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This paper discusses the implementation of nonreflecting boundary conditions for the computation of linear

unsteady aerodynamic turbomachinery problems. Based on the use of precalculated far-field acoustic eigenmodes

for a mean flow that is assumed to be uniform axially and circumferentially, but nonuniform in the radial direction,

the method very effectively reduces the reflections and improves the convergence rate for both inviscid and viscous

flows. Extension of the implementation within a generalized minimal residual method is summarized and

convergence results are presented. This is the companion paper of a previous publication that addressed the

numerical computation of the eigenmodes and their use for postprocessing.

I. Introduction

T HERE are different approaches to analyze turbomachinery
unsteadiness. These methods vary from the use of linearized

flow solvers based on the observation that the unsteadiness is
sufficiently small to be considered a linear perturbation to a steady
flow, to fully nonlinear 3-D unsteady methods. Among all of these,
the linear harmonic Euler and Navier–Stokes methods have become
very popular in industry, due to a successful compromise between
accuracy and computational cost, and constitute the background to
this paper.

Whatever the method used and the problem under investigation,
the numerical solution is calculated on a truncated finite domain, and
one must prevent any nonphysical reflections of outgoing waves at
the far-field boundaries that could contaminate the numerical
solution. This becomes essential in turbomachinery applications in
which the boundaries are often not very far from the blades, because
the physical spacing between the blade rows can be quite small. It
therefore becomes highly important for an accurate simulation to
construct nonreflecting boundary conditions (NRBCs).

Preventing spurious reflections that would corrupt the solution is
not only important to get an accurate prediction of the flowfield, but
also to get more efficient computations; convergence rate is
enhanced due to an improvement of the transmission of outgoing
waves, allowing smaller meshes to be used.

There is already a very broad and diverse existing theory for
different applications. In computational fluid dynamics (CFD), the
most common techniques employed use an analytical approach to
describe the eigenmodes of the governing equations. In 1975,
Adamczyk et al. [1] constructed exact NRBCs for the potential
equationwhen calculating linearized unsteady flows bymatching the
known analytical solution with the computed one. Extended by Hall
and Crawley [2] to the linearized Euler equations, Giles [3], in 1990,
introduced exact nonreflecting 2-Dboundary conditions based on the
ideas of Engquist andMajda [4], using a characteristic analysis of the

linearized equations. Later, Saxer and Giles [5] extended the steady
NRBCs into a quasi-3-D formulation, assuming the circumferential
variation is much larger than the radial variation, and successfully
applied it to the solution of axial turbine stages. Finally, in 1996, Fan
and Lakshminarayana [6] followed the same approach for unsteady
flows and demonstrated their effectiveness for turbine calculations.
In the field of computational aeroacoustics, people have developed
other approaches based either on the discrete system-building
numerical NRBCs (e.g., Rowley and Colonius [7]) or on asymptotic
expansions (e.g., Grote and Keller [8] and Tam [9]).

In this paper, we are interested in solving complex turbomachinery
problems in which the radial variations in the mean and unsteady
perturbation flowfields cannot be ignored. For that purpose, we
intend to resume a theory described by Lorence et al. [10], who
generalized Giles’s [3] approach to the 3-D Euler equations using a
mixed analytical and numerical method to approximate the 3-D
eigenmodes. In their paper, Hall et al. [10] demonstrated the
effectiveness of their method to eliminate the reflections at the
boundaries through the visualization of pressure contours that were
shown to pass smoothly out of the computational domain. The test
case simulated the flow through a cascade of cambered airfoil and is
known as the tenth standard configuration [11]. The present study
addresses the extension of the approach to the 3-D Navier–Stokes
equations.

The primary objective is to determine the appropriate acoustic
eigenmodes for a swirling axisymmetric mean flow using numerical
eigenvalue and eigenvector computations and use them throughout
the calculation to enforce NRBCs. The first key step is to compute a
numerical approximation to the eigenmodes for linear unsteady flow
perturbations superimposed upon an inviscid/viscous mean flow,
which is swirling and axisymmetric.

To achieve this, a preprocessor tool solving the linear 3-D
cylindrical Euler/Navier–Stokes equations was developed using
LAPACK, a general-purpose numerical linear algebra library.§

Because of the axisymmetry of the mean flow, the eigenmodes are
Fourier modes circumferentially. Considering each Fourier mode
separately and discretizing the relevant ordinary differential equation
in the radial direction, the eigenvalues of the resultingmatrix give the
complex axial wave number, and the corresponding right and left
eigenvectors give the eigenmodes of the partial differential equation.
The complex axial wave number is used to decompose the flowfield
into upstream and downstream traveling eigenmodes, whereas the
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eigenvectors are used to measure the amplitude of the outgoing
modes and to set the appropriate values for the flow quantities at the
boundaries of the computational domain to prevent any reflections.
In a previous paper, Moinier and Giles [12] described how these
eigenmodes can be computed and sorted, depending onwhether they
are acoustic, entropy, or vorticity modes. They also discussed the
implementation issues and validated their results with analytical
formulations for both inviscid and viscous cases before applying
them to postprocess the computed flowfield and demonstrate the
need forNRBCs. The present paper constitutes the second step in this
study, by applying the theory to a CFD code to remove the
unphysical reflections.

The paper starts with a brief review of the eigenmode analysis
followed by the implementation within a standard 3-D linear
harmonic Navier–Stokes solver and its stabilized version via the
generalized minimal residual method (GMRES). To exemplify the
nonreflective character of the approach, three 3-D test problems are
considered: a benchmark problem consisting of an annular cascade
of flat-plate stator vanes placed in a parallel annulus duct (known as
the category-4 benchmark problem [13]) and two viscous turbine
outlet-guide-vane (OGV) test cases.

II. Eigenmode Analysis

The eigenmode analysis can be performed for both inviscid and
viscous problems. When the Euler equations are linearized to
consider small unsteady perturbations to a mean flow, which is
axially and circumferentially uniform but varies radially, the
eigenmodes are of the formQ�r; �; z; t� � ei�!t�m��kx�u�r�, whereQ
is a five-dimensional vector for which the components are the
density; the axial, radial, and circumferential velocity components;
and the pressure; u�r� is a radially varying column vector; and ! is a
known quantity corresponding to either the frequency of an
incoming wave (forced response) or a blade-vibration frequency
(flutter). The discretization on a radial grid of the equation that arises
after substitution of these solutions results in the general eigenvalue
problem (GEP) that is solved. The viscous eigenmodes are solutions
of a similar GEP, to which viscous flux terms were added. In both
cases, appropriate symmetry conditions are enforced at the centerline
r� 0 for cylindrical ducts and slip/no-slip conditions are imposed on
the velocity at solid walls. All the details of the analysis can be found
in [12].

To solve the GEP, a representation of the mean flow quantities
must be computed at each predefined radial mesh point at which the
discretization occurs. This is achieved via a simple circumferential
average of an already converged 3-D steady solution. It is also
assumed that the mean flow is axial (i.e., the steady velocity has no
radial componentUr � 0) meaning that the model problem can only
be suitable for geometries with parallel endwalls (see the Appendix).
Geometries without parallel end walls will not fulfill this condition,
but nevertheless, the same procedure is applied, with an extra
correction added at the end of this process. First, all mean radial
velocity components Ur are set to zero and the eigenmodes are
computed. The radial velocity components present in the
eigenmodes are then corrected to satisfy the endwall angles.
Technically, if � denotes this angle, then tan��� �Ur=Ux, and if ux
denotes the axial velocity perturbation, then the velocity perturbation
ur is replaced by the linear combination u�r � ur � tan���ux, so that
the corrected perturbation has the property that u�r � tan���ux on the
endwall.

Each eigenmode can be identified as belonging to one of four
categories: upstream and downstream-propagating acoustic modes
and downstream-propagating entropy and vorticity modes. To
distinguish between the different families, it is necessary to look at
the eigenvectors of density �, velocity, and pressure p perturbations
at the different radial positions. A sorting process was devised,
relying 1) on the sign of the imaginary part of their wave number to
separate the upstream-propagating acoustic modes from the others,
2) on the evaluation of which modes, among those remaining, have
the largest pressure perturbation jj�jj2 and discarding them, and 3) on
which modes, among those remaining, have the largest entropy

perturbation jj�� c2�jj2. For a complete description, the interested
reader is urged to refer to [12].

III. Nonreflecting Boundary Conditions

In this section, the details of the NRBC treatment are presented for
a calculation on a single blade row consisting of N identical blades.
Because of the axisymmetric assumption, it will only be applied at
the inlet and outlet of a geometry truncated to a single blade-to-blade
passage of angular width ��� 2�=N. An interblade phase angle �
is introduced to take into account the phase shift that may exist at
neighboring blades.

A. Implementation for Standard Applications

Under the same assumptions, a general unsteady flow solution of
the linearized Navier–Stokes equations with a given frequency! can
be decomposed into a sum of eigenmodes:

Q �x; r; �; t� �
X
m;n

amn exp

�
i!t� ipm

�

��

�
umn�r� (1)

where pm � �� 2�m. For the case of a rotor subject to forced
response due to a neighboring row of stators, we will have

pm
��
� pm

��r
� 1

��r
��� 2�m� � �

��r
� Nrm

� Ns2�

Nr��r
� Nrm� Ns �mNr (2)

We recognize the same definition of the acoustic modes as that given
by Tyler and Sofrin [14] for uniform axial flow in cylindrical and
annular duct and for which they developed an analytical description,
valid as long as the mean flow has no swirl.

Equation (1) consists of a double summation over the
circumferential mode number pm of Fourier mode m and the radial
modes n that exist for each value ofm. Themodal amplitude amn will
be proportional to eikmnx, where kmn is the axial wave number.

Given an unsteady flow solutionQ�x; r; �; t� computed by a linear
harmonic method, we can, under the condition that the field is
periodic, Fourier transform it at each specified radial position of the
boundary along the predefined circumferential lines of length�� and
write that

Q �x; r; �; t� �
X
m

Q̂m�x�eipm
�
�� (3)

where

Q̂ m�x� �
1

��

Z
�2

�1

Q�x; r; �; t�e�ipm �
�� d� (4)

As stated in Eq. (1), the unsteady solution can exactly be
represented by a summation over circumferential and radialmodes. It
is therefore possible to approximate this solution by sorting and
keeping the dominant modes, the level of accuracy depending on the
identification process and the number of modes retained.

Suppose now that the eigenmodesumn have already been sampled
at a discrete set of radial points, forming the columns of a matrix Em,
we then have

Q̂ m�x� � Emam (5)

wheream is the vector ofmodal amplitudes for different radial modes
corresponding to circumferential mode m. If the number of radial
eigenmodes kept to approximate the unsteady solution is chosen so
that Em is a square matrix, then this can be inverted to obtain

a m � �Em��1Q̂m�x�

giving the modal amplitude for each m and n.
In the case of flutter, the linear solution at the inflow or outflow

boundary should only consist of outgoing waves. Any incoming
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component present in the converged solution can only be due to
numerical reflections. At the upstream boundary (located at x� xin),
the outgoing modes are those that are propagating upstream.
Assuming that the dominant outgoing eigenmodes were identified
and stored as the column of the matrixEups

m , the outgoing component
Qout for each mode m can be found as

Q̂ out
m �xin� � Eups

m �E�1m Q̂m�

To minimize memory requirements, the downstream-propagating
component at the downstream boundary (located at x� xout) is
obtained by subtracting the upstream-propagating component so that
it gets computed by

Q̂ out
m �xout� � fQ̂m�xout� � Eupsm ��Em��1Q̂m�xout��g;

where Eupsm is the matrix of dominant outgoing eigenmodes,
computed at the downstream boundary.

Upstream and downstream boundaries are both handled through
fluxes calculated through the boundary faces using a standard 1-D
characteristic treatment and incorporating prescribed flow
information Qext, which initially is identically zero. To suppress
the reflections and make sure that all outgoing waves leave the
computational domain smoothly, the flow on the exterior of the
boundaries is set to be equal to the sum of the outgoing modes; in
other words,Qout is used to updateQext and create a new state for the
computation of the fluxes. This is essentially an intelligent NRBC
extrapolation to the ghost node at which Qext is defined.

In practice, to avoid stability problems, a relaxation parameter �
was introduced to slowly modify the exterior state. The updating
process that is applied at each iteration may generically be expressed
as

�Qnew
ext �j�1 � �Qold

ext�j � �
�X

m

�Q̂out � �Q̂old
ext�j�meipm

�
��

�
(6)

In the case of forced response, the only difference is due to the
presence of a prescribed incoming disturbance that is first subtracted
from the boundary-flow data Qext and the result is Fourier-
transformed. The determination of the outgoing component remains
the same as for the flutter problem, and the incoming disturbance is
added back once the summation over the circumferential modes m
was computed. The updating process applied at each iteration
becomes

�Qold
ext�j :� �Qold

ext�j �Qpresc

�Qnew
ext �j�1 :� �Qold

ext�j � �
�X

m

�Q̂out � �Q̂old
ext�j�meipm

�
��

�
�Qpresc

whereQpresc denotes the prescribed incoming disturbance. Although
no thorough parametric study was carried out, � � 0:1was found to
be a good value and is used for all cases.

B. Implementation Within a GMRES Stabilization Procedure

Usually, the standard linear code converges without difficulty.
However, pathological cases were encounteredwhen the steady flow
calculation enters in a low-level limit cycle, failing to converge to a
steady state. Campobasso and Giles [15] related these problems to
physical phenomena such as vortex shedding at a blunt trailing edge,
unsteady shock/boundary-layer or shock/wake interaction. Formany
aeroelastic analyses, these small unsteady phenomena in the base
flow are not significant, and they achieved stable computations
through the use of GMRES. The resulting stabilized code became the
default for cases with convergence problems, and so it was necessary
to extend the nonreflecting treatment to the GMRES solver.

The key idea behind the GMRES stabilization algorithm is to
consider the linearized harmonic Navier–Stokes equations as a
simple linear system of the form

Ax� b

and to regard the code for its solution as the fixed-point iteration

x j�1 � �I �M�1A�xj �M�1b (7)

in whichM�1 is a preconditioning matrix resulting from the Runge–
Kutta time-marching algorithm, a Jacobi preconditioner, and one
multigrid cycle.More detailsmay be found in [15]. For this particular
type of problem, the right-hand side, generically viewed as b,
includes the boundary-condition data (the incoming wake for the
case of forced response) and is set to zero during the evaluation of the
Krylov vectors. In the case of the nonreflecting boundary-condition
treatment, the boundary data are no longer constant and must be
considered as part of the unknowns within the GMRES solver. As a
consequence, and considering the updating process of the boundary-
flow data, as expressed in Eq. (6), the fixed-point iteration (7)
becomes

Q

Qext

� �
j�1 � �I �M�1A� K

�F�1H �1 � ��I

� �
Q
Qext

� �
i

� M�1b
0

� �

whereK denotes the operations performed at the boundariesH, those

that are performed to compute Q̂out
, and F�1 is the inverse Fourier

transform. With this slight change in mind, the algorithm presented
by Campobasso and Giles [15] extends itself naturally to take into
account the extra unknown Qext added in the Krylov vectors.

IV. Storage and Extra CPU Requirement

The approximate eigenmodes computed during a preprocessing
step are stored in separate files and read at the beginning of a run,
increasing the original memory requirement. If Nc and Nr denote,
respectively, the number of circumferential lines and the number of
radial eigenmodes kept for each Nm circumferential mode, then the
dimension of the eigenvector arrays is 5NcNrNm. In practice,Nm � 5
and 3 	 Nr 	 10 Nc 	 the number of radial grid lines. With Nc
never bigger than 100, this gives a total of less then 1 MB per array.
The extra operations required at each iteration are O�N2

cNrNm� and
hence negligible compared with the flux evaluations and other
operations performed, as long asNc,Nr, andNm are kept reasonably
low. Profiling the code shows that theNRBC treatment is responsible
for less than 0.5% of the total CPU cost.

V. Postprocessing

The nonreflecting boundary-condition treatment is based on the
determination of the eigenmodes that correspond to downstream or
upstream-propagating waves, and the differentiation between the
directions of propagation is achieved using a sorting procedure of the
eigenvalues of the eigenmode analysis. Noting that such a
decomposition can be performed not only at the far-field boundary
but also anywhere inside the computational domain, this gives a
rather straightforward method to split the unsteady flowfield into
acoustic propagating waves and to follow the behavior of a particular
eigenmode. The same procedure performed on the solution obtained
with the regular boundary treatment and then on the solution
obtained with the NRBC treatment will show the effectiveness of the
nonreflecting treatment. Although the plot will only show the gain
relative to a certain set of eigenmodes, it will be a goodmeasure of the
results achieved, because all the dominant eigenmodes are involved
in the process. For a more complete description, the interested reader
should refer to [12].

VI. Results

The nonreflecting boundary conditions are first demonstrated for
the case of an inviscid uniform axial flow. The problem consists of
vortical wakes impinging on an axially aligned flat plate in a parallel
annular duct [13]. The CFD calculation was performed using the
HYDRAnonlinear and linear codes (seeMoinier [16] andDuta [17])
on a uniform 113 
 33 
 65 grid (Fig. 1), with conventional 1-D
nonreflective boundary conditions followed by the new approach.
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The results in Fig. 2 show the sound-pressure level (SPL¶) evaluated
at the outer wall of the duct for the first radial harmonic of a standard
linear computation for Fourier modes �32, �8, 16, 40, and 64. The
incident wave corresponds to circumferential mode 16. Because
there are 24 blades in the cascade, the interaction generates a
response solely in modes 16� 24m for integer m.

The harmonic decomposition shows a combination of both
propagating and evanescent modes upstream and downstream of the
flat plate located at 0< x < 0:1. The modes with approximately
constant amplitude are the cuton propagating modes; analytically,
their amplitudes should be perfectly constant. The modes with
amplitudes that appear to be almost linear in this logarithmic plot are
the cutoff evanescent modes; their linear logarithmic behavior
corresponds to the expected exponential decay of the modes. The
most important point of interest is that the unsteady interaction
produces a mode �8 downstream-propagating acoustic wave which
is reflected at the downstream boundary into a mode �8 upstream-
propagating acoustic wave. There is also a very strong reflection in
Fourier mode 16; in this case, this is a consequence of the outgoing
vortical mode, which is not plotted. The reflected mode decays very
rapidly away from the boundary and so does not contaminate the
computed solution in the neighborhood of the blade. In Fig. 2b, the
same decomposition is plotted, but on a solution in which the 3-D
nonreflecting boundary conditions have been used. The strong
upstream reflection of mode �8 was largely reduced and the one in
Fourier mode 16was eliminated. These results are in agreement with
those obtained by Wilson [18], who applied a similar technique to
reduce the reflections at the boundaries.

The second example, provided by Rolls-Royce, concerns the
unsteady viscous flow around a turbine OGV, shown in Fig. 3, due to
an incoming acoustic wave in Fourier mode �10. Figure 4a shows
the SPL of the first radial harmonic for Fourier modes �28, �10, 8,
and 26 when using standard quasi-1-D nonreflecting boundary
conditions. All of the acoustic modes are cuton upstream and
downstream of the blade located in the region 0:64< x < 0:84.
Downstream of the blade, there are four acoustic modes propagating
downstream and two propagating back upstream, as a result of
spurious reflections. These reflections are in the two higher
circumferential harmonics, for which the quasi-1-D nonreflecting
boundary conditions are much less effective. Upstream of the blade,
there are three modes propagating upstream and two propagating
downstream, one of which is the original input disturbance and the
other is another spurious reflection. Figure 4b shows the great
improvement that is achieved through the use of 3-D nonreflecting
boundary conditions. There is now no spurious reflection at either the
inflow or the outflow boundaries.

A comparison of the OGV convergence histories is presented in
Fig. 5, in which the effects of the new boundary treatment are

comparedwith those obtainedwith the standard treatment. Generally
speaking, the NRBCs improve the convergence rate, particularly
when these are enforced at each iteration, that is, itr� 1 (when
applied at every 10 iterations, that is, itr� 10, the gain is almost not
noticeable). Convergence can be enhanced by using GMRES, even
though the test case does not present any stabilization problems. For
this study, using 20 Krylov vectors yields computational savings of
about 30% in asymptotic convergence (between residuals levels of
100 and 10�12) and slightly more than 50% in initial convergence
(between residuals levels of 100 and 10�4). One should note that
more refined results could probably be obtained after a parametric
study to find the optimal value of � and that increasing the number of
Krylov vectors will always improve the convergence rate, with an
upper limit fixed, however, by the available computing resources.

Fig. 1 Inviscid annular cascade: geometry and surface grid.

X

SPL (dB)

  -0.20    0.00    0.20    0.40
   120.

   140.

   160.

a) Quasi-1-D nonreflecting boundary conditions

X

SPL (dB)

  -0.20    0.00    0.20    0.40
   120.

   140.

   160.

b) 3-D nonreflecting boundary conditions
Fig. 2 Inviscid annular cascade: amplitude of the first radial harmonic
acoustic mode propagating upstream (solid line) and downstream

(dashed line) for circumferential Fourier modes; ◇: �32,○: �8,△: 16,

×: 40, and □: 64.

Fig. 3 Viscous turbine OGV: geometry and surface grid.

¶Twenty times the logarithm to the base 10 of the ratio of rms sound
pressure to the reference sound pressure.
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A last example illustrating the successful application of the 3-D
nonreflecting boundary conditions to a real turbomachinery flow
consists of the unsteady viscous flow in the region of another bypass-
duct OGV, this time as a result of the interaction with the wakes shed
by the upstream fan blades. Figure 6 shows the OGV and the
incoming wake perturbation on the OGV inlet plane. The fan stage
under consideration consists of 26 rotor blades and 58 vanes. Results
are presented at a speed representative of cutback operation at twice

the rotor-blade-passing frequency. At these conditions, only acoustic
modes in circumferential Fourier modes �6 and 52 are cuton.

The casing SPL levels of radial harmonics 1 and 5 for
circumferential Fourier mode �6 downstream of the OGV are
plotted against axial distance in Fig. 7. The eigenmode analysis was
conducted for the radially nonuniform swirling flow downstream of
the OGV. The beneficial effects of the 3-D nonreflecting boundary-
condition treatment in attenuating spurious reflections from the
boundaries is particularly apparent for the higher radial harmonic, in
which simple quasi-1-D nonreflecting boundary conditions lead to
the nonphysical situation of the amplitude of the reflectedwave being
greater than the transmitted wave. The averaged (over the region
0:29< x < 0:39) SPL values for each cuton radial harmonic at
circumferential Fourier mode �6 are presented in Fig. 8. The
improvement due to the use of 3-D nonreflecting boundary
conditions is evident for all the cuton radial harmonics. A similar
type of analysis was conducted for several harmonics of the blade-

X

SPL (dB)

   0.50    0.70    0.90    1.10
  115.0

  125.0

  135.0

a) Quasi-1-D nonreflecting boundary conditions

X

SPL (dB)

   0.50    0.70    0.90    1.10
  115.0

  125.0

  135.0

b) 3-D nonreflecting boundary conditions

Fig. 4 Viscous turbine OGV: amplitude of the first radial harmonic

acoustic mode propagating upstream (solid line) and downstream
(dashed line) for circumferential Fourier modes;◇: �28, △: �10, ○: 8,

and □: 26.

0 5 10 15 20
−12

−10

−8

−6

−4

−2

0

CPU Time (hours)

Lo
g 10

(r
m

s)

standard b.c.
standard & GMRES 20
itr=10,σ=0.1
itr=1,σ=0.1
itr=1,σ=0.1 & GMRES 20 after 2000 itr
itr=1,σ=0.1 & GMRES 20

Fig. 5 Turbine OGV: convergence history comparisons.

Fig. 6 Bypass OGV: incoming wake harmonic variation.

0.25 0.3 0.35 0.4
X

S
P

L

10dB

a) Quasi-1-D nonreflecting boundary 
conditions

0.25 0.3 0.35 0.4
X

S
P

L

10dB

b) 3-D nonreflecting boundary 
conditions

Fig. 7 Amplitude of radial harmonics inm��6 downstream of OGV;

□: radial harmonic 1, △: radial harmonic 5, dashed line: transmitted

(downstream), and solid line: reflected (upstream).
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passing frequency and at different operating conditions for the same
OGV geometry, yielding analogous results and confirming the
effectiveness of the approach in eliminating spurious reflections
from the boundaries in linear unsteady simulations.

VII. Conclusions

This paper presented an extension to viscous applications of a
technique, developed by Hall et al. [10], to implement nonreflecting
boundary conditions for the linear analysis of turbomachinery
problems. Very efficient boundary conditions are achieved by using,
throughout the computation, the dominant far-field acoustic
eigenmodes precalculated for a swirling axisymmetric mean flow.
The extra CPU and memory requirements are both negligible.
Results show a large improvement in the reduction of the
nonphysical reflection and an increase of the convergence rate. The
implementation within a GMRES algorithm, originally developed
for the linear Navier–Stokes solver, allows all aeroelastic analyses to
benefit from the new treatment. Convergence can be enhanced
further when both are used simultaneously.

Appendix: Model Problem Assumes Parallel Endwalls

Considering a steady flow ��;U; p�, where U� �Ux;U�; Ur�,
then the conservation form of the linearized entropy equation

@

@t
��s� � r � ��sU� � 0

rearranged as

�

�
@s

@t
� U � rs

�
��sr � ��U�

shows, after equalizing the right-hand side to zero (because of mass
conservation), that the entropy is convected along a streamline.

If, however, the steady flowfield is taken to be a function of the
radius r only, then,

r � ��U� � r�1 d

dr
�r��r�Ur�r��

which may be nonzero, leading to s either increasing or decreasing
along a streamline.

To prevent this nonphysical behavior, it is necessary to set
Ur�r� � 0, to give a physically sensible axisymmetric flowfield for
the nonreflecting boundary-condition analysis.
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Fig. 8 Amplitude of radial harmonics inm��6 downstream of OGV;
dashed line: transmitted (downstream) and solid line: reflected

(upstream).
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