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Analysis of the Accuracy of Shock-Capturingin the Steady Quasi-1D Euler Equations

M. B. GilesOxford University Computing LaboratoryNumerical Analysis Group
Insight into the accuracy of steady shock-capturing CFD methodsis obtained through analysis of a simple problem involving steadytransonic 
ow in a quasi-1D diverging duct. It is proved that thediscrete solution error on either side of the shock is O(hn) where n isthe order of accuracy of the conservative �nite volume discretisation.Furthermore, it is shown that provided that n � 2 then the error inapproximating R p dx isO(h2). This result is in contrast to the generalbelief that shocks in 2D and 3D Euler calculations lead to �rst ordererrors, which motivates much of the research into grid adaptationmethods.
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21 IntroductionThe paper by Jameson, Schmidt and Turkel [5] is a landmark in the develop-ment of CFD methods, being one of the �rst papers on the solution of the multi-dimensional Euler equations in conservative form by a time-marching method.Runge-Kutta time-marching methods, in conjunction with multigrid for steady-state applications [2], are now the mainstay of Euler and Navier-Stokes calcu-lations. One of the key advantages of these methods over the potential 
owmethods which they have largely replaced is the ability to treat supersonic andtransonic 
ow with shocks of arbitrary strength. The importance of shocks in theaeronautical applications which have been the driving motivation for Jameson'sresearch has led to the development of grid adaptation, in which the discreteshock width is reduced by adaptively reducing the size of cells crossed by theshock. With structured grids this is usually accomplished by redistributing thegrid nodes. With unstructured grids, in which Jameson has again played a pi-oneering role [3, 4], it is usually accomplished by grid re�nement, subdividingtriangles or tetrahedra into a number of smaller triangles or tetrahedra.One important aspect of grid adaptation is the criterion used to decide whichwhich cells are adapted. Ideally, the criterion (or a combination of criteria) willlead to the adaptation of only those cells in which large 
ow gradients generatelarge numerical errors. Unfortunately, there is no complete theory of a posteri-ori error estimation for the discretisation of nonlinear p.d.e.'s on which to baserigorous adaptation criteria and so they have instead been developed based on acombination of model linear p.d.e.'s, engineering intuition and practical experi-ence (e.g. [6, 7, 8, 1, 9]). One typical adaptation parameter that is used isAp = hj�pj (1.1)where h is some measure of the cell length, and �p is a �rst di�erence of thepressure �eld. At shocks, �p is independent of the cell size and so the shockcells are adapted repeatedly until h is su�ciently small that Ap falls below theadaptation threshold. Away from shocks,Ap � h2jrpj (1.2)and so the adapted grid resolution is related to the 
ow gradient, as desired.In designing adaptation criteria such as this which will generate a large num-ber of adapted cells at shocks and so obtain very thin discrete shocks, it isimplicitly assumed that the shock would otherwise cause substantial numericalerrors. The lift on a wing is one of the most important engineering quantities ob-tained from a solution of the Euler equations. For such a calculation it appears,intuitively, that since the shock is `smeared' over one or two cells there must bean error in the lift prediction of order hs�p where hs is the cell size at the shockand �p is the jump in pressure across the shock. This appears to be the basis



3for the particular adaptation criterion above, but other adaptation criteria alsolead to very substantial re�nement of shock cells and so the belief in a signi�cant�rst order error at shocks seems widespread although not stated.The research in this paper arose from discussions with Antony Jameson aboutthis issue of shock-generated errors. His experience with uniform grid re�nementstudies for a variety of test cases with a number of di�erent numerical algorithms,does not support the hypothesis of a �rst order lift error. Almost all showconvergence in lift and drag to be faster than �rst order. A substantial fraction,but not the majority, show second order convergence with the error proportionalto h2. The majority show very rapid convergence which does not appear to beproportional to hm for any value of m; in many cases the convergence is not evenmonotonic. Thus, other than refuting the idea of a clear �rst order error due tothe shock, the empirical evidence is unclear.To gain insight into this behaviour, section 2 performs a numerical analysisof shock-capturing discretisations of the Euler equations for a model problem,transonic quasi-1D 
ow in a diverging duct. The analysis shows that the error inthe `lift' prediction is in fact O(h2), not O(h). Furthermore, it reveals the possibleorigin of the non-monotonic convergence observed in 2D and 3D calculations.Section 3 presents numerical results for a particular numerical method with theadaptive smoothing often used by Jameson; these results con�rm the �ndings ofthe numerical analysis. The �nal section discusses the conclusions that can bedrawn from the work.2 Analysis2.1 Analytic equationsThe steady quasi-1D Euler equations in conservative form areddx(AF )� dAdx P = 0; (2.1)where U is the conservation state vectorU = 0B@ ��u�E 1CA ; (2.2)F is the 
ux vector F = 0B@ �u�u2 + p�uH 1CA ; (2.3)



4and P has the contribution of the pressure on the side-wallP = 0B@ 0p0 1CA : (2.4)A(x) is the cross-sectional area of the duct which, for convenience, is assumed tobe locally constant at the two ends.At the supersonic in
ow at x=0 the entire state vector U(0) is speci�ed. Atthe subsonic out
ow at x= 1, one quantity is speci�ed since there is one char-acteristic wave travelling upstream. This quantity could be the static pressure,but the precise choice is not important.Integration of Eq. (2.1) yields[AF ]x1x0 = Z x1x0 dAdx P dx; (2.5)for any arbitrary pair x0; x1. This is the integral form of the quasi-1D Eulerequations and it is this form which remains valid when shocks are present. Takingx0=0; x1=1 gives [AF ]10 = Z 10 dAdx P dx = 0B@ 0D0 1CA ; (2.6)where D = Z 10 p dAdx dx: (2.7)The �rst and third components of Eq. (2.6) together with the one out
ow bound-ary condition totally specify the three components of U(1) given that U(0) has al-ready been speci�ed. The second component of Eq. (2.6) then de�nes D uniquelyas a function of the boundary conditions independent of the precise variation ofp(x) or A(x) between the end points. This is the key result which will be used indetermining the accuracy with which the discretisation approximates the quan-tity Z 10 p dx (2.8)which represents the lift in 2D and 3D Euler calculations for lifting bodies.2.2 Discrete equationsThe analysis considers steady discrete equations with the following conservativeformAj+1=2F hj+1=2 � Aj�1=2F hj�1=2 = �AjP hj ; �Aj � Aj+1=2 � Aj�1=2: (2.9)



5Both the discrete 
ux F hj�1=2 and the sidewall term P hj are functions of theneighbouring values of the state vector Uhj ,F hj�1=2 = F h(Uhj�m�1; :::; Uhj�1; Uhj :::Uhj+m); P hj = P h(Uhj�m; :::; Uhj ; :::Uhj+m)(2.10)with the consistency requirement thatUhj = Uconst =) F hj�1=2 = F (Uconst); P hj = P (Uconst): (2.11)Many quasi-1D schemes are of this form, including the 
ux-vector splittingscheme of van Leer, the 
ux-di�erence splitting scheme of Roe, and Jameson'scell-centred central di�erencing scheme with added arti�cial viscosity terms.The computational grid is taken to be uniform with mesh spacing h, and theorder of accuracy of the �nite volume discretisation is O(hn) as determined by astandard truncation error analysis assuming the solution is di�erentiable.Summing the discrete equations over the entire computational domain yieldsAJ+1=2F hJ+1=2 � A1=2F h1=2 = JX1 �Aj P hj = 0B@ 0Dh0 1CA ; (2.12)where Dh = JX1 �Aj phj : (2.13)This is very similar to the integral equation satis�ed by the analytic solution andit has similar consequences.The restriction that A(x) is locally constant at each end of the domain en-sures that the discrete solution Uhj also approaches a uniform state at each end.Analysis of linear perturbations to the discrete solution for a constant area ductshow that such perturbations decay exponentially with a length scale propor-tional to the grid spacing h. Therefore there exist state vectors Uh(0) and Uh(1)and constants c1; c2 such thatUhj = Uh(0) + o(e�c1=h); j � 2m (2.14)Uhj = Uh(1) + o(e�c2=h); j � J�2mwith m being the span of the discrete 
ux function as previously de�ned. There-fore, using the consistency of the discrete 
uxes it follows thatA(1)F (Uh(1))� A(0)F (Uh(0)) = 0B@ 0Dh0 1CA+ o(e�c=h) (2.15)The in
ow boundary conditions ensure that Uh(0) = U(0). The �rst and thirdcomponents of the above equation together with the speci�cation of the correct



6exit pressure then ensure that Uh(1) = U(1) + o(e�c=h). The second componentthen implies that Dh = D + o(e�c=h): (2.16)In addition, the fact that the boundary data is exponentially accurate andthe �nite volume discretisation has accuracy O(hn) means that away from theshock the solution error is O(hn). At the shock the pointwise error will be O(1)but linear perturbation analysis agains shows that this component will decayexponentially away from the shock so that the composite solution error can berepresented asUhj = U(xj) +O(hn; e�c3jxj�xsj=h) = U(xj) +O(hn; e�c3jj�sj) (2.17)where s is the index of the cell containing the analytic shock, and c3 is anotherconstant.2.3 Accuracy of lift integralDe�ning pj to be the average analytic pressure in cell j,pj = h�1 Z xj+1=2xj�1=2 p dx; (2.18)the objective is to quantify the error in approximating the lift integral,Lh � L = hX phj � Z 10 p dx = hX(phj � pj): (2.19)The �rst step is to express D in terms of the average analytic pressures withineach cell. In the cell containing the analytic shock, dAdx is di�erentiable and soZ xj+1=2xj�1=2 p dAdx dx = pj�As +O(h2); (2.20)with �As denoting the area change in the shock cell. In all other cells, p is alsodi�erentiable and so Z xj+1=2xj�1=2 p dAdx dx = pj�Aj +O(h3): (2.21)Hence, summing over all cells,D =X pj�Aj +O(h2): (2.22)From Eq. (2.16) it can then be concluded thatX(phj � pj)�Aj = O(h2): (2.23)



7The second step is to relate the average analytic pressure to the discretepressure. In all cells other than the shock cell,pj = p(xj) +O(h2) (2.24)and so provided that the order of accuracy n � 2, it follows from Eq. (2.17) thatphj = pj +O(h2; e�c3jj�sj): (2.25)Also, since dAdx is di�erentiable,�Aj = �As +O(h2jj � sj) (2.26)Combining these givesX(phj � pj)(�Aj��As) = O(h2) (2.27)since Xh4jj � sj = O(h2); X h2jj � sje�cjj�sj = O(h2) (2.28)The �nal step is to combine Eqs. (2.23,2.27) to giveh�1�As(Lh�L) = �AsX(phj � pj)= X(phj � pj)�Aj �X(phj � pj)(�Aj ��As)= O(h2) (2.29)and so Lh � L = O(h2) (2.30)since dAdx must be non-zero at the shock for the shock position to be well-determined.Note that there is nothing in the above analysis to suggest that the quantityCh, de�ned by Ch = h�2(Lh � L); (2.31)should asymptote to a constant as h ! 0. The proven second order accuracyonly requires that Ch be bounded. In fact, it is possible that Ch will vary if oneuses a sequence of increasingly �ne grids, depending on the location of the shockrelative to the grid. If xs is the shock location, and as before xhs is the centre ofthe cell containing the shock then Ch is likely to be a function of the parameter,� = h�1(xs � xhs ) (2.32)which will vary from grid to grid. The variation is likely to be greatest formethods which produce very sharp shocks, e.g. 
ux-vector splitting, and leastfor methods which produce more smeared shocks for which the relative gridlocation is much less important. In this latter case, if Ch is relatively constant itmay even be possible to use Richardson extrapolation to obtain higher accuracy.



83 Numerical resultsNumerical results have been obtained for a discretisation of the form speci�ed inthe last section. Dropping the superscript h used in the last section to denotethe discrete variables, the pressure on the sidewall is given byPj = 14 (P (Uj+1) + 2P (Uj+1) + P (Uj�1) ) (3.1)and the discrete 
ux isFj+ 12 = 12 (F (Uj+1) + F (Uj)) + �(2)j+ 12�j+ 12 (Uj+1 � Uj)+�(4)j+ 12�j+ 12 (Uj+2 � 3Uj+1 + 3Uj � Uj+1) : (3.2)The maximum characteristic velocity � is given by�j+ 12 = 12 (juj+1j+ cj+1 + jujj+ cj) (3.3)where u and c are the convection velocity and speed of sound, respectively. Thecoe�cients �(2) and �(4) are de�ned adaptively based on the non-dimensionalpressure switch sj = �����pj+1 � 2pj + pj�1pj+1 + 2pj + pj�1 ����� (3.4)to obtain second di�erence smoothing in the shock region, but only fourth dif-ference smoothing in the smooth 
ow regions�(2)j+ 12 = Bmin(0:5; max(sj+2; sj+1; sj; sj�1))�(4)j+ 12 = max(0; 0:25� 2�(2)j+ 12 ): (3.5)The nondimensional constant B controls the degree of smearing of the shock.Calculations were performed for both B = 1 giving fairly crisp shocks with oneor two interior points, and B = 5 giving shocks which are more smeared withapproximately six interior points.The duct width A(x) is de�ned asA(x) = 8><>: 1:0304; x�01:0304 + 0:0718x3(10�15x+6x2)� 0:9482x3(1�x)3; 0<x<11:1022; x�1 (3.6)The constants were chosen so that A; dAdx ; d2Adx2 are all continuous at x=0 and x=1.At the in
ow at x=�0:2 the 
ow is speci�ed to be supersonic, with conditionssuch that po = 1:0; �o = 1:0; M = 1:2 (3.7)



9where po; �o and M are the stagnation pressure, stagnation density and Machnumber, respectively. The static pressure speci�ed at the out
ow boundary atx=1:2 is p = 0:7143: (3.8)These boundary conditions together with the de�nition of A(x) lead to a shock atx=0:6, with a peak Mach number of 1:3. The steady-state discrete solutions wereobtained by a fully-converged Runge-Kutta time-marching procedure. Figure 1shows the Mach number distribution for the solution near the shock using B=1and and a uniform grid of 64 points. Figure 2 has the corresponding solution forB=5; the shock is clearly smeared.To investigate the e�ect of mesh resolution, a sequence of grids was usedwith the number of grid points ranging from 64 to 192. For each grid, thein
uence of the shock position relative to the grid nodes was investigated byperforming a number of calculations displacing the grid by an amount �x in therange 0� �x� h. The in
ow and out
ow boundaries are also displaced by thesame amount, but since A(x) is locally constant at each end this does not a�ectthe results. For each calculation, the discrete lift was computed, as well as theerror relative to the `exact' lift (estimated by extrapolation from the solutions onthe �nest grids). Figure 3 shows the errors in lift obtained from the solutions withB=1. The `error bar' indicates the range of values obtained depending on theposition of the shock relative to the grid points. Figure 4 plots the magnitude ofthese error bars Lhmax�Lhmin. Note that in both �gures the quantities are plottedagainst h2, not h. The linear behaviour in Figure 4 shows corresponds to theanalysis in the previous section, with Ch being a function of the shock position.Figure 3 also shows an almost linear behaviour for small values of h, but for largervalues the error increases more rapidly, indicating an additional error term whichis O(h3), possibly due to the numerical smoothing in the smooth 
ow regions.Figure 3 also shows the possibility for non-monotonic convergence as h is re�ned;for su�ciently small values of h there are some points within the error bar whichshow an overprediction of the lift, while other show an underprediction. Figures5 and 6 show the corresponding results for B=5. The lift errors are now muchlarger but the error bars are smaller in both relative and absolute terms.
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Figure 1: Mach number distribution near the shock computed using B=1
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Figure 2: Mach number distribution near the shock computed using B=5
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Figure 3: Lift error for results using B=1
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Figure 4: Lift variation for results using B=1



12

0 0:0002 0:0004 0:00060
2� 10�6
4� 10�6
6� 10�6

h2
Lh � L

Figure 5: Lift error for results using B=5
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Figure 6: Lift variation for results using B=5



134 DiscussionThe result that the lift is determined with second order accuracy for the modelquasi-1D problem is surprising and counter-intuitive. Any form of numericalintegration of the analytic pressure at the discrete grid points, p(xj), will in-evitably incur an integration error which is O(h�p), where �p is the pressurejump across the shock. Thus, the discrete pressure values phj in the neighbour-hood of the shock must have a pointwise error which is O(1) and of exactly thecorrect magnitude to cancel out this O(h) error in the lift integration.There is obviously a question about the relevance of the quasi-1D modelproblem to the 2D and 3D computations which are of real engineering interest.Jameson's 2D and 3D computations do behave similarly to the quasi-1D compu-tations in this paper, which is a favourable indication. Extending the rigorousnumerical analysis from the quasi-1D duct problem to a fully 2D airfoil prob-lem is extremely challenging. Additional careful grid re�nement studies withother test cases and numerical algorithms may be the only practical approach toresolving this issue of the errors due to shocks in 2D and 3D computations.If additional empirical evidence supports the hypothesis that the shock doesnot generate a �rst order error, or even if it shows a �rst order error but witha coe�cient very much smaller than the pressure jump �p suggested intuitively,then it will have important consequences for grid adaptation. The present tech-niques assume, implicitly, a large �rst order error at shocks, and then aim toreduce its magnitude by reducing the cell size h at the shock. In the process,the number of cells in the shock region increases dramatically. This is particu-larly true in 3D when using Delauney triangulation methods which prevent thegeneration of stretched tetrahedra and so lead to the grid resolution along theshock being comparable to the grid resolution across the shock. If the shockdoes not generate large errors, then the additional computational resources willbe better devoted to a more uniform adaptation of the grid, adapting all cells inthe smooth 
ow regions in which the 
ow gradients are large relative to the cellsize.In viscous calculations, it can be argued with justi�cation that the foot of theshock needs to be very accurately resolved to obtain the correct shock/boundarylayer interaction. This is critical in determining both viscous losses and theboundary layer displacement thickness which a�ects the external inviscid 
owand hence the overall pressure distribution. However, an accurate calculationof the shock/boundary layer interaction is unlikely to require that the shock iswell resolved far from the wall, and so again the results in this paper suggestthat considerable computational savings may be achieved by better adaptationcriteria.
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