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is obtained through analysis of a simple problem involving steady
transonic flow in a quasi-1D diverging duct. It is proved that the
discrete solution error on either side of the shock is O(h™) where n is
the order of accuracy of the conservative finite volume discretisation.
Furthermore, it is shown that provided that n > 2 then the error in
approximating [ pdz is O(h?). This result is in contrast to the general
belief that shocks in 2D and 3D Euler calculations lead to first order
errors, which motivates much of the research into grid adaptation
methods.
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1 Introduction

The paper by Jameson, Schmidt and Turkel [5] is a landmark in the develop-
ment of CFD methods, being one of the first papers on the solution of the multi-
dimensional Euler equations in conservative form by a time-marching method.
Runge-Kutta time-marching methods, in conjunction with multigrid for steady-
state applications [2], are now the mainstay of Euler and Navier-Stokes calcu-
lations. Ome of the key advantages of these methods over the potential flow
methods which they have largely replaced is the ability to treat supersonic and
transonic flow with shocks of arbitrary strength. The importance of shocks in the
aeronautical applications which have been the driving motivation for Jameson’s
research has led to the development of grid adaptation, in which the discrete
shock width is reduced by adaptively reducing the size of cells crossed by the
shock. With structured grids this is usually accomplished by redistributing the
grid nodes. With unstructured grids, in which Jameson has again played a pi-
oneering role [3,4], it is usually accomplished by grid refinement, subdividing
triangles or tetrahedra into a number of smaller triangles or tetrahedra.

One important aspect of grid adaptation is the criterion used to decide which
which cells are adapted. Ideally, the criterion (or a combination of criteria) will
lead to the adaptation of only those cells in which large flow gradients generate
large numerical errors. Unfortunately, there is no complete theory of a posteri-
ori error estimation for the discretisation of nonlinear p.d.e.’s on which to base
rigorous adaptation criteria and so they have instead been developed based on a
combination of model linear p.d.e.’s, engineering intuition and practical experi-
ence (e.g. [6,7,8,1,9]). One typical adaptation parameter that is used is

4, = hlop| (1.1)

where h is some measure of the cell length, and dp is a first difference of the
pressure field. At shocks, dp is independent of the cell size and so the shock
cells are adapted repeatedly until A is sufficiently small that A, falls below the
adaptation threshold. Away from shocks,

A, ~ h*|Vp| (1.2)

and so the adapted grid resolution is related to the flow gradient, as desired.

In designing adaptation criteria such as this which will generate a large num-
ber of adapted cells at shocks and so obtain very thin discrete shocks, it is
implicitly assumed that the shock would otherwise cause substantial numerical
errors. The lift on a wing is one of the most important engineering quantities ob-
tained from a solution of the Euler equations. For such a calculation it appears,
intuitively, that since the shock is ‘smeared’ over one or two cells there must be
an error in the lift prediction of order hyAp where h, is the cell size at the shock
and Ap is the jump in pressure across the shock. This appears to be the basis



for the particular adaptation criterion above, but other adaptation criteria also
lead to very substantial refinement of shock cells and so the belief in a significant
first order error at shocks seems widespread although not stated.

The research in this paper arose from discussions with Antony Jameson about
this issue of shock-generated errors. His experience with uniform grid refinement
studies for a variety of test cases with a number of different numerical algorithms,
does not support the hypothesis of a first order lift error. Almost all show
convergence in lift and drag to be faster than first order. A substantial fraction,
but not the majority, show second order convergence with the error proportional
to h2. The majority show very rapid convergence which does not appear to be
proportional to A™ for any value of m; in many cases the convergence is not even
monotonic. Thus, other than refuting the idea of a clear first order error due to
the shock, the empirical evidence is unclear.

To gain insight into this behaviour, section 2 performs a numerical analysis
of shock-capturing discretisations of the Euler equations for a model problem,
transonic quasi-1D flow in a diverging duct. The analysis shows that the error in
the ‘lift’ prediction is in fact O(h?), not O(h). Furthermore, it reveals the possible
origin of the non-monotonic convergence observed in 2D and 3D calculations.
Section 3 presents numerical results for a particular numerical method with the
adaptive smoothing often used by Jameson; these results confirm the findings of
the numerical analysis. The final section discusses the conclusions that can be
drawn from the work.

2 Analysis

2.1 Analytic equations
The steady quasi-1D Euler equations in conservative form are

d dA

where U is the conservation state vector

P
U=\ pu |, (2.2)
pE
F' is the flux vector
U
F=| pui*+p |, (2.3)



and P has the contribution of the pressure on the side-wall

0
P=|p|. (2.4)
0

A(x) is the cross-sectional area of the duct which, for convenience, is assumed to
be locally constant at the two ends.

At the supersonic inflow at x =0 the entire state vector U(0) is specified. At
the subsonic outflow at x =1, one quantity is specified since there is one char-
acteristic wave travelling upstream. This quantity could be the static pressure,
but the precise choice is not important.

Integration of Eq. (2.1) yields

71 dA

[AF]Z = / P, (2.5)

o
for any arbitrary pair g, x;. This is the integral form of the quasi-1D Euler
equations and it is this form which remains valid when shocks are present. Taking
ro=0,r1=1 gives

0
TdA
AFly = | Ao b, (2.6)
o dx
0
where L gA
D= =2 . 2.7
b —do (2.7)

The first and third components of Eq. (2.6) together with the one outflow bound-
ary condition totally specify the three components of U(1) given that U(0) has al-
ready been specified. The second component of Eq. (2.6) then defines D uniquely
as a function of the boundary conditions independent of the precise variation of
p(z) or A(z) between the end points. This is the key result which will be used in
determining the accuracy with which the discretisation approximates the quan-
tity

/Olpdx (2.8)

which represents the lift in 2D and 3D Euler calculations for lifting bodies.

2.2 Discrete equations

The analysis considers steady discrete equations with the following conservative
form

A]‘+1/2th+1/2 — Aj—l/Qth;l/Z = AA]P]h, AA] = A]‘+1/2 — Aj—l/?- (29)



Both the discrete flux F}', and the sidewall term P} are functions of the

neighbouring values of the state vector U]h,

h h(rrh h h h h h(rth h h
F]*1/2 = F (Ujfﬂ‘L*l”U]*l’U]U]‘}*m)’ _P] :P (Ujfm77U]7U]+m)
(2.10)
with the consistency requirement that
U]h = Uconst - F}h,1/2 - F(Uconst); P]h = P(Uconst)' (211)

Many quasi-1D schemes are of this form, including the flux-vector splitting
scheme of van Leer, the flux-difference splitting scheme of Roe, and Jameson’s
cell-centred central differencing scheme with added artificial viscosity terms.
The computational grid is taken to be uniform with mesh spacing h, and the
order of accuracy of the finite volume discretisation is O(h") as determined by a
standard truncation error analysis assuming the solution is differentiable.
Summing the discrete equations over the entire computational domain yields

J 0
AJ+1/2F§Z+1/2 - A1/2F1h/2 =Y A4 Pjh =| D" |, (2.12)
1 0

where

J
D" =" AA;ph. (2.13)
1

This is very similar to the integral equation satisfied by the analytic solution and
it has similar consequences.

The restriction that A(z) is locally constant at each end of the domain en-
sures that the discrete solution U]h also approaches a uniform state at each end.
Analysis of linear perturbations to the discrete solution for a constant area duct
show that such perturbations decay exponentially with a length scale propor-
tional to the grid spacing h. Therefore there exist state vectors U"(0) and U"(1)
and constants ¢q, cs such that

h h —c1/h -

Ul = U"0)+o(e=/™), j<2m (2.14)
h h —c2/h -

Uiy = U"(1) +o(e 2y > J—2m

with m being the span of the discrete flux function as previously defined. There-
fore, using the consistency of the discrete fluxes it follows that

0
AMFUM1)) = A0)F(U"0)) = | D" | +o(e " (2.15)
0

The inflow boundary conditions ensure that U"(0) = U(0). The first and third
components of the above equation together with the specification of the correct



exit pressure then ensure that U"(1) = U(1) 4+ o(e~*/"). The second component
then implies that
D" = D + o(e™/"). (2.16)

In addition, the fact that the boundary data is exponentially accurate and
the finite volume discretisation has accuracy O(h") means that away from the
shock the solution error is O(h™). At the shock the pointwise error will be O(1)
but linear perturbation analysis agains shows that this component will decay
exponentially away from the shock so that the composite solution error can be
represented as
UM = U(z;) + O(h™, e~eleizesl/hy — U (z;) + O(h", e~ %)) (2.17)

J

where s is the index of the cell containing the analytic shock, and ¢3 is another
constant.

2.3 Accuracy of lift integral
Defining p; to be the average analytic pressure in cell 7,

pj=ht [ pdu, (2.18)

Tj—1/2

the objective is to quantify the error in approximating the lift integral,

1
Lh—Lthp?—/O pdxth(p?—pj). (2.19)

The first step is to express D in terms of the average analytic pressures within
each cell. In the cell containing the analytic shock, % is differentiable and so

zi+12  dA
/ o p— dz = p;AA, + O(h?), (2.20)
Tj_1/2 dx

with AA; denoting the area change in the shock cell. In all other cells, p is also
differentiable and so

Titi2  dA
/ D8 e = pAA; + O(hY), (2.21)
xj—1/2 dlL‘
Hence, summing over all cells,
D =Y p;AA4; +O(h). (2.22)

From Eq. (2.16) it can then be concluded that

> (ot —pj)AA; = O(h). (2.23)



The second step is to relate the average analytic pressure to the discrete
pressure. In all cells other than the shock cell,

pj = p(x;) + O(h?) (2.24)

and so provided that the order of accuracy n > 2, it follows from Eq. (2.17) that

P =pj+O(h? e i), (2.25)
Also, since % is differentiable,
AA; = AA; +O(R%j — s|) (2.26)
Combining these gives
> (0] = p)(A4;— AAy) = O(h?) (2.27)
since '
SThti—s|=0(h?), S h*j—sle = O(h?) (2.28)

The final step is to combine Eqs. (2.23,2.27) to give
hIAA(LM L) = AAS (0! —pj)
= 0] — p)AA; = 30} —p) (A4, - AA)

= O(h?) (2.29)
and so
L" — L =0(h? (2.30)
since % must be non-zero at the shock for the shock position to be well-determined.

Note that there is nothing in the above analysis to suggest that the quantity
C", defined by
C" =h7?(L" - L), (2.31)

should asymptote to a constant as h — 0. The proven second order accuracy
only requires that C" be bounded. In fact, it is possible that C* will vary if one
uses a sequence of increasingly fine grids, depending on the location of the shock
relative to the grid. If z, is the shock location, and as before 2 is the centre of
the cell containing the shock then C” is likely to be a function of the parameter,

A =h"tx, — 2" (2.32)

which will vary from grid to grid. The variation is likely to be greatest for
methods which produce very sharp shocks, e.g. flux-vector splitting, and least
for methods which produce more smeared shocks for which the relative grid
location is much less important. In this latter case, if C” is relatively constant, it
may even be possible to use Richardson extrapolation to obtain higher accuracy.



3 Numerical results

Numerical results have been obtained for a discretisation of the form specified in
the last section. Dropping the superscript h used in the last section to denote
the discrete variables, the pressure on the sidewall is given by

Pj =1 (P(Uj1) +2 P(Ujs1) + P(Uj-1)) (3.1)

and the discrete flux is

Fipy = 5 (FUp) + FU) + 2 001 Upa = 1)
+€§i)%)‘g+% (Uj+2 - 3Uj+1 + 3U9 - Uj-i-l) . (32)

The maximum characteristic velocity A is given by

At = 5 ([ | + e + Jug| + ¢) (3.3)
where u and ¢ are the convection velocity and speed of sound, respectively. The
coefficients ¢® and €® are defined adaptively based on the non-dimensional
pressure switch

_ |Pit1 = 2pj + i

TP 205+ 0
to obtain second difference smoothing in the shock region, but only fourth dif-
ference smoothing in the smooth flow regions

(3.4)

@ = B min(0.5, max(s;42, Sj+1, Sj,Sj-1))

it+3
65.?% = max(0, 0.25—265.‘1’%). (3.5)

The nondimensional constant B controls the degree of smearing of the shock.
Calculations were performed for both B =1 giving fairly crisp shocks with one
or two interior points, and B =5 giving shocks which are more smeared with
approximately six interior points.

The duct width A(z) is defined as

1.0304, z<0
A(z) ={ 1.0304 + 0.071823(10— 152 +622) — 0.948223(1—x)3, 0<z<1
1.1022, z>1

(3.6)

The constants were chosen so that A, %, [57‘2‘ are all continuous at xt=0 and x=1.

At the inflow at o =—0.2 the flow is specified to be supersonic, with conditions
such that

po=10, p,=10, M=12 (3.7)



where p,, p, and M are the stagnation pressure, stagnation density and Mach
number, respectively. The static pressure specified at the outflow boundary at
r=1.21s

p = 0.7143. (3.8)

These boundary conditions together with the definition of A(x) lead to a shock at
x=0.6, with a peak Mach number of 1.3. The steady-state discrete solutions were
obtained by a fully-converged Runge-Kutta time-marching procedure. Figure 1
shows the Mach number distribution for the solution near the shock using B=1
and and a uniform grid of 64 points. Figure 2 has the corresponding solution for
B =5; the shock is clearly smeared.

To investigate the effect of mesh resolution, a sequence of grids was used
with the number of grid points ranging from 64 to 192. For each grid, the
influence of the shock position relative to the grid nodes was investigated by
performing a number of calculations displacing the grid by an amount dx in the
range 0 < dx < h. The inflow and outflow boundaries are also displaced by the
same amount, but since A(z) is locally constant at each end this does not affect
the results. For each calculation, the discrete lift was computed, as well as the
error relative to the ‘exact’ lift (estimated by extrapolation from the solutions on
the finest grids). Figure 3 shows the errors in lift obtained from the solutions with
B =1. The ‘error bar’ indicates the range of values obtained depending on the
position of the shock relative to the grid points. Figure 4 plots the magnitude of
these error bars L — L . = Note that in both figures the quantities are plotted
against A%, not h. The linear behaviour in Figure 4 shows corresponds to the
analysis in the previous section, with C” being a function of the shock position.
Figure 3 also shows an almost linear behaviour for small values of h, but for larger
values the error increases more rapidly, indicating an additional error term which
is O(h?), possibly due to the numerical smoothing in the smooth flow regions.
Figure 3 also shows the possibility for non-monotonic convergence as h is refined;
for sufficiently small values of h there are some points within the error bar which
show an overprediction of the lift, while other show an underprediction. Figures
5 and 6 show the corresponding results for B=5. The lift errors are now much
larger but the error bars are smaller in both relative and absolute terms.
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Figure 1: Mach number distribution near the shock computed using B=1
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Figure 2: Mach number distribution near the shock computed using B=5
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Figure 3: Lift error for results using B=1
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Figure 5: Lift error for results using B=5
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Figure 6: Lift variation for results using B=5
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4 Discussion

The result that the lift is determined with second order accuracy for the model
quasi-1D problem is surprising and counter-intuitive. Any form of numerical
integration of the analytic pressure at the discrete grid points, p(x;), will in-
evitably incur an integration error which is O(hAp), where Ap is the pressure
jump across the shock. Thus, the discrete pressure values pg-‘ in the neighbour-
hood of the shock must have a pointwise error which is O(1) and of exactly the
correct magnitude to cancel out this O(h) error in the lift integration.

There is obviously a question about the relevance of the quasi-1D model
problem to the 2D and 3D computations which are of real engineering interest.
Jameson’s 2D and 3D computations do behave similarly to the quasi-1D compu-
tations in this paper, which is a favourable indication. Extending the rigorous
numerical analysis from the quasi-1D duct problem to a fully 2D airfoil prob-
lem is extremely challenging. Additional careful grid refinement studies with
other test cases and numerical algorithms may be the only practical approach to
resolving this issue of the errors due to shocks in 2D and 3D computations.

If additional empirical evidence supports the hypothesis that the shock does
not generate a first order error, or even if it shows a first order error but with
a coefficient very much smaller than the pressure jump Ap suggested intuitively,
then it will have important consequences for grid adaptation. The present tech-
niques assume, implicitly, a large first order error at shocks, and then aim to
reduce its magnitude by reducing the cell size h at the shock. In the process,
the number of cells in the shock region increases dramatically. This is particu-
larly true in 3D when using Delauney triangulation methods which prevent the
generation of stretched tetrahedra and so lead to the grid resolution along the
shock being comparable to the grid resolution across the shock. If the shock
does not generate large errors, then the additional computational resources will
be better devoted to a more uniform adaptation of the grid, adapting all cells in
the smooth flow regions in which the flow gradients are large relative to the cell
size.

In viscous calculations, it can be argued with justification that the foot of the
shock needs to be very accurately resolved to obtain the correct shock/boundary
layer interaction. This is critical in determining both viscous losses and the
boundary layer displacement thickness which affects the external inviscid flow
and hence the overall pressure distribution. However, an accurate calculation
of the shock/boundary layer interaction is unlikely to require that the shock is
well resolved far from the wall, and so again the results in this paper suggest
that considerable computational savings may be achieved by better adaptation
criteria.
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