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Algorithm Developments for Discrete Adjoint Methods
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A number of algorithm developments are presented for adjoint methods using the “discrete” approach in which
the discretization of the nonlinear equations is linearized and the resulting matrix is then transposed. With a
new iterative procedure for solving the adjoint equations, exact numerical equivalence is maintained between the
linear and adjoint discretizations. The incorporation of strong boundary conditions within the discrete approach
is discussed, and difficulties associated with the use of linear perturbation and adjoint methods for applications

with strong shocks are also examined.
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Subscripts
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orthogonal to boundary conditions
parallel to boundary conditions

Superscripts

(m)
n
T

subiteration index
iteration index
transpose

Introduction

HERE is a long history of the use of adjoint equations in op-

timal control theory.! In fluid dynamics, the first use of ad-
joint equations for design was by Pironneau,? but within the field of
aeronauticalcomputationalfluid dynamics (CFD), the use of adjoint
equationsfor design optimization has been pioneered by Jameson®*
and Jameson et al.’ for the potential flow, Euler, and Navier-Stokes
equations. The complexity of the applications within these papers
has also progressed from two-dimensional airfoil optimization, to
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three-dimensional wing design, and finally to complete aircraft
configurations$~® A number of other research groups have also
developed adjoint CFD codes’~!* using the same “continuous” ap-
proachin which the first stepis to linearize the original partial differ-
ential equations. The adjoint partial differentialequation (PDE) and
appropriateboundary conditionsare then formulated, and finally the
equations are discretized. Although this minimizes the memory re-
quirementsand the CPU cost periteration, it requires one to develop
an appropriateiterative solution procedure, and this may not give as
good a convergencerate as the original nonlinear code. In addition,
the debugging and validation of the adjoint code is complicated by
the lack of a suite of benchmark test cases.

The alternative “discrete” approach, which we use, takes a dis-
cretization of the Navier-Stokes equations, linearizes the discrete
equations, and then uses the transpose of the linear operator to
form the adjoint problem. This approach has been developed by
Elliott and Peraire,'* Elliott,"” Nielsen and Anderson,'® Anderson
and Bonhaus,!” Mohammadi and Pironneau,'® and Kim et al.'"* The
main advantage of this approach, in our opinion, is that the code de-
velopment becomes a more straightforward process. The lineariza-
tion of the nonlinear discrete equations can be performed either
manually or by automatic differentiation software, and the linear
code can be validated by direct comparison with the nonlinear code.
Similarly, because the adjoint code is obtained by transposing the
linear operator, it must yield exactly the same values for the lin-
earized objective function and so can be validated against the linear
code. For an excellent review of research on both continuous and
discrete adjoint design methods, see the paper by Newman et al.?’

In this paper we contribute to the developmentand understanding
of discrete adjoint methods in four respects:

1) We discuss the implementation of the adjoint code in a way
that minimizes the memory and CPU requirements and that can be
automated using automatic differentiation tools.

2) We develop an adjoint multigrid iteration procedure with pre-
conditionedtime stepping that maintains exactequivalencebetween
the linear and adjointcodes at all times during the evolution of their
respective solutions.

3) We present a detailed discussion of the imposition of strong
boundary conditions and the inclusion of viscous stresses in objec-
tive functionsand the consequencefor the formulation of the adjoint
code.

4) We present a numerical investigation indicating the potential
for problems with strong shocks.

This research forms part of the development of the HYDRA
suite of codes. The foundation is a nonlinear code that approxi-
mates the Reynolds averaged Navier—Stokes equations on unstruc-
tured hybrid grids, using an edge-based discretization. The solution
procedure uses Runge—Kutta time-marching accelerated by Jacobi
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preconditioningand multigrid (see Ref. 21), with dual time stepping
for unsteady flows.

The second code in the suite is the steady adjoint code, which is
based on a linearization of the flow equations around the nonlinear
steady-state flow conditions. It is the development of this code that
is the primary subject of this paper.

The third code is for the linear analysis of unsteady flows. This is
also based on a linearization of the unsteady flow equations around
the steady-state flow conditions calculated by the nonlinear code.
Because of linearity, unsteady periodic flows can be decomposed
into a sum of harmonic terms, each of which can be computed inde-
pendently. Thus, the linear harmonic code considers just one partic-
ular frequency of unsteadiness, resulting in a formulation in which
the purpose is to compute a complex flow solution that represents
the amplitude and phase of the unsteady flow.

The fourth code, whichis an extensionof the second, is the adjoint
counterpart of the linear harmonic code. The development and ap-
plication of these harmonic analysis and adjoint codes is discussed
elsewhere,2=2 but in this paper the harmonic analysis code is used
with zero frequency to obtain steady linearized flow results.

Discrete Adjoint Formulation

We start by considering the discrete nonlinear Euler equations
with a weak imposition of boundary conditions on solid walls
through the specification of zero mass flux through faces on the sur-
face. If the far-field boundary conditions are also imposed through
far-field fluxes, then the discrete system of equations that is solved
is of the form

RU,a)=0

where U is the vector of flowfield variables, « representsone or more
design variablesthatcontrol the geometry of the airfoil or wing (and,
hence, the grid coordinates), and R(U) represents the discrete flux
residuals that are driven to zero by the iterative solution process.
Ifthereis justonedesignvariable,thenlinearizingthe steady-state
equations with respect to a change in that design variable yields

Lu=f
where
oR dU oR
L=—, u=—, E
U da da

The correspondingperturbationin a nonlinear objective function
J(U,a)is

. - aJ
J=gu+—
da
where
aJ
T _
& =%

In the adjoint approach, this same quantity can be obtained by
evaluating

where the adjoint solution v satisfies the equation
LTy = g
The equivalence of this formulation comes from the identity
vf=v Lu=(L"v)Yu=g"u

If there are many design variables (each giving rise to a different
vectorf ) and only one objective(yieldinga single vectorg), then the
benefit of the adjoint approachis that the objective sensitivity J can
be obtained following a single evaluation of v instead of separate
evaluations of u for each f.

Implementation of Adjoint Discretization
In the implementation, the linear operator L is splitinto two parts,

Lu=Cu+ Du (D

The first part representsthe convective fluxes due to a Galerkin finite
element discretization. The second part represents the smoothing
fluxes (to which the viscous fluxes are added later for the Navier—
Stokes equations). The operator D can be further broken down into
the product of two operators,

Du =VGu

where G computes the gradientand a pseudo-Laplacianof u at each
node, in addition to u itself.
The corresponding adjoint operator is

LTv=C"v+ D™w
with
DTv=G"vTy

indicatingthat the adjointgradientroutineis applied after the adjoint
smoothing routine, which at first seems counterintuitive.

Atan even more detailed level, the action of each of the operators
C, V,and G is computedby aloop over all edges in the unstructured
grid. Therefore, taking Cu as an example, we can expressit as a sum
of elemental edge matrices whose only nonzero entries corresponds
to the two nodes at either end of the edge,

Cu = Z C.u
The adjoint version of this is simply

Clo= ZCZU

correspondingto a similar loop over all edges.

For the convective fluxes, it is easy to compute the edge product
CTv directly without explicitly forming the matrix C,. The trans-
posed gradient operator G7 is also easily formulated. The product
V1w presents greater difficulties. Elliott and Peraire'* and Elliott'?
precomputed and stored the nonzero entries in the elemental matri-
ces V, and then evaluatedthe matrix—vector products VeT v. However,
the storage of these matrices for each edge requires a substantial
amount of memory. Anderson and Bonhaus!” avoided the mem-
ory cost by recomputing the matrices during each iteration, but this
greatly increases the CPU cost.

To minimize both the memory and CPU requirements, it is nec-
essary to calculate the edge product V[ v directly, as with C7 v. The
difficulty is in working out how best to do this. One approach is
to use automatic differentiation (AD) software such as Odyssée,?’
ADIFOR,?*?7 or TAMC.?® In forward mode, AD software takes
the original nonlinear code and then uses the basic rules of lin-
earization to construct the code to evaluate V,u. In reverse mode, it
produces the code to calculate V,” v; it may seem that this is a much
harder task, but in fact it is not. Furthermore, there are theoretical
results that guarantee that the number of floating point operations is
no more than three times that of the original nonlinear code.”

Mohammadi and Pironneau used Odyssée to generate much of
his adjoint code,'® but a lot of hand-coding was still required. In
our work, we have written the adjoint code manually, but follow-
ing many of the techniques of AD. To simplify the expressions for
the partial derivatives, we chose to use the primitive variables (den-
sity, velocity, and pressure) as our working variables, rather than
the usual conservative variables. The equations are still in conser-
vative form so that this choice of working variables has no effect on
the final solution.

The memory requirements for the adjoint code are 20-30%
greater than for the nonlinear code and depend on the grid that
is used. The CPU cost per iteration is only 10-20% greater than for
the nonlinear code, with the increased cost of evaluating the adjoint
residuals partially offset by that the Jacobian for the preconditioning
remains fixed.



200 GILES ET AL.

Another important point concerns the evaluation of the term f,
which is the source term for the linear perturbation equations, and
also appears in the linearized objective function in the adjoint ap-
proach. Again, forward mode AD software could be used, but a
very much simpler alternative is to use the complex Taylor series
expansion method (see Ref. 30) used by Anderson and Nielsen.?!
The essence of the idea is that

. I{R(U,a +ie)} oR
lim — = —
€0 € oa

In this equation, R(U, o) has been taken to be a complex analytic
function, and the notation Z{ } denotes the imaginary part of a com-
plex quantity. The equation itself is an immediate consequence of
a Taylor series expansion. The convergence to the limiting value is
second order in € so that numerical evaluation with € < 1078 yields
double-precisionaccuracy.In practice, we use € = 10-2, Unlike the
usual finite difference approximation of a linear sensitivity, there is
no cancellationeffect from the subtraction of two quantities of sim-
ilar magnitude and, therefore, no unacceptableloss of accuracy due
to machine roundingerror. Applying this technique to a FORTRAN
code requires little more than replacing all REAL*8 declarationsby
COMPLEX*16, and defining appropriatecomplex analytic versions
of the intrinsic functions min, max, abs.

‘We have also found this complex variable method to be extremely
helpful during program development. Because we have also written
a linear perturbationcode, we have used it to verify that each of the
linear flux subroutinesis consistent with the original nonlinear flux
subroutines, by checking the identity

L= Tim Z{R(U +i€u, o)}

e—>0 €

for arbitrary choices of u. The left-hand side is computed by the lin-
ear flux routines, and the right-hand side is computed by applying
the complex variable method to the nonlinear flux routines. Having
performed these checks, we then verified that the adjoint flux rou-
tines were consistent with the linear routines by checking that the
identity u” (L"v) = »” (Lu) holds for any u and v.

If one were developing an adjoint code without first writing a
linear perturbation code, then these two steps could be combined
into one to compare the adjointroutines to the nonlinearflux routines
to check for consistency.

Adjoint Solution Procedure

Animportantissueis how bestto solve the adjointequations. The
eigenvalues of the adjoint matrix LT are the same as those of the
linear matrix L, and therefore,one is guaranteedto get the same con-
vergence rate when using Krylov subspace iteration methods such
as GMRES, as used by Nielsen and Anderson'® and Anderson and
Bonhaus.!” On the other hand, if one uses standard time-marching
methods with multigrid,as are commonly used to solve the nonlinear
equations,itis notnecessarilythe case that the iterative convergence
rate for the adjoint solver will match that of the linear solver.

We have analyzed this for our time-marching method, which
uses Jacobi preconditioning with partial updates of the numeri-
cal smoothing fluxes (and the viscous fluxes for the Navier-Stokes
equations) at selected stages in the Runge-Kutta iteration.’ One full
step of the M-stage procedure for the linear equations can be ex-
pressed as

u® =u"
d(m) — ﬂmDu(”’_ 1) + (1 _ ﬂm)d(m_l)

u(m) — u(U) +C(mP(f _ Cu(m— n _ d(m))

un+1 — u(M)
where f; =as =1, P is the Jacobi preconditioning matrix, and C
and D are again the convective and diffusive matrices whose sum
is the linear matrix L, as in Eq. (1).
The outcome of this analysis® is that if the adjoint equations are
solved using the following M -stage iterative procedure:

oM = PT(g — LTo")

~(M) ~
d"’ = —ayi™

ﬁ(m) — PT(—(X,,1+1CT17(’,Z+1) +ﬂm+lDTJ(m+l))

d™ = —a, 5" + (1= B, d" D

M
1 ~
vn+ — ,Un + E C(m’l](m)

m=1

Then the value of the linearized objective function from the linear
and adjointcodesis notonly identicalonce they have each converged
to the final steady state, but it is also identical after each Runge—
Kutta timestep. Note that this iteration uses the transpose of the
Jacobi preconditioningmatrix and works “backward” fromm = M
to m = 1. If partial updating of the dissipative fluxes is not used,
then it can be shown that this reduces to the standard Runge-Kutta
method but with the transposed preconditioner. However, with the
use of partial updating, which is commonly employed to lower the
CPU cost, it requires quite a lengthy analysis to determine this form
for the adjoint iteration.

Furthermore, the analysis also extends to the use of multigrid and
shows that the key here is that the restriction operator for the adjoint
code mustbe the transposeof the prolongationoperator for the linear
code, and vice versa, and the number of presmoothing iterations for
the adjoint code must equal the number of postsmoothingiterations
forthelinearcode,and vice versa. Providedthatthese two conditions
are satisfied, the linear and adjoint codes produce identical values
for the functional after the same number of multigrid cycles.

This result is important for two reasons. The first is that it guar-
antees that the adjoint code converges and that it does so with the
same rate of convergence as the linear code, which is itself equal to
the asymptotic rate of convergence of the nonlinear code. Thus, the
adjoint code benefits from the wealth of experience and fine tuning
ofiterativeproceduresfornonlinearcodes. The secondreasonis that
it provides another validation check on the correct implementation
of the adjoint code. If the linear and adjoint codes do not produce
identical values for the functional after one time step, it indicates a
programming error.

Strong Boundary Conditions

Although it is possible to solve the Euler equations with solid
wall boundary conditions imposed weakly by specifying zero mass
flux through the wall faces, it is more common when there are grid
nodes on the wall to use strong boundary conditions and force the
normal component of the velocity at surface nodes to be zero. In
doing so, the normal component of the momentum equation flux
residual is discarded. Similarly, when the Navier-Stokes equations
are discretized, the entire velocity at the surface nodes is set to zero,
and all components of the momentum residual are discarded. Thus,
in both cases the equations that are solved are actually of the form

(I-B)RWU) =0, BU=0

where [ is the identity matrix and B is a projection matrix, which in
the case of the Euler equationsextracts the normal componentof the
boundaryvelocity andin the case of the Navier-Stokes equationsex-
tracts the entire boundary velocity. The presenceof the term (I — B)
reflects the discarding of the appropriate flux residual components,
to be replaced by the strong boundary conditions BU =0.

When considering linear perturbations to these equations, we
obtain

(I —-B)(Lu—f)=0, Bu=5»b

where b is a boundary velocity that is zero for the Navier—Stokes
equations but nonzero for the Euler equations due to a rotation in
the surface normal.

These two equations can be combined to form

[(I—B)L+Blu=(I—-B)f+b 2)
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and the appropriate adjoint equation is then found by transposing
the linear operator, noting that B is symmetric, to obtain

(L"U - B)+Blv=¢g 3)

At this point it is convenient to decompose both v and g into
orthogonal components as

v=(—-B)v+Bv =y +uvy, g=U-B)g+Bg=g+8.
Premultiplying Eq. (3) by (I — B) shows that v satisfies the adjoint
equations

(1 — B)LT’U" =& B’U" =0

These are the equations that are solved iteratively by the adjoint
code. Then, once v; has been computed, v, is calculatedin a post-
processingstep using an equationobtainedby premultiplyingEq. (3)
by B:

v, =8 — BLTUH 4)

Having computed v and v, the linearized functionalis given by
- aJ
J=4"[(I — B)f +b] + —
da

a0J
= v{f—}— vlh+ —
da

This shows that v, gives the sensitivity of the functional to the
boundary condition b that arises from the rotation of the boundary
normal in the case of inviscid flows.

Note that v, does not correspond to the normal momentum com-
ponent of the analytic adjoint solution at the boundary. Hence for
visualization, purposes, it is desirable to replace v, by the analytic
boundary condition

vTalytic —h
which would normally be employed using a continuous formula-
tion. Here & is zero everywhere except on the solid wall, where it
correspondsto the sensitivity of the functional to the addition of mo-
mentum on the surface. In the case of a lift functional, for example,
the element of & at a surface node n is

0

with j being the unit vector in the lift direction.

Residual Contributions to the Functional

If the functional of interestis a force, such as lift or drag, we have
to include the surface momentum residuals, which are discarded
in imposing the strong boundary conditions, to have a complete
force balance. Indeed, for viscous calculations, it is the tangential
component of these residuals that corresponds to the viscous shear
stress that is, one defines the surface shear stress to have the value
that is necessary to make the tangential momentum residual equal
to zero.

The nonlinear functional is, thus, of the form

J = J,(U) +h"BR(U) 5)

where J,, corresponds to the force due to the pressure distribution

on the body and & is again the vector that takes the component of the

discarded momentum residuals in the selected force direction, for

example, the direction normal to the freestream in the case of lift.
The corresponding linearized functional is

. aJ
J=glu +hTBLu+£ 6)

where
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Fig.1 Variationin third adjointcomponentiny direction for a subsonic
NACA 0012 test case, with and without residual contributions to the
functional.

Fig.2 Three possible locations of momentum injection close to a wall.

and so we obtain
g=gp+LTBh 3)

Fortunately, the second term in this equation can be computed in a
preprocessing step using the adjoint flux routines.

The inclusion of the extra term makes a dramatic improvement
to the quality of the adjoint solution near the surface, as illustrated
in Fig. 1 for a subsonic NACA 0012 test case to be discussed later
in more detail. To understand why it makes such a difference, note
that the adjoint variables correspondto the linearizedeffect of mass,
momentum, and energy sources on the functional of interest. There-
fore, it is helpful to consider what happens in the linearized flow
calculation when normal momentum is added close to a wall, as
shown in Fig. 2.

The effect of the momentum addition on the far-field flow solution
will be negligible. Therefore, with a conservativetreatment, through
the inclusion of the discarded momentum residuals, the linear code
will correctly predict that the change in the lift is equal and opposite
to the addition of normal momentum, regardless of the location of
the momentum addition. On the other hand, without the inclusionof
the discarded residuals, the addition of momentum at point A, right
next to the wall, will have zero effect on the functional because it
will contribute solely to the momentum residuals at surface nodes.
Similarly, addition at point B will have some effect on the residuals
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at nearby surface points; if these are not included in the functional,
then the influence on the functional must be incorrect. Only at point
C, well away from the surface, will the effect on the surface residuals
be very small,and so the effecton the functionalis correctly captured
without the inclusion of the discarded residuals.

Numerical Results
21,33

The nonlinear HYDRA code has been validated previously:
Inthissection, we are interestedin verifyingthe equality of the linear
and adjoint sensitivitiesand the iterative convergencerates. We also
examine an interesting difficulty concerned with the linearizationof
strong shocks.

Inviscid Flow over NACA 0012 Airfoil

The first two cases consider steady inviscid flow over a NACA
0012 airfoil. The circles in Fig. 3 show the lift coefficient ob-
tained from the nonlinear code plotted against angle of attack at
a freestream Mach number of 0.68. The angle-of-attack variation is
achieved by rotating the airfoil as well as the points on and near the
airfoil surface. Doing this in a linearized sense gives the geometric
perturbationsrequired for the source terms in the linear code and the
functional in the adjoint code. The lines in Fig. 3 are the lift slope
obtained from the linearand adjointcodes, with the base flow ineach
case being the nonlinear flow conditions at the angle of attack at the
midpointof the line. The linear and adjoint codes produce values for
the lift slope that are identical to machine accuracy, as they should
for the fully discrete adjoint approach. They also match well the
slope of the nonlinear results. Finite differencing of the nonlinear
values yields a slope that agrees to within an error of 1074,

An interesting situation arises at higher Mach numbers at which
there are strong shocks. Figure 4 shows the Mach contours for the
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Fig.3 C; vs angle of attack for a NACA 0012 profile at M =0.68.

Fig.4 Mach contours for NACA 0012 at M =0.85.
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NACA 0012 at an angle of attack of 1 deg and an increased Mach
numberof 0.85. There are now two shocks, with the maximum local
Mach number reaching approximately 1.45 on the supersonic side
of the suction surface shock. The circlesin Fig. 5 show the nonlinear
lift coefficients over a limited range of angles of attack. The line in
Fig. 5 is a linear regression least-square fit of the nonlinear data.
The results indicate a peculiar lack of smoothness in the nonlinear
data; this is shown more clearly in Fig. 6, which plots the difference
between the nonlinear data and the linear regression.

The key point is that there is no physical justification for the loss
of smoothness. It appears to be a purely numerical artifact that is
probably related to the displacement of the shock as the angle of
attack changes. Therefore, the slope of the linear regression line
is probably the best representation of the true lift slope. However,
the linear/adjoint codes give lift slopes that correspond to the local
derivative of the nonlinear data. Figure 7 plots the difference be-
tween the linear/adjointslopes and the slope of the linearregression,
showingalargediscrepancyaround1.17 deg, where the local deriva-
tive of the nonlinear data differs significantly from the linear regres-
sion value. Figure 8 plots the number of multigrid cycles required to
converge the nonlinear code to a very tight tolerance. Interestingly,
the number of cycles increases substantially around 1.17 deg. This
suggests that the linearization matrix may be almost singular, which
could be related to that small changesin the angle of attack produce
larger changes in the lift than one would otherwise expect.

A similar phenomenonhas been observedby Elliott, who reported
problems with instabilities in the iterative solution of the adjoint
Euler equations when the underlying nonlinear flow solver failed to
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Fig.9 Mach number distributions for quasi-one-dimensionaltest case
for a range of exit pressures with uniform grid spacing Ax =1/100.

converge to machine accuracy.”® These problems were avoided by
increasing the level of smoothing, at the expense of losing shock
resolution.

Anotherperspectiveon thisissueis providedby Figs. 9-11, which
show results for a quasi-one-dimensioml test case with transonic
flow in a diverging duct. The quasi-one-dimensiond flow equations
in the form

dF +A“dA(F P)=0
dx dx N
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17 -~ - N=200
ob — N=400
- -1 /\\/\/\\\w
e 7N
& -2t / N e Y 7N ~ . N
= -3}
-4}
5k e 1
0.699 0.6995 0.7 0.7005 0.701

p(exit)

Fig. 10 Lift error for quasi-one-dimensional test case with uniform
grid spacing Ax=1/N.
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Fig. 11 Lift slope error for quasi-one-dimensional test case with uni-
form grid spacing Ax=1/N.

where A(x) is the duct area and

ou
F=|pu>+p |, P =
puH 0

are approximated using Roe’s first-order flux difference splitting**
and solved by a Newton iteration. Results are obtained for three dif-
ferent grid resolutions and over a range of exit pressures. Figure 9
shows the Mach number distributionson the central part of the coars-
est grid for five different values of the exit pressure. The very sharp
nature of the shock capturingis evident. Figure 10 shows the errorin
the computed value of the lift, the integral of the pressure along the
duct. There is clear first-order convergence in the maximum error
as the grid is refined. However, the variation in lift with exit pres-
sure is not smooth. Because of the dependence of the Roe flux on
the absolute magnitude of the characteristicspeed u — ¢ at the faces
between computational cells, when the sign of this quantity changes
there is a correspondingdiscontinuityin the slope. This leads to the
“scalloped” appearance of the lift error, with the spacing between
peaks correspondingto the change in exit pressure required to move
the shock through one cell. This results in the error in the lift slope
failing to converge as the grid is refined, as shown in Fig. 10. Mod-
ifications to the absolute magnitude, such as the use of a smooth
“entropy fix,” to ensure the continuity of the slope, would not alter
the basic problem that, as the shock moves a distance Ax due to
changes in the exit pressure, the variation in the lift erroris O(Ax),
and hence, the lift slope error (which is equal to the slope of the lift
error) is O(1), that is, it does not converge as Ax — 0.

The fact that grid convergenceof nonlinearflow calculationsdoes
not guarantee convergence of linear sensitivities is a fundamental
problem for the discrete approach to adjoint calculations. On the
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otherhand, the mathematical formulation of the adjoint PDE for the
continuousapproachrequires the imposition of an adjointboundary
conditionalong the shock,*>-*¢ and if this is not specified, then again
one is not guaranteed to converge to the correct value as the grid is
refined.

However, this observation of limitations with the linearization of
flows with strong shocks may be primarily of academic interest and
not of engineering concern. Most aeronautical applications do not
have such strong normal shocks, and with weak shocks we have not
observeda similar phenomenon.If oneis interestedin an application
with a strong shock, then it may be possible to use more numerical

smoothing at shocks to obtain a convergentlinear sensitivity36-3

Turbulent Flow over RAE 2822 Airfoil

Figure 12 presents the Mach contours for the Reynolds averaged
flow over the Royal Aircraft Establishment (RAE) 2822 airfoil at
angle of attack « =2.4 deg, freestream Mach number M = 0.725,
and Reynolds number Re = 6.5 x 10°. The turbulence is modeled
using a Spalart-Allmaras single-equation model3® The circles in
Fig. 13 show the sensitivity of the variation in the lift coefficient
with changes in the angle of attack. The lines correspond to the lift
slopes computed by the linear and adjoint codes, which are again
in perfect agreement with each other. There is no evidence of any

Fig. 12 Mach contours for an RAE 2822 profile at M =0.725 and
Re=6.5x10°.
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Fig. 13 Lift vs angle of attack for an RAE 2822 profile at M =0.725
and Re =6.5x 10°.
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Fig. 14 Convergence histories for the nonlinear, linear and adjoint
codes for an RAE 2822 profile at M = 0.725 and Re = 6.5 x 10°.

lack of smoothness in the nonlinear lift predictions, and the linear
and adjoint codes again give lift slopes that are identical to machine
accuracy and are in very good agreement with the nonlinear results.
Figure 14 shows the convergence histories for the nonlinear, lin-
ear, and adjoint codes for the RAE 2822 testcase at « = 2.4 deg. As
expected, they all exhibit the same asymptotic convergencerate.

Conclusions

We have presented a number of algorithm developments con-
cerned with the formulation and solution of adjoint Euler and
Navier—Stokes equationsusing the discrete approach. These include
the treatment of strong boundary conditions and the associated ad-
joint boundary conditions for lift and drag functionals, as well as a
Runge—Kutta time-marching scheme that ensures exact equivalence
with a linear perturbationcode throughoutthe convergenceprocess.
This property guarantees the same asymptotic convergence rate for
nonlinear, linear, and adjoint solvers, as well as being very useful
during code validation.

We have also discussed a potential problem with adjoint methods
applied to flows with strong shocks. In practice, however, we think
this is unlikely to cause problems in design applications with very
weak shocks.
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