
AIAA JOURNAL

Vol. 44, No. 5, May 2006

Stabilizing Linear Harmonic Flow Solvers for Turbomachinery
Aeroelasicity with Complex Iterative Algorithms

M. Sergio Campobasso∗

Cranfield University, Cranfield, England MK43 0AL, United Kingdom
and

Michael B. Giles†

Oxford University, Oxford, England OX1 3QD, United Kingdom

The linear flow analysis of turbomachinery aeroelasticity views the unsteady flow as the sum of a background
nonlinear flowfield and a linear harmonic perturbation. The background state is usually determined by solving
the nonlinear steady-flow equations. The flow solution representing the amplitude and phase of the unsteady
perturbation is given by the solution of a large complex linear system that results from the linearization of the
time-dependent nonlinear equations about the background state. The solution procedure of the linear harmonic
Euler/Navier–Stokes solver of the HYDRA suite of parallel FORTRAN codes consists of a preconditioned multi-
grid iteration that in some circumstances becomes numerically unstable. The results of previous investigations
have already pointed at the physical origin of these numerical instabilities and have also demonstrated the code
stabilization achieved by using the real GMRES and RPM algorithms to stabilize the existing preconditioned
multigrid iteration. This approach considered an equivalent augmented real form of the original complex system
of equations. We summarize the implementation of the complex GMRES and RPM algorithms that are applied
directly to the solution of the complex harmonic equations. Results show that the complex solvers not only stabilize
the code, but also lead to a substantial enhancement of the computational performance with respect to their real
counterparts. The results of a nonlinear unsteady calculation that further emphasize the physical origin of the
numerical instabilities are also reported.

Nomenclature
A = coefficient matrix of complex system
b = right-hand side of complex linear system
F = right-hand side of Picard iteration
Fx = Jacobian of F
f = projection of F onto P
g = projection of F onto Q
H̃m = Hessenberg matrix of size ((m + 1) × m)
M = complex preconditioner
P = subspace associated with dominant modes
p = projection of x onto P
Q = orthogonal complement of P
q = projection of x onto Q
Vm = matrix of m Krylov vectors
v = eigenvector of M−1 A
vm = mth Krylov vector
x = vector unknown of complex linear equations
Z = orthonormal basis of P
z = vector of current coordinate variables of p in Z
ζ = vector of updated coordinate variables of p in Z
λ = eigenvalue of M−1 A
ρ = spectral radius
σ = asymptotic convergence rate

Received 8 April 2005; presented as Paper 2005-4705 at the AIAA 17th
Computational Fluid Dynamics Conference, Toronto, ON, Canada, 6–9 June
2005; revision received 4 November 2005; accepted for publication 17
November 2005. Copyright c© 2005 by M. Sergio Campobasso and Michael
B. Giles. Published by the American Institute of Aeronautics and Astronau-
tics, Inc., with permission. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923; include the code 0001-1452/06 $10.00 in correspondence with the
CCC.

∗Senior Research Fellow, School of Engineering. Member AIAA.
†Professor of Scientific Computation, Computing Laboratory. Member

AIAA.

I. Introduction

B LADE flutter and forced response of turbomachinery blade
rows1 are aeroelastic phenomena that may both lead to dra-

matic mechanical failures if not properly accounted for in the design
of an aeroengine. Flutter occurs if the working fluid feeds energy
into the vibrating blades, whereas forced response vibrations are
due to an external source of excitation such as the wakes shed by an
upstream blade row. The estimate of both the mean energy flux be-
tween fluid and structure in the flutter case and the unsteady forces
acting on the blades in the forced response problem requires knowl-
edge of the unsteady flowfield. The methods for the analysis of
turbomachinery aeroelasticity vary from uncoupled linearized po-
tential flow solvers2 in which the structure and the aerodynamics
are decoupled and a relatively simple flow model is used, to fully
coupled nonlinear three-dimensional unsteady viscous methods3 in
which the structural and aerodynamic time-dependent equations are
solved simultaneously and the aerodynamics is modeled using the
Reynolds-averaged Navier–Stokes equations. Within this range, the
uncoupled linear harmonic Euler and Navier–Stokes (NS) methods4

have proved to be a successful compromise between accuracy and
cost. This approach relies on the fact that the level of unsteadiness
in turbomachinery flows is usually small and, hence, views it as
a small perturbation of a space-periodic base or background flow.
This latter is typically determined by solving the nonlinear steady
flow equations, and for this reason it is often referred to as steady
flow. For reasons thoroughly discussed in Ref. 5 and briefly de-
scribed hereafter, however, there are circumstances in which the use
of the adjective steady is inappropriate, and, hence, we will refer
to the state used for the linearization as base or background flow
in the rest of this paper. Because of the cyclic periodicity of the
steady flow, the nonlinear equations are solved on a computational
domain consisting of a single blade passage. The unsteady flow-
field can then be linearized about the background state and due to
linearity can be decomposed into a sum of harmonic terms, each
of which can be computed independently. When it is assumed that
all blades of the blade row have identical structural and geometric
properties, the harmonic flow analysis can also focus on a single

1048

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.17069&domain=pdf&date_stamp=2012-05-02

CAMPOBASSO AND GILES 1049

blade passage rather than the whole blade row, leading to a great
reduction of computational costs. This is achieved by introducing a
complex periodic boundary condition that is a phase-shift between
the two periodic boundaries known as the interblade phase angle
(IBPA). The small amplitude of the unsteady aerodynamic forces
with respect to the mechanical forces also allows one to neglect
the aerodynamic coupling of structural modes, and the investiga-
tion can be carried out considering one mode at a time. In the flutter
case the main source of unsteadiness is the blade vibration asso-
ciated with the structural mode under investigation, and this latter
is determined in a preprocessing phase by means of a finite ele-
ment structural program. In the forced response problem the flow
unsteadiness originates instead from a known incoming gust, such
as the wakes shed by an upstream blade row. The interested reader is
referred to Ref. 5 for the Lagrangian formulation of turbomachinery
aeroelasticity and detailed algebraic models of the linear harmonic
Euler and NS equations in the context of blade flutter and forced
response.

The HYDRA suite of parallel FORTRAN codes includes a
nonlinear6 and a linear harmonic7 Euler/NS solver, both using the
one-equation Spalart–Allmaras turbulence model8 for closure in the
case of turbulent flows. (The validation of these codes is documented
in Refs. 5–7, 9, and 10.) The solution procedure of both solvers is
iterative and is based on Runge–Kutta time-marching accelerated
by a Jacobi preconditioner and a multigrid algorithm. This precon-
ditioned multigrid iteration can be viewed as a Picard or fixed-point
iteration (FPI). Usually, the linear code converges without difficulty,
but problems are encountered in situations in which the base flow
calculation itself fails to converge to a steady state but instead fin-
ishes in a low-level limit cycle, often related to some physical phe-
nomenon such as vortex shedding at a blunt trailing edge,11,12 tip
leakage flows,13 and unsteady shock/boundary-layer or shock/wake
interaction. In these circumstances the linear FPI on which the har-
monic code is based becomes unstable, leading to an exponential
growth of the residuals. The relationship between these numeri-
cal instabilities and the physical features of the underlying base
flow is discussed in Refs. 5 and 7, which also document the suc-
cessful implementation of a restarted GMRES algorithm14 aimed at
retrieving the numerical stability of the linear code. For large three-
dimensional problems, however, the restarted GMRES solver may
become computationally too expensive because the overall mem-
ory required by the GMRES code for an acceptable convergence
rate can be twice as much that used by the standard FPI-based code.
To overcome this problem, an alternative algorithm had been imple-
mented in the linear code HYDLIN, namely, the recursive projection
method15 (RPM). The use of RPM led to both the code stabilization
and a reduction of the memory usage with respect to the GMRES
code.5,16 As explained in the following section, we initially consid-
ered an augmented real form of the (complex) harmonic equations,
and thus we implemented the real GMRES and RPM algorithms
in the linear flow solver. However, it was later thought that the use
of the complex counterparts of these two algorithms for the solution
of the original complex system could result in a significant enhance-
ment of the computational performance. The two complex solvers
have been implemented and this has turned out to be true.

The main objectives of this paper are as follows: 1) Summarize
the implementation of the complex GMRES and RPM solvers in
HYDLIN and 2) Demonstrate the significant improvement of the
computational performance achieved by their use. In Sec. II the
real and complex FPIs are presented in the framework of the lin-
ear computational fluid dynamics (CFD) solver HYDLIN and the
mathematical and numerical implications of the real and complex
viewpoints are addressed. In Sec. III we explain why we expect
the complex GMRES algorithm to have a better performance than
its real counterpart and document the implementation of the com-
plex solver. The complex RPM algorithm is reported on in Sec. IV.
The enhanced computational performance of the complex solvers is
then demonstrated in Secs. V and VI, which consider, respectively,
the flutter analysis of a two-dimensional turbine section for a tran-
sonic flow regime and that of a civil engine fan rotor for a near-stall
operating condition. In Sec. V the results are presented of a non-

linear time-accurate simulation providing further evidence of the
relationship between the physical unsteadiness of the background
flow and the numerical instabilities of the FPI-based linear solver.
The conclusions of this work are finally summarized in Sec. VII.

II. Linear Equations and Fixed-Point Iteration
The discrete linear harmonic equations can be viewed as the com-

plex non-Hermitian linear system

Ax = b (1)

The operator A depends on the Jacobian of the nonlinear flow equa-
tions, the constant vector b depends on the source of unsteadiness
(blade motion in flutter applications and incoming gust in forced re-
sponse problems), and the complex unknown x yields the amplitude
and phase of the sought unsteady flow. The dimension k of system
(1) is given by the product of the number of grid nodes and flow
variables. For typical three-dimensional single-blade viscous aeroe-
lastic analyses, the former parameter varies between 105 and 107,
whereas the latter is equal to 6 if a one-equation turbulence model is
adopted. The construction of the linearized Euler and NS equations
represented by Eq. (1) is thoroughly documented in Ref. 5. This lin-
ear system could be solved conveniently by means of the complex
Picard iteration

xn + 1 = (I − M−1 A)xn + M−1b (2)

in which M−1 is a preconditioning operator. The linear CFD code
HYDLIN, however, has been written using real arithmetic, that is,
considering real vectors of size 2k with the factor 2 accounting for
real and imaginary parts, rather than complex vectors of size k.
This choice has been made for reasons of computational efficiency
and because of errors sometimes introduced by highly optimizing
FORTRAN compilers when dealing with complex arithmetic. In
other words, the code solves the augmented real system

A′x′ = b′ (3)

with

A′ =
(�(A) −�(A)

�(A) �(A)

)
, x′ =

(�(x)

�(x)

)
, b′ =

(�(b)

�(b)

)
The systems (1) and (3) have the same solution because if x∗ satisfies
Eq. (1), then x′∗ = [�(x∗) �(x∗)]T is the solution of system (3).
Therefore, the real Picard iteration on which the linear code is based
is

x′
n + 1 = (I − M ′−1 A′)x′

n + M ′−1b′ (4)

in which M ′−1 is a (2 × 2)block matrix with the same block structure
as A′.

The iteration (4) is mathematically equivalent to the iteration (2)
because it leads to the same real update of the solution when the
initial complex state xn of dimension k is stored in the real vec-
tor x′

n of dimension 2k. Furthermore, the numerical execution of
Eq. (4) requires fewer floating point operations than that of Eq. (2)
would because almost all elements of A are either purely real or

purely imaginary. The matrices associated with the operators M ′−1

and A′ are not built explicitly in HYDLIN because the code deter-

mines the matrix–vector products M ′−1 A′x′ directly from the nu-
merical fluxes. This matrix-free approach substantially reduces the
required memory allocation. Note also that the latter quantity would
not change if the complex FPI (2) were used, due to matrix-free
architecture.

The pseudocode of the preconditioned multigrid iteration looks
like

x′ = x′
start

x′ = MG(A′, x′, b′, ncl)

x′
finish = x′

where MG is the core routine that performs ncl multigrid cycles of
the preconditioned FPI (4), x′

start is the initial state, and x′
finish is the

solution after the ncl iterations.

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

1050 CAMPOBASSO AND GILES

The preconditioner M ′−1 consists of a five-stage Runge–Kutta al-
gorithm, a Jacobi preconditioner and a geometric multigrid scheme.
Because the Jacobi preconditioner is based on the solution of the
nonlinear steady equations, M−1 depends on the particular problem
under investigation and also on the choice of several numerical pa-
rameters, such as the number of iterations on each grid level. More
details on the preconditioned solution strategy of the linearized flow
equations can be found in Refs. 5 and 10.

III. GMRES Stabilization
Linear stability analysis of iteration (4) shows that a neces-

sary condition for its convergence is that all of the eigenvalues of

(I − M ′−1 A′) lie within the unit circle centered at the origin in the

complex plane or, equivalently, that all of the eigenvalues of M ′−1 A′

lie in the unit disk centered at (1, 0). For most aeroelastic problems
of practical interest, this condition is fulfilled and the linear code
converges without difficulty. In some cases, however, the FPI fails
to converge because of a few complex eigenvalues lying outside
the unit disc and causing the exponential growth of the residual.
The physical origin of these outliers has already been highlighted
in Ref. 7 by means of an Arnoldi-based eigenmode analysis of the
operator M ′−1 A′. That paper also reports the successful application
of a preconditioned restarted real GMRES solver for the solution of
system (3) in the presence of outliers. However, it was later supposed
that the use of the complex GMRES solver for the solution of system
(1) could result in a reduction of the computational work required
for achieving a given level of convergence. This was motivated by
the fact that the eigenspace of the complex system is a subset of
that of its real augmented counterpart. More precisely, all of the
eigenvalues of M ′−1 A′ are complex conjugate pairs, whereas only
one eigenvalue of each pair is also an eigenvalue of M−1 A. Hence,
the convergence rate of complex GMRES may be higher than that
of real GMRES for a given number of Krylov vectors because the
former solver captures more distinct (that is, not conjugate) eigen-
modes performing the same computational work. The relationship
between the real and complex spectrum can be established as fol-
lows. Let (λ, v) be an eigenpair of M−1 A. Then(�(M−1 A) −�(M−1 A)

�(M−1 A) �(M−1 A)

)(�(v)

�(v)

)
=

(�(λv)

�(λv)

)
(5)

A suitable linear combination of the rows of Eq. (5) gives(�(M−1 A) −�(M−1 A)

�(M−1 A) �(M−1 A)

)(�(v) + i�(v)

�(v) − i�(v)

)
=

(�(λv) + i�(λv)

�(λv) − i�(λv)

)
or

(M ′−1 A′)

(
v

−iv

)
= λ

(
v

−iv

)
Because M ′−1 A′ is real, taking the complex conjugate of the fore-
going equation yields

(M ′−1 A′)

(
v̄

i v̄

)
= λ̄

(
v̄

i v̄

)
Thus we see that if (λ, v) is an eigenpair of M−1 A, then(

λ,

[
v

−iv

])
is the corresponding eigenpair of M ′−1 A′. However, (λ̄, v̄) is not
necessarily an eigenpair of M−1 A, though(

λ̄,

[
v̄

i v̄

])
is an eigenpair of M ′−1 A′.

The complex GMRES algorithm is based on the progressive re-
duced Arnoldi factorization of M−1

G A,

M−1
G AVm = Vm + 1 H̃m (6)

where m is the current iteration; H̃m is a Hessenberg matrix of size
((m + 1) × m); Vm is a matrix of size (k × m) whose m columns v j ,
j = 1, . . . , m, form an orthonormal basis for the Krylov subspace
Km ; Vm + 1 is Vm augmented with a new Krylov vector vm + 1, and M−1

G
is a suitable preconditioner whose dependence on M−1 is defined
hereafter. When h j,m , j = 1, . . . , m, denotes the elements of the mth
column of H̃m , the mth column of Eq. (6) can be written as

M−1
G Avm = h1,mv1 + · · · + hm + 1,mvm + 1 (7)

which shows that vm + 1 satisfies an (m + 1)-term recursive relation
involving itself and the preceding m Krylov vectors. At the mth
GMRES iteration, the solution of Eq. (1) is approximated by the
linear combination of the m v j that minimizes the 2-norm of the
residual rm = M−1

G (b − Axm) and is thus given by xm = xstart + Vm tm ,
in which tm is the column vector containing the m coefficients of
the linear combination.

The implementation of GMRES in HYDLIN has been carried
out at the top routine level, and it has not required any change
to the routine MG, which is used as a black-box to determine the
preconditioned Krylov vectors M−1

G Av j . The computationally cheap
minimization is also performed at the top routine level, and the
pseudocode of the main HYDLIN using GMRES is

v1 = MG(A, xstart, b, ncl) − xstart; v1 = v1/‖v1‖
for m = 1 : nKr

M−1
G Avm = vm − MG(A, vm, 0, ncl)

vm + 1 from equation (7); vm + 1 = vm + 1/‖vm + 1‖
determine tm which minimizes ‖rm‖

end

xfinish = xstart + VnKr tnKr

The first Krylov vector v1 is the normalized residual of the pre-
conditioned system after ncl multigrid cycles and nKr is the overall
number of GMRES iterations. Because the iteration (2) is applied
ncl times at each GMRES iteration, the relationship between M−1

G
and M−1 is

M−1
G A = I − (I − M−1 A)ncl (8)

The choice ncl = 1 results in equal preconditioning of the Picard and
the GMRES iterations, but previous work has shown that a suitable
(case-dependent) choice of ncl can reduce the overall number of
multigrid cycles needed to achieve a given level of convergence.5,7

Note that the right-hand side of Eq. (1) is set to zero before using
MG to determine M−1

G Avm . The value of nKr required for full con-
vergence is much smaller than k, but nevertheless very large with
respect to the computing resources usually available. This problem
is overcome using the restart option, that is, performing nKr itera-
tions and restarting GMRES from the updated solution, recomputing
from there a new set of nKr Krylov vectors. This is achieved by wrap-
ping the inner loop described earlier with an outer one that restarts
GMRES each time. Values of nKr between 10 and 30 make the com-
putation affordable even for large problems, and a good convergence
level is usually achieved within 20 restarted cycles using ncl = 3.

In Sec. II, it was observed that the real FPI (4) and the complex
FPI (2) are mathematically equivalent, and the former one has been
implemented in HYDLIN because it is computationally more effi-
cient due to the particular structure of the matrices in the problem
at hand. For the same reasons, the complex GMRES solver calcu-
lates the preconditioned complex Krylov vector M−1

G Avm using the
existing real routine MG, as the real GMRES solver does. As far as
the use of this routine is concerned, the difference between the real
and the complex case is only theoretical: In the former case the sub-
vector of length k associated with the first k elements of M ′−1

G A′v′
m

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

CAMPOBASSO AND GILES 1051

and that containing the remaining k elements shall be seen as a sub-
division of a real vector of length 2k, whereas such subvectors truly
are the real and complex parts of a k-dimensional complex vector
in the latter case. The only practical differences between the real
and complex GMRES solvers are the orthogonalization (7) and the
solution of the least-square problem, which are real or complex in
either case. The complex orthogonalization and minimization re-
quire twice as many operations as their real counterparts, but their
cost is still very small with respect to the calculation of M−1

G Avm .
When the extra CPU time required for the Arnoldi orthogonaliza-
tions and the solution of the optimization problem is included in
the cost of one multigrid cycle, the CPU time for executing a given
number of multigrid cycles using complex GMRES with ncl = 3 and
10 ≤ nKr ≤ 30 is only from 1 to 2% higher than using the FPI (4).
For a given nKr , the extra memory allocation of the complex and
real solvers are the same. However, all of the test cases analyzed
so far have highlighted that the complex solver has a substantially
better numerical performance than its real counterpart because it
requires significantly fewer multigrid iterations to achieve a given
convergence level.

IV. RPM Stabilization
The price to be paid for the GMRES stabilization is the burden

associated with the extra memory allocation for the Krylov vec-
tors. To stabilize the linear code reducing the additional memory
requirement, the complex RPM solver had also been implemented
in HYDLIN. Its real counterpart had already been implemented,
and it has led to the code stabilization with the desired memory
reduction.17 The benefit of using the complex version is a further
reduction of the required memory, as shown hereafter.

The complex RPM solver is based on the projection of the Picard
iteration (2) onto two orthogonal subspaces P and Q of Ck . The
former is the maximal invariant subspace associated with the subset
of l outliers and the latter is the orthogonal complement of the
former subspace. At each RPM iteration, only the projection of
Eq. (2) onto the subspace Q is solved with the Picard iteration; the
projection onto the typically low-dimensional subspace P is instead
solved with Newton’s method. When Z denotes an orthonormal
basis of P , the orthogonal projectors P and Q of the subspaces
P and Q are defined, respectively, as P = Z Z H and Q = I − P .
Each time the calculation is diverging, the basis Z is augmented
with the current dominant eigenmode, and the projectors P and Q
are updated accordingly. When F denotes the right-hand side of the
Picard iteration (2), the projections f and g of this equation onto P
and Q are defined, respectively, as

f = PF = P[(I − M−1 A)x + M−1b]

g = QF = Q[(I − M−1A)x + M−1b]

and the stabilized iteration can be written as

pν + 1 = pν + (I − f p)
−1[f (pν, qν) − pν] (9)

qν + 1 = g(pν, qν) (10)

where

p = Px, q = Qx, f p ≡ P Fx P, Fx = I − M−1 A

Note that Eq. (9) requires the inversion of (I − f p) : P →P , which
is the restriction of (I − Fx) to the subspace P , and is therefore
equivalent to (I − f p)P . It is easily verified that

(I − f p)
−1 P = Z [I − Z H (I − M−1 A)Z]−1 Z H = Z [I − H]−1 Z H

(11)

where (I − H) is a small matrix of size l, whose inversion requires
minimum computational effort. The stability analysis of this algo-
rithm shows that its spectral radius is smaller than 1, that is, the
stabilized RPM iteration is stable.15

The basis Z is updated directly from the iterates qν of the modified
iteration (10), without computing Jacobians. This is done by moni-
toring the rate of convergence of the iterates qν . If the residual starts

growing, it is argued that some of the eigenvalues of gq = QFx Q lie
outside the unit circle. When the real Picard iteration (4) is consid-
ered, the instability is usually caused by a complex conjugate eigen-
pair, and two real vectors of dimension 2k have to be appended to
Z . When the complex system is considered, however, the instabil-
ity is caused by a complex eigenvalue and, consequently, only one
complex vector of dimension k has to be included in Z , thus halving
the memory allocation. This procedure can be used to append to Z
not only the unstable eigenmodes, but also the stable ones whose
eigenvalues are very close to the unit circle, allowing one to speed
up the convergence rate even in the absence of outliers. The inter-
ested reader is referred to Refs. 15 and 16 for the description of the
procedure to augment Z . In the current implementation, we work
recursively, adding one eigenmode at a time to Z until a satisfactory
convergence rate is obtained. However, one could also look for more
than one dominant mode at a time and include in Z all of the modes
needed for stabilizing the initial FPI. The experience gained so far
makes us believe that this approach would require fewer iterations to
achieve the desired level of convergence. Looking for one dominant
mode at a time, in fact, may result in a longer numerical transient
because the RPM iteration continues to diverge until all outliers
have been included in P . On the other hand, the single-mode search
is likely to yield a reduced memory usage because the memory for
storing a new vector of Z can be allocated dynamically only when
the convergence rate needs to be improved. Looking for all unstable
modes at a time, conversely, would require assuming the number of
unstable modes and allocating all of the corresponding memory as
soon as the first instability is detected. Hence, computer memory
is wasted each time the actual number of unstable modes of the
problem at hand is less than the assumed value.

In the actual computation, one introduces a vector z of length l
whose elements are the coordinate variables for the representation
of p in the basis Z ,

z ≡ Z H p = Z H x

from which it follows that

p = Zz, x = Zz + q

The iteration (9) in the subspace P can be written in these variables
using Eq. (11) and observing that Z H Z = I ,

zν + 1 = zν + (I − H)−1
[

Z H F(xν) − zν

]
The implementation of the complex RPM solver in HYDLIN has
been carried out at the top routine level. Similarly to the GMRES
case, the implementation of RPM does not require any change to
the existing real routine MG that is used to determine the projection
q of the solution x onto Q [Eq. (10)]. The two subvectors of length
k associated with the first k elements of M ′−1

G A′x′
ν and the remain-

ing k elements shall be viewed as the real and complex parts of a
k-dimensional complex vector. The computationally cheap inver-
sion of the complex matrix (I − H) along with the other Hermitian
vector products is carried out at the top routine level, and the pseu-
docode of the main HYDLIN using complex RPM is

Z = []; l = 0; ν = 0; xν = xstart

while ‖ b − Axν‖ > tolerance

xν + 1 = MG(A, xν, b, ncl)

% stabilized iteration

if l > 0

zν = Z H xν; ζν = Z H xν + 1;
zν + 1 = zν + (I − H)−1(ζν − zν)

qν + 1 = xν + 1 − Zζν

xν + 1 = Zzν + 1 + qν + 1

endif

ν = ν + 1

% increase basis size

if not converging

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

1052 CAMPOBASSO AND GILES

Z = [Z d]; l = l + 1; ; ν = 0

for j = 1 : l

H(:, j) = Z H MG(A, Z(:, j), 0, ncl)

end

endif

end

xfinish = qν + 1 + Zzν + 1

The section of the pseudocode labeled stabilized iteration corre-
sponds to the implementation of Eqs. (9) and (10). At each step
of the stabilized iteration ncl multigrid cycles are performed, as set
by the last argument of MG. In the section labeled “increase basis
size,” the column vector d containing the eigenmode associated with
the current outlier is appended to Z . Thereafter, the subroutine MG
is used to determine the columns of Fx Z by setting b = 0 and per-
forming ncl multigrid cycles on each column of Z . Then the matrix
H is updated according to Eq. (11).

Let us denote by σ the asymptotic convergence rate of the RPM
iteration after all outliers have been appended to P . This parameter
is the slope of the curve “residual vs number of multigrid cycles,”
and its mathematical definition is

σ = �[log(rms)]/NMG

where rms is the rms of the nodal residuals of the linearized flow
equations and � denotes its variation over NMG multigrid cycles.
The paper by Shroff and Keller15 shows that the spectral radius
ρ of the RPM-stabilized iteration is that of the operator obtained
by projecting M−1 A onto the (final) stable subspace Q. Hence, it
follows that

σ ≈ log ρ (12)

The theoretical analysis and the numerical results in Ref. 5 show that
σ is independent of ncl. However, the overall number of multigrid
cycles needed to achieve a given level of convergence is constant
only for ncl ≤ 10 and increases for ncl > 10 due to the higher level of
the residual when the last outlier is appended to P and RPM starts
converging. Indeed, the relationship (12) also holds for the standard
FPI (2), namely, when the invariant space P is kept empty. In this
circumstance σ will clearly be positive if M−1 A has one or more
outliers. Note also that σ has the same value in both the real and
complex implementation of RPM because the real operator M ′−1 A′

and the complex operator M−1 A have the same spectral radius.
The additional CPU time used by the complex RPM solver with

respect to the standard FPI code is that required for the Hermitian
vector products of the stabilized iteration, the calls of MG to update
H , and the inversion of H . This computational cost grows with l.
The order of magnitude of this parameter based on the problems
investigated so far varies between 1 and 10 and the operations listed
earlier are fairly inexpensive for values of l in this range. When
this additional CPU time is included in that required for performing
a multigrid cycle and MG is used with ncl = 1, the CPU time for
executing a given number of multigrid cycles using complex RPM
in a problem with l ≤ 5 is less than 1% higher than using the stan-
dard FPI. The additional memory required by the implementation
of the complex RPM algorithm in HYDLIN is that needed for the
vectors of the basis Z and is given by 2k × (l + 1) × vs , in which
the factor 1 accounts for a new work array and vs is the memory
required for storing a single scalar. By comparison, the extra mem-
ory allocation required by GMRES is 2k × (nKr + 1) × vs and is
independent of the number of outliers. All codes of the HYDRA
suite have been implemented using double precision, and in this
circumstance vs = 8 bytes.

V. Two-Dimensional Turbine Section
A. Real and Complex GMRES

The two-dimensional turbine section of the 11th standard config-
uration is the midspan blade-to-blade section of an annular turbine

cascade with 20 blades. The test rig and cascade geometry are de-
scribed in Ref. 18, which also provides experimental measurements
and various computed results of the steady and unsteady flowfield
due to blade plunging with prescribed IBPA. Two steady working
conditions are considered: a subsonic one with exit Mach number
of 0.68 and a transonic one with exit Mach number of 0.96. The fre-
quencies of the imposed blade vibration at these two flow conditions
are 209 and 212 Hz, respectively. This test case had already been
used to demonstrate the predictive capabilities of HYDLIN and to
test the real GMRES solver,7 as well as to test the real RPM solver.16

In this paper, it will be used to demonstrate the effectiveness of the
complex GMRES and RPM algorithms.

The computational grid used for the investigation is a quasi-
orthogonal H-type mesh with medium refinement: It has 273 nodes
in the streamwise and 65 nodes in the pitchwise directions, for a
total of 17,745 grid nodes. A preliminary mesh-refinement analysis
carried out using a coarser 7869-node (183 × 43) and finer 39,673-
node (409 × 97) mesh has shown no difference of practical interest
between the results obtained with the medium and finer grids. The
coarse mesh is shown in Fig. 1a, whereas Fig. 1b shows the Mach
contours associated with the transonic flow regime. They reveal
the existence of a separation bubble on the suction side close to
the leading edge and a shock impinging on the suction side close

a)

b)

Fig. 1 Two-dimensional turbine section: a) computational mesh and
b) Mach contours for transonic conditions.

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-000.jpg&w=234&h=181
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-001.jpg&w=234&h=236

CAMPOBASSO AND GILES 1053

Fig. 2 Flutter analysis of two-dimensional turbine, IBPA = 180 deg:
convergence histories of complex and real GMRES solvers (ncl = 3).

to the trailing edge and crossing the wake shed by the upper blade.
Note also that both the wake and the boundary layer on the suction
side thicken remarkably after passing through the shock.

The calculation of this transonic nonlinear base flow has been
carried out using the nonlinear flow solver HYD, whose iterative
solution strategy is based on a preconditioned multigrid iteration6

similar to that used by HYDLIN. The nonlinear code has been used
with three grid levels for the multigrid solver, and its residuals have
converged to within machine accuracy. On the other hand, the linear
calculations based on the transonic base flow and using the standard
FPI (4) with the same numerical control parameters of the nonlinear
calculation diverge for all IBPAs. This is emphasized by the conver-
gence history labeled FPI in Fig. 2, which refers to the calculation
of the harmonic flowfield with IBPA = 180 deg. The variable on the
x axis is the number of multigrid cycles, and that on the y axis is
the logarithm in base 10 of the rms of the nodal residuals of the
continuity, momentum, energy, and turbulence equations evaluated
at the end of each multigrid cycle. (In practice, this variable is the
rms of the unpreconditioned residuals.) The exponential growth of
the residuals could be removed neither by lowering the Courant–
Friedrichs–Lewy number nor by changing the grid topology and
refinement. Other attempts to suppress the numerical instabilities
included the following: 1) varying the multigrid control parameters
and 2) performing single-grid calculations. In none of these cases
could a converged solution be determined.

Conversely, the use of GMRES allows one to retrieve the conver-
gence of the linear code. Figure 2 also shows the logarithm of the
rms using both the complex and the real implementation with vari-
ous values of nKr and ncl = 3. Figure 2 shows that, for a given nKr ,
the number of multigrid cycles required to obtain a converged solu-
tion is always significantly smaller when using the complex solver.
An equivalent interpretation of the results of Fig. 2 is that a given
asymptotic convergence rate σ can be achieved with fewer Krylov
vectors when the complex rather than the real solver is used. More
precisely, the ratio between the number of Krylov vectors needed to
obtain the same σ using the real and the complex solvers tends to
two as nKr increases. This behavior can be explained by the fact that
the eigenspace of the complex system is a subset of that associated
with its real augmented counterpart. The latter results by doubling
the former through complex conjugation. For a given nKr , the com-
plex solver looks for more distinct dominant eigenmodes converging
faster to the solution, whereas the real solver has to spend one-half
of its resources identifying the fictitious conjugate modes.

The number of Krylov vectors per restarted GMRES cycle nKr

and the number of preconditioned multigrid cycles per GMRES
iteration ncl significantly affect the convergence rate σ of the linear
calculations. The latter dependence is analyzed in Ref. 5, whereas
the GMRES convergence histories of Fig. 2 show that σ increases
monotonically with nKr for both the real and the complex algorithm.
The price to be paid for this convergence speed up is the additional
memory needed for the Krylov vectors. The memory and CPU-time

Table 1 Flutter analysis of two-dimensional turbine:
Memory and CPU time required by complex GMRES

solver for various nKr and ncl = 3

Memory, Additional CPU Additional
nKr MB memory, % time, s CPU time, %

—— 55 —— 23.01 ——
10 71 34 23.22 0.91
20 87 64 23.25 1.04
40 119 124 23.37 1.56
80 184 247 23.63 2.69
160 314 492 24.09 4.69

requirements of the FPI and complex GMRES codes are compared
in Table 1. The second column reports the memory used by the linear
code in megabytes. The first entry of the column is the memory used
by the FPI-based code, whereas the following five elements provide
the memory allocated by the GMRES code for the values of nKr in
the first column. The third column reports the additional memory of
the GMRES code with respect to that used by the Picard iteration
as a percentage increment of this latter value. Note that the use of
GMRES with 40 Krylov vectors already requires more than twice as
much memory as the standard FPI. The averaged cost of a multigrid
cycle performed by the GMRES code is also higher than that of
the standard FPI due to the Arnoldi factorization and the solution
of the optimization problem performed at each GMRES step. This
extra cost, however, is very small. The fourth column of Table 1
provides the CPU time required for the execution of one multigrid
cycle using either solver. The first entry refers to the FPI, whereas
the remaining five elements refer to the GMRES code run with the
value of nKr given in the first column. These five numbers have
been obtained by dividing the overall CPU time taken to run the
GMRES solver by the overall number of multigrid cycles executed
by HYDLIN. Note that this is an averaged cost of the multigrid cycle
because the amount of operations of the Arnoldi factorization is not
constant at each GMRES step, but rather increases with the current
number of Krylov vectors involved in the orthogonalization. These
results demonstrate that the additional CPU time of the GMRES
solver is very small, and this conclusion is further emphasized in
the fifth column of Table 1, which presents this additional cost as
a percentage increment with respect to the reference CPU time of
one multigrid cycle of the FPI code. (When 40 Krylov vectors are
used, for instance, the additional CPU time is only 1.6% higher.)
For this reason, the variable on the x axis of the convergence plot in
Fig. 2 can also be viewed as a scaled CPU time. All of the data of
Table 1 have been obtained benchmarking HYDLIN on a Sun Blade
1000 workstation. These calculations have also been carried out
using the parallel code on eight processors of the OCCF computer
cluster consisting of 24 four-processor Sun Ultra-80 nodes, with a
Sun Blade-1000 front end. With this setup, the execution of 1000
multigrid cycles with nKr = 20 is about 38 min.

B. Spectral Analysis
To investigate the origin of the numerical instability of the FPI,

the first 150 dominant eigenmodes of M−1 A have been determined
using the Arnoldi-based procedure described in Refs. 7 and 5, and
this required performing 150 GMRES iterations (nKr = 150), with
ncl = 1. This choice of ncl allows one to determine the eigenmodes
of M−1 A because it leads to the equality M−1

G A = M−1 A, which fol-
lows from Eq. (8). The first 150 dominant eigenvalues are plotted in
the complex plane of Fig. 3a, and the first four dominant eigenval-
ues are labeled from 1 to 4 in order of decreasing distance from the
center of the unit disk in the three enlarged views in Fig. 3b. Note
that the first two eigenvalues are complex outliers, and these are re-
sponsible for the instability of the standard FPI (4). In fact, inserting
the data relative to the slope σO A of the ascending branch OA of the
FPI residual curve (Fig. 2) and the spectral radius of (I − M−1 A)
(radius of the outlier 1) into Eq. (12) yields 47.31e−3 ≈ 47.53e−3,
which demonstrates the correctness of the mathematical analysis.

The static pressure contours of the eigenvectors associated with
the eigenvalues 1 and 3 are shown in Figs. 4a and 4b, respectively.

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-002.jpg&w=235&h=166

1054 CAMPOBASSO AND GILES

a) b)

Fig. 3 Flutter analysis of the two-dimensional turbine, IBPA = 180 deg: a) first 150 dominant eigenvalues of M−1A and b) enlarged views with outliers.

a)

b)

Fig. 4 Pressure amplitude of dominant eigenmodes: a) eigenvector as-
sociated with outlier 1 and b) eigenvector associated with eigenvalue 3.

More precisely, Figs. 4a and 4b show the contours of the amplitude
of the static pressure nondimensionalized by the peak pressure am-
plitude. The maximum pressure amplitude of the eigenvector corre-
sponding to the outlier 1 occurs at the edge of the separation bubble
on the suction surface, and it has nonzero amplitudes only in a tiny
neighborhood around it (Fig. 4a). This shows that the origin of the
numerical instability is the limit cycle associated with the unsteady
character of this flow separation. The eigenmode associated with the
outlier 2 looks exactly like that just described and, therefore, is not

reported here. Figure 4b shows that the pressure amplitude of the
eigenvector associated with the eigenvalue 3 is slightly less localized
than the former two. In fact, one can now observe patches of nonzero
amplitudes in both the separation and the shock regions, but also at
the stagnation point on the pressure side close to the leading edge,
where the gas stream experiences a strong acceleration. This mode
does not lead to any numerical instability because the eigenvalue 3
lies in the unit disk. In the absence of outliers, however, it would
be responsible for a very low convergence rate of the standard FPI
because of the proximity of its eigenvalue to the unit circle.

This modal analysis has been carried out for all other IBPAs, and
it has been found that the first few dominant eigenmodes do not vary
with the IBPA despite that M−1 A depends on it.5,7 This observation
is in line with the fact that the standard FPI is unstable for all IBPAs.
The independence of the unstable modes on the IBPA is presumably
due to their high spatial localization.

C. Real and Complex RPM
The convergence histories of the real and complex RPM solvers

performing one multigrid cycle per stabilized iteration (ncl = 1) are
provided in Figs. 5a and 5b, respectively. The residual curves of
the FPI-based code and the GMRES solver using nKr = 20 and
ncl = 3 are also reported on for completeness. The discontinuities
of the RPM convergence curves at the iterations labeled 1 and 2
in Figs. 5a and 5b occur when the first two dominant modes, that
is, the two outliers with the same labels in Fig. 3b, are included
in the unstable eigenspace P . The slope of the branches 3E0 is
determined by the spectral radius of the projection of M−1 A onto the
stable space Q, which at this stage is the distance of the eigenvalue
3 from the center of the unit disk in Fig. 3a. Note that this value
is the same for both the real and complex operators, and the only
difference between the two cases is that the complex conjugate of the
eigenvalue 3 is also an eigenvalue of the real operator. This explains
why the slope of the branch 3E0 is the same in the real and complex
convergence plots. The same observations apply to the branches
30 E1: The convergence speed up occurring at the iteration labeled
3 takes place when the dominant eigenvalue 3 is also appended to
P . The branches 30 E1 are steeper than the branches 3E0 because
the spectral radius of the stabilized iteration is now determined by
the eigenvalue 4, which is closer than the eigenvalue 3 to the center
of the unit disk. Inserting in Eq. (12) the computed data relative
to the slope of the branch 30 E1 and the radius of the eigenvalue
4 yields −20.31e−3 ≈ −21.04e−3, which proves once again the
correctness of the mathematical analysis and code implementation.

The overall number of iterations needed to achieve a given con-
vergence level using either real or complex RPM is comparable, and
it differs only because of the numerical transient during which all

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-003.jpg&w=209&h=204
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-004.jpg&w=209&h=186
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-005.jpg&w=159&h=159
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-006.jpg&w=159&h=159

CAMPOBASSO AND GILES 1055

a)

b)

Fig. 5 Flutter analysis of two-dimensional turbine, IBPA = 180 deg:
convergence history of a) real and b) complex RPM iterations.

outliers are appended to P . The substantial difference between the
real and complex solvers is one-that the additional memory required
by the complex solver is one-half that of the real one. This is because
the real system has twice as many unstable modes as its complex
counterpart, as explained in Sec. IV. This memory saving can be
crucially important for large three-dimensional problems when the
computing resources are limited. In this test case, however, the dif-
ference between the memory of 62 MB of the complex solver and
that of 66 MB of the real solver is quite small because the unstable
space P contains only three dominant modes. On the other hand,
Fig. 5b shows that the complex RPM solver allows one to achieve
a convergence rate similar to that of complex GMRES 20 with a
substantially lower memory allocation because the memory used
by HYDLIN in the latter case is 87 MB. The cost of a multigrid
cycle in the framework of the complex RPM code is about 0.3%
higher than in the FPI-based code.

The first three dominant eigenvalues of M−1 A have also been
determined by examining the eigenmodes of the matrix H . (This
technique is documented in Refs. 5 and 16.) These estimates are
shown with an empty circle in Fig. 3b. The RPM eigenvalues are in
very good agreement with those obtained with Arnoldi’s method.
The RPM estimates of the first three dominant eigenvectors of M−1 A
have also been found to be in excellent agreement with those pro-
vided in Fig. 4.

D. Nonlinear Unsteady Analysis
So far the hypothesis that the numerical instability of the har-

monic solver is due to the limit cycle associated with the unstable
separation bubble is only based on the inspection of the dominant
eigenvectors of M−1 A. It has been proposed, however, that a more
rigorous investigation of the relationship between the numerical in-
stabilities and the small unsteadiness of the background flow should
be based on the spectral analysis of the operator A, which does
not include any preconditioning and, thus, corresponds exactly to
the linearization of the nonlinear unsteady flow equations. Eventual

unstable eigenmodes determined in this way would exactly corre-
spond to physical instabilities of the nonlinear flowfield. Because
these numerical instabilities appear to be independent of the IBPA,
one could still use a single blade passage for the modal analysis,
and the complex periodic boundary condition would thus reduce to
the real one used for the nonlinear equations. The Arnoldi-based
eigenmode analysis would be performed turning off all precondi-
tioners, but unfortunately this would lead to an extremely poor con-
vergence rate. Furthermore, the memory requirement would also
become very high because of the large number of Krylov vectors
one would have to use to achieve a good level of convergence. As
explained in Ref. 5, in fact, this condition is required for an accurate
estimate of the dominant eigenmodes.

An alternative and conceptually simpler approach is to investigate
the purely aerodynamic unsteadiness by solving directly the nonlin-
ear time-dependent flow equations with a motionless grid. This is
the strategy we have adopted for the investigation, and despite that
the numerical instabilities are independent of the IBPA of the blade
vibration, two blade passages rather than a single one have been used
for calculating the nonlinear time-dependent flowfield. This choice
has been made to overcome possible mismatches between the linear
and nonlinear codes arising from the lack of nonreflecting boundary
conditions19 in the latter one. This issue is carefully examined by
Campobasso,5 making use of the dispersive relation of the Euler
equations. Reference 5 also summarizes the implementation of the
dual time-stepping algorithm20 used by the nonlinear flow solver
HYD for the integration of the time-dependent flow equations.

Figure 6a shows the computational domain for the calculation of
the nonlinear time-accurate flowfield associated with the transonic
flow regime along with the positions of 16 points at which the un-
steady flowfield is sampled. Note that the first eight points all belong
to the first passage. The positions labeled 1 and 8 are close to the
inflow and outflow boundaries, respectively, where the flowfield is
expected to be fairly stable. On the other hand, the points labeled
from 2 to 7 have been positioned in the regions where some unsteady
flow phenomena could occur. As could be found by superimposing
this map on the Mach contour plot of Fig. 1b, points 2 and 3 are at
the front edge of the separation bubble, point 4 is at the rear edge,
point 5 is on the shock, point 6 is at the intersection between the
shock and the suction side boundary layer, and point 7 is behind the
trailing edge. The other eight points labeled from 9 to 16 belong
to the second passage, and their positions have been obtained by
adding a blade pitch to the circumferential coordinate of the first
eight points.

The flowfield determined by solving the nonlinear steady equa-
tions has been used as a starting solution of the time-accurate sim-
ulation with a motionless grid. The unsteady equations have been
solved on an overall time interval of 2.0e−2 s using 1024 inter-
vals for the time integration. This integration time is that taken
by eight cycles of the sought unsteady phenomena assuming a fre-
quency of 400 Hz, which is nearly twice the vibration frequency
of 212 Hz. This choice of the parameters for the unsteady calcula-
tion would give 128 intervals per period at the assumed frequency.
Figure 6b shows the time-dependent variation of the static pressure
with respect to its mean value at the eight probe locations in the first
passage over the interval of integration. The only significant fluctu-
ations occur at the front edge of the separation bubble (points 2 and
3), and some smaller instabilities are also visible at the rear edge
(point 4). The maximum amplitude of these oscillations is of the or-
der of 1 Pa and is thus substantially smaller than the mean pressure
field that is of the order of 1.0e5 Pa. The static pressure histories at
the eight probe points in the second passage (not reported here for
brevity) highlight the same pattern of unsteadiness observed in the
first passage. Note also that the time step used for this calculation
is not small enough to deliver a fully time-resolved solution, and
this is a symptom of the fact that the frequency of the aerodynamic
unsteadiness is higher than the assumed frequency of 400 Hz and,
therefore, is even higher than the mechanical frequency of vibration.

These results confirm the physical origin of the numerical insta-
bilities of the FPI-based linear code. Furthermore, the nonlinear
analysis corroborates the assumption that the amplitude of the

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

1056 CAMPOBASSO AND GILES

a)

b)

Fig. 6 Unsteady flow analysis of two-dimensional turbine section:
a) computational domain of nonlinear time-accurate calculation and
positions at which unsteady flow is sampled and b) time-dependent pres-
sure at positions from 1 to 8 (first passage).

oscillatory phenomena causing the numerical instabilities is small,
and it also reveals that their frequency is substantially different from
that of the unsteady flow associated with the blade vibration. In
these circumstances the effects of the background unsteadiness on
the output of engineering interest can therefore be neglected.

Note, finally, that these unsteady analyses are quite lengthy, de-
spite that they are two-dimensional. The time-dependent calculation
reported in this section has required nearly 3 days of CPU time using
eight processors of the OCCF computer cluster.

VI. Three-Dimensional Fan Rotor
A. Real and Complex GMRES

The second test case we consider is the three-dimensional fan
rotor of a civil turbofan engine with 26 blades. The linear flutter

a)

b)

Fig. 7 Three-dimensional fan rotor: a) blade geometry and surface
mesh and b) convergence histories of complex and real GMRES solvers
(IBPA = 180 deg and ncl = 3).

analysis of the first flap mode for four points of a constant-speed
working line is reported in Ref. 7, in which this test case is used to
demonstrate the effectiveness of the real GMRES solver for a typical
industrial problem. The calculations of the unsteady flowfield of this
rotor linearized about any of the four working conditions failed to
converge for all IBPA when the FPI (4) was used, but convergence
could be restored by using the real GMRES solver. Here we consider
again this test case to test the complex GMRES algorithm.

The surface mesh of two blades and the hub end wall is shown in
Fig. 7a. This grid has only 157,441 nodes and is quite coarse, but
similar observations to those reported in this section have also been
made adopting finer computational meshes and analyzing similar
test cases. Because of the grid coarseness in the wall proximity,
wall functions have been used to resolve the wall boundary layers.

The convergence histories of Fig. 7b refer to the calculation of
the linear harmonic flowfield with IBPA = 180 deg based on a near-
stall flow regime (working condition labeled D in Fig. 9a of Ref. 7).
Four grid levels have been used for both the nonlinear and the linear
calculations, and all other numerical control parameters are also the
same in either case. The convergence history of HYD (not reported
here) showed that the residuals of the nonlinear equations drop by
more than three orders of magnitude and then end up in a low-
amplitude limit cycle. The residuals of the linear FPI, however,
grow exponentially. This is pointed out by the curve labeled FPI in
Fig. 7b, which shows again that convergence is retrieved by using
GMRES. The better numerical performance of the complex GMRES
solver over that of its real counterpart is also observed in this test
case. The GMRES residual histories of Fig. 7b, in fact, have been

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-009.jpg&w=188&h=205
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-010.jpg&w=211&h=298
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-011.jpg&w=120&h=199
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-012.jpg&w=234&h=168

CAMPOBASSO AND GILES 1057

Table 2 Flutter analysis of
three-dimensional fan rotor: memory

required by GMRES solver for various nKr

Memory, Additional memory,
nKr MB %

8 571 29
15 672 52
30 888 101
60 1320 199

obtained by using either implementation for various values of nKr

and ncl = 3. As expected, the ratio between the number of Krylov
vectors needed to achieve the same asymptotic convergence rate σ
using either the real or the complex solver is about two due to the
duplication of the eigenmodes. Thus, the complex algorithm always
needs significantly fewer multigrid cycles to go to convergence for
a given number of Krylov vectors.

Similarly to the turbine test case, the asymptotic convergence
rate σ of both the real and complex GMRES algorithm increases
monotonically with nKr . The price for the code stabilization and the
convergence speed up is once more the additional memory burden.
The memory requirement of the GMRES code for four values of
nKr is reported in Table 2. The second column provides the overall
memory allocation of HYDLIN corresponding to the values of nKr

given in the first column. The additional memory with respect to the
reference value of 441 MB that the FPI-based code would require
are provided in the third column as percentage increments. Note that
the use of GMRES with 30 Krylov vectors already requires twice
as much memory as the FPI. The CPU time for performing a given
number of multigrid cycles using complex GMRES with ncl = 3 and
10 ≤ nKr ≤ 30 is only from 0.82 to 1.37% higher than using the FPI
(4). All of the linear calculations of this test case have been run using
eight processors of the OCCF computer cluster, and the execution
of 100 multigrid cycles with nKr = 30 required about 1.5 h.

B. Spectral Analysis
The first 150 dominant eigenmodes of M−1 A determined using

Arnoldi’s method with ncl = 1 are plotted in the complex plane of
Fig. 8a. The first six eigenvalues are labeled from 1 to 6 in order of
decreasing distance from the center of the unit disk in the four en-
larged views of Fig. 8b. Note that the first four are outliers, and these
are the modes causing the instability of the FPI (4). In fact, inserting
the data relative to the slope σO A of the ascending branch OA of the
FPI residual curve (Fig. 7b) and the spectral radius of (I − M−1 A)
(radius of outlier 1) into Eq. (12) yields 39.60e−3 ≈ 40.18e−3,
which confirms the correctness of the mathematical analysis.

Both the Arnoldi (see Refs. 5 and 7) and the RPM5,16 modal
analysis show that the eigenvectors associated with the complex
eigenvalues 1 and 2 correspond to a mild hub corner stall, whereas
those associated with the pairs 3 and 4 correspond to a separation
bubble on the suction side close to the leading edge in the hub region.
Therefore the numerical instabilities of the standard linear iteration
are due to the fact that the linearization of the unsteady equations
is performed around a base flow containing traces of these two
unsteady phenomena. The eigenmode corresponding to the complex
conjugate pair 5 takes nonzero values both at the same locations as
the first four and in the proximity of a shock on the suction side
close to the blade tip. Similarly to the turbine test case, the dominant
eigenmodes just described have been found to be independent of the
IBPA, and this might be due again to their high spatial localization.

C. Real and Complex RPM
The convergence histories of the real and complex RPM solvers

performing one multigrid iteration per stabilized iteration (ncl = 1)
are provided in Figs. 9a and 9b, respectively. The residual curves
of the FPI-based code and the GMRES solver using nKr = 30 and
ncl = 3 are also shown for completeness. The discontinuities of the
RPM convergence curves at the iterations labeled from 1 to 4 in
Figs. 9a and 9b occur when the first four dominant modes, that is,
the four outliers with the same labels in Figs. 8b, are included in

a)

b)

Fig. 8 Flutter analysis of three-dimensional fan rotor, IBPA = 180 deg:
a) first 150 dominant eigenvalues of M−1A and b) enlarged views with
outliers.

the unstable eigenspace P . The slope of the branches 5E0 is deter-
mined by the spectral radius of the projection of the preconditioned
operator onto the stable subspace Q, which is the distance of the
eigenvalue 5 from the center of the unit disk (Fig. 8a): This value is
the same for both the real and complex operators and, for this reason,
the slope of the branch 5E0 is the same in the real and complex con-
vergence plots. The same remarks apply to the branches 50 E1: The
convergence speed up occurring at the iteration labeled 5 takes place
when the dominant eigenvalue 5 is also appended toP . The branches
50 E1 are steeper than the branches 5E0 because the spectral radius
of the RPM iteration is now determined by the eigenvalue 6, which
is closer than the eigenvalue 5 to the center of the unit disk. Inserting
in Eq. (12) the computed data relative to the slope of the branch 50 E1

and the radius of the eigenvalue 6 yields −8.28e−3 ≈ −8.15e−3,
which demonstrates once again the correctness of the mathematical
models presented in the preceding sections. The overall number of
iterations needed to achieve a given convergence level using either
real or complex RPM is comparable, and it differs only because of
the numerical transient during which all outliers are appended to P .
The only difference between the real and complex solvers is again
that the additional memory required by the complex solver is one-
half that needed by the real solver. In this case, the total memory
used by the real and complex RPM-based HYDLIN are 615 and
528 MB, respectively. However, more importantly, Fig. 9b shows
that the complex RPM solver allows one to achieve a convergence
rate similar to that of complex GMRES 30 with a substantially lower
memory allocation because the GMRES code required 888 MB. The

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-013.jpg&w=215&h=208
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-014.jpg&w=216&h=169

1058 CAMPOBASSO AND GILES

a)

b)

Fig. 9 Flutter analysis of three-dimensional fan rotor, IBPA = 180 deg:
convergence history of a) real and b) complex RPM iterations.

cost of a multigrid cycle in the framework of the complex RPM code
is about 1% higher than in the FPI-based code.

The first five dominant eigenvalues in Fig. 8b are also marked
with an empty circle. This symbol denotes the estimates of the least
stable modes of M−1 A based on the eigenvalues of the matrix H .
The RPM eigenvalues are in very good agreement with the first five
eigenvalues determined with Arnoldi’s method. Similarly, the first
five dominant eigenvectors of M−1 A have been computed using
the eigenvectors of H , and they have been found to be in excellent
agreement with those determined using Arnoldi’s method.

VII. Conclusions
The stabilization of an existing linear flow solver based on a

preconditioned multigrid iteration had been achieved by using two
alternative methods, GMRES and RPM. This paper has presented a
comparative analysis of the real and complex implementations of the
GMRES and RPM algorithms. The GMRES- and RPM-stabilized
harmonic codes have been used to compute and analyze the un-
steady flowfield due to the blade vibration of a two-dimensional
turbine section and a three-dimensional fan rotor. A time-accurate
nonlinear analysis of the flowfield of the former test case has also
been carried out to provide further evidence of the relationship be-
tween the unsteady flow features of the background state and the
numerical instabilities of the FPI.

The linear harmonic flow equations can be viewed either as a
complex or a real augmented system. The use of the preconditioned
multigrid iteration for solving either form is mathematically equiva-
lent. Numerically, the real iteration needs fewer floating point oper-
ations because most elements of the linear operator arising from the
linearization of the nonlinear unsteady equations are either purely
real or purely imaginary. Therefore, the choice of real arithmetic for
the implementation of the core part of the linear code performing
the preconditioned FPI was made on the basis of the reduced num-
ber of operations and also the better code optimization achieved by
FORTRAN compilers with real, rather complex arithmetic.

The same conclusions, however, do not hold when the restarted
GMRES algorithm is used to solve either the complex system or its
augmented real counterpart: For a given number of Krylov vectors
per restarted cycle the number of preconditioned multigrid cycles
required to drop the residuals by a given amount is substantially
lower when GMRES is applied to the complex equations. In par-
ticular, the numerical investigations carried out so far show that the
same convergence rate of the residuals can be obtained by using
either the complex GMRES solver with a given number of Krylov
vectors or the real solver with twice as many vectors. This is possi-
bly because the eigenmodes of the complex system are duplicated
through the complex conjugation when the real augmented system
is considered. This feature plays a significant role for the application
of the linear harmonic flow analysis to the daily engineering prac-
tice when the available computing resources are limited: The use
of the complex solver allows one to halve the additional memory
requirement for the Krylov vectors with negligible enhancement of
the CPU time with respect to the real solver. In all test cases we
have considered, the convergence rate increases with the number of
Krylov vectors per restarted cycle for both the real and the complex
GMRES algorithm. This observation, however, cannot be general-
ized because the opposite trend has also been observed by other
researchers in some special problems.

The use of the complex RPM solver also leads to a halving of
the additional memory usage because the real system has twice as
many outliers as the complex counterpart.

For a given set of multigrid parameters, that is, for a given pre-
conditioner, the asymptotic convergence rate of RPM depends on
the spectral radius of the projection of the preconditioned linear op-
erator onto the stable subspace Q. Hence, a significant convergence
speed up can be achieved by appending to the unstable subspace
P not only the outliers but also the first few dominant modes in
the unit circle. The extra memory allocation depends on the overall
number of eigenmodes included in P , which is greater or equal to
the number of outliers. The additional memory required by a run in
which five modes are included inP is about 20% that of the standard
code. The convergence rate of the GMRES solver depends on the
spectrum of M−1

G A (and, hence, on the number of multigrid cycles
per GMRES step), but also on the number of Krylov vectors per
restarted GMRES cycle. The extra memory allocation depends on
the latter parameter, but not on the number of outliers. The use of
GMRES 30 for a typical three-dimensional viscous problem yields
an additional memory usage that is about twice that used by the
standard multigrid iteration. Hence, the more convenient choice of
the stabilizing solver in the presence of outliers depends on the num-
ber of unstable modes: The complex RPM solver should be used in
problems with a small number of outliers (lying between 10 and 20),
whereas the adoption of the complex GMRES solver is advisable
for test cases with more unstable modes.

Acknowledgments
This research has been carried out in the framework of the

GEODISE project supported by the Engineering and Physical Sci-
ences Research Council under Grant GR/R67705/01. The permis-
sion of Rolls–Royce, plc, to publish results from the HYDRA codes
is gratefully acknowledged. We also acknowledge the contributions
of M. C. Duta, P. Moinier, J. D. Müller, L. Lapworth, and M. West
to the development of the HYDRA codes and the very useful dis-
cussions with A. Wathen and M. Embree on the properties of RPM
and GMRES.

References
1Campobasso, M., and Giles, M., “Analysis of the Effect of Mistuning

on Turbomachinery Aeroelasticity,” Proceedings of the 9th International
Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity
in Turbomachines, Presses Universitaires de Grenoble, Grenoble, France,
2001, pp. 885–896.

2Hall, K., “Deforming Grid Variational Principle for Unsteady Small
Disturbance Flows in Cascades,” AIAA Journal, Vol. 31, No. 5, 1993,
pp. 891–900.

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-015.jpg&w=215&h=155
https://arc.aiaa.org/action/showImage?doi=10.2514/1.17069&iName=master.img-016.jpg&w=216&h=155
https://arc.aiaa.org/action/showLinks?system=10.2514%2F3.11701&citationId=p_2

CAMPOBASSO AND GILES 1059

3Breard, C., Vahdati, M., Sayma, A., and Imregun, M., “An Integrated
Time-Domain Aeroelasticity Model for the Prediction of Fan Forced Re-
spomse due to Inlet Distorsion,” Journal of Engineering for Gas Turbines
and Power, Vol. 124, No. 1, 2002, pp. 196–208.

4Hall, K., and Crawley, E., “Calculation of Unsteady Flows in Turbo-
machinery Using the Linearized Euler Equations,” AIAA Journal, Vol. 27,
No. 6, 1989, pp. 777–787.

5Campobasso, M. S., “Effects of Flow Instabilities on the Linear Har-
monic Analysis of Unsteady Flow in Turbomachinery,” Ph.D. Disser-
tation, Computing Lab., Univ. of Oxford, Oxford, Aug. 2004; URL:
http://web.comlab.ox.ac.uk/oucl/work/mike.giles/theses.html [cited 15 Jan.
2005].

6Moinier, P., Müller, J., and Giles, M., “Edge-Based Multigrid and Pre-
conditioning for Hybrid Grids,” AIAA Journal, Vol. 40, No. 10, 2002,
pp. 1954–1960.

7Campobasso, M., and Giles, M., “Effects of Flow Instabilities on the
Linear Analysis of Turbomachinery Aeroelasticity,” Journal of Propulsion
and Power, Vol. 19, No. 2, 2003, pp. 250–259.

8Spalart, P., and Allmaras, S., “A One-Equation Turbulence Model
for Aerodynamic Flows,” La Recherche Aerospatiale, Vol. 1, 1994,
pp. 5–21.

9Moinier, P., “Algorithm Developments for an Unstructured Viscous Flow
Solver,” Ph.D. Dissertation, Computing Lab., Univ. of Oxford, Oxford, Dec.
1999.

10Duta, M. C., “The Use of the Adjoint Method for the Minimization of
Forced Response,” Ph.D. Dissertation, Computing Lab., Univ. of Oxford,
Oxford, March 2002.

11Ning, W., and He, L., “Some Modeling Issues on Trailing-Edge Vortex
Shedding,” AIAA Journal, Vol. 39, No. 5, 2001, pp. 787–793.

12Bassi, F., Crivellini, A., Rebay, S., and Savini, M., “Discontinuous
Galerkin Solution of the Reynolds Averaged Navier–Stokes and k–ω Tur-

bulence Model Equations,” Computers and Fluids, Vol. 34, No. 4–5, 2005,
pp. 507–540.

13März, J., Hah, C., and Neise, W., “An Experimental and Numerical
Investigation into the Mechanisms of Rotating Instability,” Journal of Tur-
bomachinery, Vol. 124, No. 3, 2002, pp. 367–375.

14Saad, Y., and Schultz, M., “GMRES: A Generalized Minimal Resid-
ual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM Jour-
nal on Scientific and Statistical Computing, Vol. 7, No. 3, 1986,
pp. 856–869.

15Shroff, G., and Keller, H., “Stabilization of Unstable Procedures: The
Recursive Projection Method,” SIAM Journal of Numerical Analysis, Vol. 30,
No. 4, 1993, pp. 1099–1120.

16Campobasso, M. S., and Giles, M. B., “Stabilization of Linear Flow
Solver for Turbomachinery Aeroelasticity Using Recursive Projection
Method,” AIAA Journal, Vol. 42, No. 9, 2004, pp. 1765–1774.

17Campobasso, M., and Giles, M., “Stabilization of a Linearized Navier–
Stokes Solver for Turbomachinery Aeroelasticity,” Computational Fluid Dy-
namics 2002, Springer-Verlag, Berlin, 2003, pp. 343–348.

18Fransson, T., Joeker, M., Boelcs, A., and Ott, P., “Viscous and Inviscid
Linear/Nonlinear Calculations versus Quasi Three-Dimensional Experimen-
tal Cascade Data for a New Aeroelastic Turbine Standard Configuration,”
Journal of Turbomachinery, Vol. 121, No. 4, 1999, pp. 717–725.

19Giles, M., “Nonreflecting Boundary Conditions for Euler Equation Cal-
culations,” AIAA Journal, Vol. 28, No. 12, 1990, pp. 2050–2058.

20Jameson, A., “Time-Dependent Calculations Using Multi-Grid, with
Applications to Unsteady Flows Past Airfoil and Wings,” AIAA Paper 91-
1596, 1991.

K. Ghia
Associate Editor

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://arc.aiaa.org/action/showLinks?crossref=10.1137%2F0730057&citationId=p_15
https://arc.aiaa.org/action/showLinks?system=10.2514%2F3.10521&citationId=p_19
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.compfluid.2003.08.004&citationId=p_12
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.1225&citationId=p_16
https://arc.aiaa.org/action/showLinks?system=10.2514%2F2.1556&citationId=p_6
https://arc.aiaa.org/action/showLinks?crossref=10.1115%2F1.1460915&citationId=p_13
https://arc.aiaa.org/action/showLinks?crossref=10.1115%2F1.1416151&citationId=p_3
https://arc.aiaa.org/action/showLinks?system=10.2514%2F2.6106&citationId=p_7
https://arc.aiaa.org/action/showLinks?crossref=10.1137%2F0907058&citationId=p_14
https://arc.aiaa.org/action/showLinks?crossref=10.1115%2F1.2836725&citationId=p_18
https://arc.aiaa.org/action/showLinks?system=10.2514%2F3.10178&citationId=p_4
https://arc.aiaa.org/action/showLinks?system=10.2514%2F2.1411&citationId=p_11

This article has been cited by:

1. Themistoklis Skamagkis, Evangelos M. Papoutsis‐Kiachagias, Kyriakos C. Giannakoglou. 2021. On the stabilization of
steady continuous adjoint solvers in the presence of unsteadiness, in shape optimization. International Journal for Numerical
Methods in Fluids 93:8, 2677-2693. [Crossref]

2. E. M. Papoutsis-Kiachagias, K. C. Giannakoglou. 2016. Continuous Adjoint Methods for Turbulent Flows, Applied to
Shape and Topology Optimization: Industrial Applications. Archives of Computational Methods in Engineering 23:2, 255-299.
[Crossref]

3. Vasily V. Vedeneev, Mikhail Kolotnikov, Pavel Makarov. 2015. Experimental Validation of Numerical Blade Flutter
Prediction. Journal of Propulsion and Power 31:5, 1281-1291. [Abstract] [Full Text] [PDF] [PDF Plus]

4. Jacques E.V. Peter, Richard P. Dwight. 2010. Numerical sensitivity analysis for aerodynamic optimization: A survey of
approaches. Computers & Fluids 39:3, 373-391. [Crossref]

D
ow

nl
oa

de
d

by
 B

O
D

L
E

IA
N

 L
IB

R
A

R
Y

 o
n

N
ov

em
be

r
22

, 2
02

1
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.1

70
69

https://doi.org/10.1002/fld.4993
https://doi.org/10.1007/s11831-014-9141-9
https://doi.org/10.2514/1.B35419
https://arc.aiaa.org/doi/full/10.2514/1.B35419
https://arc.aiaa.org/doi/pdf/10.2514/1.B35419
https://arc.aiaa.org/doi/pdfplus/10.2514/1.B35419
https://doi.org/10.1016/j.compfluid.2009.09.013

