint codes for the RAE 2822 testcase at ® D 2:4 deg. As
expected, they all exhibit the same asymptotic convergence rate.

Conclusions
We have presented a number of algorithm developments con-

cerned with the formulation and solution of adjoint Euler and
Navier–Stokes equationsusing the discrete approach.These include
the treatment of strong boundary conditions and the associated ad-
joint boundary conditions for lift and drag functionals, as well as a
Runge–Kutta time-marchingscheme that ensuresexact equivalence
with a linear perturbationcode throughoutthe convergenceprocess.
This property guarantees the same asymptotic convergence rate for
nonlinear, linear, and adjoint solvers, as well as being very useful
during code validation.

We have also discussed a potentialproblemwith adjoint methods
applied to � ows with strong shocks. In practice, however, we think
this is unlikely to cause problems in design applications with very
weak shocks.
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