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Abstract - -New ideas are presented for the visualization of computational fluid dynamics data. These 
include both unsteady two-dimensional and steady three-dimensional data on either structured or un- 
structured grids. In addition to presenting some specific algorithm advances, considerable attention is 
devoted to innovative interactive probes and the appropriate choice of program architecture and internal 
data structure. 

I. INTRODUCTION 

The subject of this paper is the development of new 
ideas for the visualization of computational fluid 
dynamics (CFD) data. New approaches are required 
because rapid advances in basic algorithm develop- 
ment have led to flow codes which produce data that 
cannot be viewed using established plotting soft- 
ware, such as PLOT3D. I PLOT3D was written to 
visualize steady data on multiple structured grids. 
However, in the last five years, a major focus of 
research effort has been unstructured flow codes 
using grids composed of triangular or quadrilateral 
cells (in two dimensions), or tetrahedral, prism or 
hexahedral cells (in three dimensions). This is 
because of their relative ease of generation for com- 
plex geometries, and because of the ease of adaptive 
grid refinement. Also, much research is being done 
on unsteady flows, particularly in two dimensions, 
but visualization tools have been slow to emerge to 
enable one to visualize and understand the vast 
amount of data that are generated. 

At the same time, there has been a rapid evolution 
in computer hardware. There are now graphics mini- 
supercomputers, or super-workstations, which have 
a floating point capability which is a significant frac- 
tion of a CRAY,  combined with impressive graphics 
capabilities. The research work in this paper was 
performed on a Stardent GS2000 which has, on 
average, a sustained capability of 15 Mflops and 
150,000 Gouraud-shaped triangles per second. This 
hardware speed makes possible interactive graphics 
of a kind which was not previously feasible. 

There are only a few research groups working on 
the development of new CFD graphics software. 
NASA Ames is continuing development of PLOT3D 
and associated programs. These continue to be based 
on multi-block grids, and the research emphasis is on 
improving the supercomputer-workstation links and 
the extraction of data from the interior of three- 
dimensional calculationsfl Weston at NASA 
Langley has developed a structured three-dimen- 
sional program 3 and an unstructured triangular 

program, and is currently working on an unstruc- 
tured tetrahedral program. While at the Massa- 
chusetts Institute of Technology, Dannenhoffer de- 
veloped a two-dimensional graphics package called 
GRAFIC,  which is able to handle a variety of grid 
data structures through a technique described in a 
later section. Dannenhoffer is continuing the de- 
velopment of G R A F I C  at the United Technologies 
Research Center, and the latest version also treats 
three-dimensional data. 4 L6hner at George 
Washington University is developing an unstruc- 
tured tetrahedral graphics program, 5 and Strid and 
Rizzi at FFA (the Aeronautical Research Institute of 
Sweden) have developed a structured three- 
dimensional graphics program, ~ and are working 
on an unstructured version. 

2. DESIGN OF VISUAL2 AND VISUAL3 

2.1. Design goals 
The first step in developing any software is to 

carefully define its objectives and intended function- 
ality. The design of VISUAL2 and VISUAL3 was 
begun a year before the hardware arrived so there 
was adequate time to refine the software design 
before coding started. In fact, overall more time was 
spent on discussing the data structure, sofl~'are 
architecture, programming and user interfaces and 
intended functionality, than has been spent on the 
programming. The following list gives the design 
goals of VISUAL2 and VISUAL3, the two-dimen- 
sional and three-dimensional programs, respec- 
tively, with some discussion of each item. 

• Very interactive--as opposed to high-quality 
glossy videos that take days to produce and are 
used primarily for presentations, the aim was a 
practical tool for everyday use by engineers, in 
which they would be able, instantly, to examine 
different parameters, probe the flow field and, as 
thoroughly as possible, interactively investigate 
their numerical results. This objective came in 
part from experiences in developing interactive 
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educational software to aid in the undergraduate 
teaching of fluid dynamics. 7 One consequence of 
the desire for high interactivity was a decision to 
sacrifice portability for performance. At the low- 
est levels, the programs use graphics primitives 
that are unique to the Stardent hardware, 
although in the near future these will be converted 
to the emerging PEX standard. Another conse- 
quence was a strong effort to develop innovative 
"probes" with which the user can interrogate the 
flow field. 

• Animation--VISUAL2 was designed from the 
beginning to handle unsteady data, in which the 
flow variables, the grid coordinates and even the 
basic grid data structure could be changing. It was 
also designed to allow co-processing, in which the 
CFD calculation is performed in parallel to the 
animated visualization, requiring locking proce- 
dures to transfer data from the CFD application to 
VISUAL2. VISUAL3 was also designed to allow 
animation although at present the computer 
floating point performance is not sufficient to 
make this practical in many situations. 

• Structured and unstructured grids--an important 
objective was for the programs to be capable of 
handling flow data from all of the types of flow 
codes currently in common use in CFD. This in- 
cludes multi-block structured grids, and un- 
structured grids with a variety of different cell 
types. However, this generality should not be at 
the expense of performance; instead, if necessary, 
it should be at the expense of additional 
programming. 

• Flexibility and generality--the intent was that a 
sophisticated user should be able to modify or 
tailor the graphics package to some extent. Also, 
the same graphics package should be able to treat 
data from a structural analysis program as well as 
from a CFD program. 

• Simple user programming in te r face- -one  
approach to graphics is to supply the user with a 
library of graphics functions which they then 
assemble into a graphics program. At the other 
extreme is the graphics package which does every- 
thing but is not very flexible. As explained in the 
next section, a middle approach was adopted for 
VISUAL2 and VISUAL3. 

2.2. Program structure and interface 

The next step in the program development was to 
decide upon the program structure, or architecture. 
This is probably the most critical decision since the 
choice places tight constraints on the functionality 
and ease-of-use of the final software. 

One possibility was to write a library of graphics 
routines, consisting of perhaps as many as 50 sub- 
routines, which a user could build into a graphics 

application package. The AVS (Application Visuali- 
zation System) software developed by Stardent is a 
very good example of this type of softwarefl AVS 
uses a visual "network editor" to allow a user/ 
programmer to assemble building blocks into a 
powerful graphics package. This is excellent as a 
rapid prototyping tool for quickly developing 
graphics for entirely new applications, and is used by 
many people as the final production graphics pro- 
gram. However, it has to make sacrifices in perform- 
ance and memory usage and currently supports only 
a limited set of data structures. 

At the opposite extreme, one could write a single 
program (like PLOT3D), which handles structured 
and unstructured grids and has a preset number of 
plotting options. PLOT3D has certainly been very 
successful because it is very easy for a novice user to 
begin to use it, and this is an attraction of the single 
program approach. The weakness is the lack of 
flexibility and generality. If a user wants to plot some 
variable other than the ones which are pre- 
programmed into PLOT3D then he must modify 
the internal code of PLOT3D. If the user wants to 
use PLOT3D to view structural analysis results, then 
extensive modifications need to be made. For this 
reason we chose not to adopt this approach. 

Lying between these two approaches is GRAFIC,  
developed by Dannenhoffer. 4 GRAFIC has a 
number of pre-packaged options to do straightfor- 
ward things such as line plots and contour plots on 
two-dimensional structured grids. In addition, to 
give more sophisticated users full flexibility, there is 
a mode in which the user program calls a GRAFIC 
"control" package, which handles axes, annotation, 
hard copy, blowups, etc. and calls user-supplied 
routines to draw all plots. This capability allows users 
to write custom software for plotting on their 
particular types of unstructured grids, using a library 
of low-level routines supplied with GRAFIC. This 
approach is a little like the graphics library, except 
that the control program relieves the programmer of 
a lot of mundane tasks. It was felt that this approach 
still required too much user programming, but the 
"control" program architecture was the major in- 
fluence on the choice of structure for VISUAL2 and 
VISUAL3. 

The program architecture finally chosen is shown 
in Fig. 1. VISUAL2 and VISUAL3 are subroutines 
which are called by a user's program, and they per- 
form all graphics functions, including window 
management, grid plots, contour plots, hard copy, 
cursor control, "probes", etc. Keeping the user away 
from all low-level graphics programming achieves 
the goals of ease-of-use, and allows the VISUAL 
programs to concentrate on providing interactivity, 
animation and overall high performance. 

To provide more flexibility than with PLOT3D, 
VISUAL does not deal directly with CFD variables. 
Instead it only processes generic scalar and vector 
data. When it is initialized by the user's program, the 
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Fig. 1. Flow diagram showing direct use of VISUAL. 

user "binds" a keyboard key to a particular user 
function, and notifies VISUAL of the type of the 
function. For example, a user program may tell 
VISUAL that the key "p" is associated with a scalar 
function labeled "pressure." If the user subsequently 
presses the key "p," then VISUAL loads in the 
values of "pressure" by calling a user-supplied 
routine. The user-supplied routine can communicate 
with the top-level user program through COMMON 
blocks, and it knows how to calculate pressure from 
the user's flow data. In this manner, the user can 
easily add new functions to be plotted without having 
to change the internal program of VISUAL. This 
satisfies the goal of flexibility and generality. 

Similarly, VISUAL obtains the data structure and 
grid coordinates by calling user-supplied routines. If 
the initialization of VISUAL states that some or all 
of the data structure, grid and flow data are un- 
steady, then VISUAL will keep calling (either 
synchronously or asynchronously) the user-supplied 
routines to obtain the latest data. This is the simple 
mechanism by which animation is achieved. 

The final comment on the program structure is that 
the internal data structures used by VISUAL2 and 
VISUAL3 (which are explained in the next section) 
may not be the same as the user's chosen data 
structure. In the most general case, it is the user's 
responsibility to convert the user's data to 
VISUAL's internal format. However, a set of CFD 
application filter programs, called FLOVIZ, is being 
written for users to use for this purpose. For 
example, one set of FLOVIZ routines will take 
multi-block data in the PLOT3D format, convert it 
into the VISUAL internal format, and define the 
plotting functions commonly offered by PLOT3D. In 
this case, the user's program would simply call the 
top-level FLOVIZ routine, as shown in Fig. 2. The 
filter programs are easy to write in general, and can 
be customized for different applications such as 
structural analysis. 

2.3. V I S U A L 2  data s t ruc ture  

The choice of internal data structure for 
VISUAL2 and VISUAL3 was driven by considera- 
tions of generality and the maximum possible 
performance. In two dimensions, every compu- 
tational cell is being plotted in general, and so the 
ratio of rendering time (the time needed to do a 
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Fig. 2. Flow diagram showing indirect use of VISUAL 
through FLOVIZ. 

smooth Gouraud-shaded color fill of a polygon) to 
compute time (the time needed to evaluate new 
functions, such as pressure) is large. Therefore, the 
data structure of VISUAL2 was optimized to obtain 
the maximum graphics throughput on the Stardent 
GS2000. This requires a decision which is somewhat 
machine-dependent. The graphics primitive on the 
Stardent, which allows a rendering rate of 150,000 
Gouraud-shaded triangles per second, uses a 
structure called a "polytriangle." Other manufac- 
turers use slightly different primitives, but the 
polytriangle is one of the structures which is the basis 
of PEX (the Phigs Extension to X windows), which is 
likely to emerge as the standard of high performance 
graphics. 

The polytriangle is a list of N+2 nodes which 
defines N connected triangles, with nodes l, 2, 3 
defining the first triangle, nodes 2, 3, 4 the second, 
and nodes N, N + I ,  N+2 the Nth. The grid coordi- 
nates and function values are defined at the nodes. In 
this way the polytriangle, for large N, requires 
approximately one node of coordinate and function 
data per triangle. This contrasts with using a set of 
disjoint triangles in which each triangle requires 
three nodes of data. Thus, the use of polytriangles re- 
duces memory requirements by factor 3, reduces bus 
transfer requirements by factor 3, and also reduces 
the triangle processing time because when processing 
one triangle the low-level routines can take advan- 
tage of results from processing the previous triangle. 

The primary part of the VISUAL2 data structure 
is a set of polytriangles which collectively define the 
entire computational grid. The streamline integrator 
(which simply integrates any vector function given to 
VISUAL2) requires connectivity information. The 
polytriangle structure immediately gives neighbor in- 
formation for all the common faces internal to it. For 
the N+2 external faces, there is a set of pointers 
which point to the corresponding cell in another 
polytriangle with the shared face. If there is no 
neighboring cell, because it is an edge face, then it 
points into a separate structure which is a collection 
of all of the edge faces, grouped into specific edges 
(e.g. airfoil, inflow boundary, outflow boundary). 
The edge structure is important because certain 
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functions, such as skin friction, are only defined on 
an edge, and there are special plotting capabilities to 
display these. 

One complication with the use of polytriangles as 
the primary data structure is the task of converting 
user grids into polytriangles. The conversion of 
structured grids is trivial, since consistently cutting 
all quadrilateral cells along the same diagonal will 
naturally produce polytriangles. The harder task is 
taking a general unstructured grid composed of 
triangular and quadrilateral cells and decomposing it 
into polytriangles. A very efficient algorithm has 
been developed for this. A simpler version which 
handles only triangular cells is presented in the 
algorithm section. This is implemented as a routine 
which can be used either by the FLOVIZ filter 
routine, or directly by a user's program. 

2.4. VISUAL3 data structure 

In three dimensions, only a small fraction of the 
computational cells are being displayed in some 
manner on the screen at one time. Therefore the 
ratio of rendering time to compute time is small, and 
the choice of data structure is motivated by the desire 
to minimize compute time, particularly in some of 
the more CPU-intensive functions such as volume 
slicing. In the same way that triangles are the lowest 
common denominator in two dimensions, tetrahedra 
are the lowest common denominator in three dimen- 
sions, and in principle all other cell types could be 
split into a number of tetrahedra. Since this would 
simplify our programming task we considered this 
approach but rejected it for the following reason. 

The problem is how to split a hexahedron into 
tetrahedra. The smallest number of tetrahedra that 
the hexahedron can be split into is five, achieved by 
dividing each face into two triangles in the correct 
manner to form four tetrahedra with three external 
faces and one tetrahedron with four internal faces. 
The difficulty with this is the possibility of an 
inconsistency between neighboring hexahedra. If 
the common quadrilateral face shared by two 
hexahedra is split across one diagonal on one cell and 
the other diagonal on the other cell, and if the 
quadrilateral face is twisted (i.e. non-planar), then 
there will be an overlap and some gaps in the 
volumetric decomposition into tetrahedra because 
the common face will be represented differently on 
either side. In structured grids, one can ensure a 
consistent splitting, and this approach is used by 
Strid and Rizzi. 6 In unstructured grids one cannot 
solve this problem, except by splitting each 
quadrilateral face into four triangles by inserting a 
new node at the centroid of the face, and joining this 
node to all four corners. If each resulting triangle is 
then connected to another node at the centroid of the 
entire cell, then 24 tetrahedra are produced. This will 
clearly greatly increase the computational cost of all 
operations, and the memory requirements. 

Instead, our approach was to use a data structure 
for VISUAL3 which has four different cell types; 
tetrahedra, pyramids, prisms and hexahedra. Almost 
all CFD grids in use today are a combination of one 
or more of these cell types, and the few that are not 
can be easily decomposed into these. This data 
structure keeps memory requirements to a minimum 
for an unstructured grid, and leads to computation- 
ally efficient algorithms tailored for each cell type. 
The only drawback of this approach was the extra 
programming that had to be done to handle each cell 
type. 

As in two dimensions, there are also other com- 
ponents to the data structure. There are pointers 
from each cell to its neighbors, to provide the 
connectivity information needed by the streamline 
integrator. There is a list of surfaces (e.g. wing, 
fuselage, far-field boundary), and for each there is a 
list of surface faces, which are treated as a set of dis- 
joint triangles because in this case there is no 
problem about an inconsistency in splitting quadri- 
lateral faces. In the object-oriented computer 
science terminology, the surfaces are treated as static 
objects in the object database. "Static" means that 
the definition of the object (its list of faces) does not 
change. The "attributes" of the object (whether it is 
being rendered, whether the grid plotting is on or 
off) can be changed by the user. A "dynamic" object 
is created by the volume slicing, either by moving a 
cutting plane through the volume or by defining an 
iso-function surface. It is dynamic because as the 
location of the plane moves, or the value of the iso- 
function surface changes, the list of cells defining the 
object will change. To create an image with multiple 
slicing planes or iso-function surfaces, there is a 
capability to take the dynamic object at some instant 
and copy it to a static object in the database. 
Additional static objects created in this way can be 
deleted later to free memory. 

2.5. User interface 

Figures 3 and 6 show the screen displays of 
VISUAL2 and VISUAL3. All graphics are handled 
through the X-window display system. 

VISUAL2 has two main windows. The large one 
(at top left) is the primary window in which most 
plotting is performed. The small one (at bottom 
right) is the secondary window which is used for 
plotting one-dimensional data, and the "magnifying 
glass." There is also a window (at top right) with the 
color map, which defines the color associated with a 
particular function value. At the bottom left is the 
text window which displays the help menus and is 
used to accept numeric input data from the user. 

VISUAL3 has three main windows. The largest 
one (at top left) is the primary window in which all 
three-dimensional plotting is performed. The slightly 
smaller one (at middle right) is the secondary 
window which is used for plotting two-dimensional 
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data, and the smallest one (at bottom right) is used 
for one-dimensional data. Again there is also a 
window (at top right) for the color map, and a text 
window. The last window displays either the 
functions of the eight dials on the dialbox, or the 
state of the "objects" in the database. The mouse can 
be used to edit the database, changing which surfaces 
are rendered, which have grids displayed, etc. 

Our personal opinion is that pull-down menus 
controlled by a mouse clutter up the screen and are 
cumbersome to use. Therefore, most user inter- 
action with VISUAL is through the keyboard. 
Function keys and assorted other special keys 
control all plotting options. The option invoked also 
depends upon the window in which the cursor is 
currently located, as is standard in most X-based 
applications. Alphanumeric keys are used to define 
which scalar or vector function is to be plotted, as 
determined by the key bindings that the user 
specifies when initializing VISUAL. This provides a 

great deal of functionality without requiring multiple 
levels of menus. VISUAL3 also uses the dialbox to 
input rotations and value changes. 

3. INTERACTIVE PROBES AND CAPABILITIES 

3.1. VISUAL2 

VISUAL2 has a set of basic plotting options which 
generate output in the primary window. These are 
supplemented by the ability to interactively pan and 
zoom, and change the color maps. 

• Contour plot--a Gouraud-shaded contour plot of 
the currently "active" scalar variable is generated. 
This is dynamic if the grid or the function is un- 
steady. It is shown in Figs 3 and 4. 

• Grid plot--the computational grid is super- 
imposed on the current plot. 

Fig. 3. VISUAL2 with surface line plot. 
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Fig. 4. VISUAL2 with edge normal probe. 

• Contour line p lo t - -contour  lines corresponding to 
the current scalar function are superimposed on 
the current plot. 

• Vector plot--vectors  corresponding to the current 
vector function are superimposed on the current 
plot. This is shown in Fig. 5. 

At  the screen interface level, the novel feature of 
VISUAL2 is the large variety of interactive "probes" 
which can be used by the viewer to interrogate the 
numerical data. The output from these probes is dis- 
played in the secondary window. An important point 
is that many of these probes were developed as a 
direct consequence of suggestions from users who 
wanted to study some particular aspect of a flow 
field, and felt that the existing tools were not 
adequate. 

• Point p robe- - the  position of the probe in the 
primary window is defined by the mouse. The 

output in the secondary window is a time history 
of the scalar variable being plotted in the primary 
window. 

• Edge function probe-- th is  is similar to the point 
probe, but is for plotting edge function data (data 
like skin friction or heat transfer which is only 
defined on edges). The probe is defined to be at 
the edge point closest to the current mouse 
location. 

• Edge plot-- this  plots the current scalar variable 
along the edge which is closest to the current 
mouse location. It is shown in Fig. 3. 

• Edge function plot-- this  is similar to the edge 
plot, but is for plotting edge function data. 

• Line probe- - the  position of the line is controlled 
by the mouse. The ouput in the secondary 
window is the steady or unsteady scalar function 
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Fig. 5. VISUAL2 with velocity vectors. 

values along the line. A subsidiary option for un- 
steady cases is to calculate and plot a time- 
average. 

• Ldge normal probe--this is similar to the line 
probe, except that the line is normal to an edge. 
Like the edge function probe, one end of the line 
is defined to be at the edge point closest to the 
current mouse location. The line then extends 
normally out from the edge into the domain. The 
initial length is set by the initial distance of the 
mouse from the edge, but it can be changed by the 
user. The location of the whole line varies 
dynamically as the user moves the mouse, 
allowing the user to quickly scan around an entire 
surface examining, for example, the boundary 
layer in a viscous CFD calculation. This is shown 
in Fig. 4. 

• Magnifying glass--this is similar to the interactive 
pan and zoom, except that the primary window re- 
mains unchanged. The output in the secondary 
window is the magnified region. For efficiency 
reasons, if the data is unsteady this option 
"freezes" the action and does not plot dynami- 
cally. 

3.2. VISUAL3 

VISUAL3 has a set of basic plotting options which 
generate output in the primary three-dimensional 
window. Simple dialbox commands allow the user to 
rotate, pan and zoom, and the user can again inter- 
actively change the color maps. For convenience in 
comparing different solution sets, viewing positions 
can be stored away, and/or recalled. 

Surface contour plot--a  Gouraud-shaded contour 
plot of the currently "active" scalar variable is 
generated on all selected surfaces. An additional 
option is thresholding, in which the contour plot is 
only given on those parts of the surface on which a 
thresholding function lies within certain bounds. 
If the thresholding function is the same as the plot- 
ting function this gives the form of thresholding 
first developed by Weston. 3 If the thresholding 
function is geometric this produces a "cutaway" 
view in which part of the surface is removed to 
enable one to see another part. Other options are 
to make the rendering translucent (allowing 
surfaces behind to be partially visible) or to add a 
simple lighting model (giving valuable cues about 
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Fig. 6. VISUAL3 with cutting plane. 

surface curvature and depth). This is shown in 
Figs 6-9. 

• Surface function contour plot--this is similar to 
the surface contour plot, except that the scalar 
quantity is a surface function which is only defined 
on the surface. 

• Surface grid plot--the computational grid is dis- 
played on all selected surfaces. This is shown in 
Fig. 7. 

• Surface vector plot--vectors corresponding to the 
current vector function are displayed on all 
selected surfaces. 

VISUAL3 has a number of probes with output in 
either, or both, of the primary three-dimensional 
window and the secondary two-dimensional window. 

• Cutting plane--this is a flat plane whose orienta- 
tion relative to the computational object is inter- 
actively set by the user using the dialbox. On the 
plane, one can plot the computational grid, or 
contours of the current scalar variable, or "tufts" 
corresponding to the current vector variable, or 
begin streamlines which are the integrals of the 
current vector function. The output of these 

the secondary window, 
VISUAL2 are available 

options can be plotted in either, or both, of the 
three- and two-dimensional windows. A rendered 
cutting plane is shown in Fig. 6, and a cutting 
plane with streamlines is shown in Fig. 8. 

User-defined cutting plane--this is very similar to 
the cutting plane, except that the plane is defined 
by z '=cons t ,  where x' ,  y ' ,  z' are user-defined 
functions of the physical coordinates x, y, z. This 
allows, for example, a user to display contours on 
an axisymmetric surface which is useful in turbo- 
machinery applications. Using the diaibox, the 
user can adjust the value of z' to move the cutting 
plane through the field. 

Iso-function surface--this is similar to the user- 
defined cutting plane, with z' defined to be the 
current scalar function value. Since there is no 
way to define x' ,  y ' ,  this option plots the iso- 
function surfaces only in the three-dimensional 
window. The iso-surface value can be varied using 
the dialbox. This is shown in Fig. 9. 

When one of the cutting planes is being plotted in 
many of the probes in 
to interrogate the two- 
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Fig. 7. VISUAL3 with grid plot. 

,~ii! ̧̧ ~ 

Fig. 9. VISUAL3 with iso-function surface. 

Fig. 8. VISUAL3 with streamlines. 

d imens iona l  flow field, with ou tpu t  be ing  displayed 
in the  small  ter t iary  window. 

4. ALGORITHMS 

4.1. Two-dimensional polvtriangle strip generator 

The  object ive  of the  two-d imens iona l  polytr iangle  
strip gene ra to r  is to take an uns t ruc tu red  grid 

composed  of t r iangular  cells, and  conver t  it in to  a 
n u m b e r  of polytr iangle  strips. This  is ach ieved  in two 
stages.  The  first stage const ructs  a table  of informa-  
t ion abou t  all grid faces, and  the second stage uses 
this to form the strips. 

T h e  face table  to be cons t ruc ted  has six entr ies  for 
each  face. The  first two entr ies  are po in te rs  to (or the 
indices of) the  two nodes  tha t  define the f ace  The  
th i rd  ent ry  is a po in te r  to the next face in the  list 
which conta ins  the  first node.  Similarly, the four th  
po in te r  is to the  next  face which conta ins  the second 
node .  The  thi rd  and  four th  po in te rs  are zero if the  
cur ren t  face is the  last face which involves the corres- 
pond ing  node .  T h e  last two entr ies  are poin ters  to 
the  cells on  e i the r  side of the  face. If the face is on an 
edge then  the re  will be only one  cell and  so the 
second ent ry  will be zero.  In addi t ion to the face 
tab le  the re  is a node  table  with one  entry  per  node  
which points  to the first face which involves that  
node .  

W h e n  the ini t ial izat ion process  begins,  the node 
and  face tables  are all zeros. They  are filled up pro- 
gressively by process ing all of the cells in the  domain .  
Each  cell has po in te rs  to the three  or four  nodes  
which define it, and  these  in turn  define th ree  or four 
faces. For  each  face the  process  is as follows. 

Let  I 1 and  12 be the  indices of the two nodes  tha t  
define the  new face. The  node  table  is used to see if 
the re  is a l ready a face in the face table  which involves 
node  I 1. If the re  is not ,  then  this new face is added  to 
the  face table  by set t ing the  first two ent r ies  equal  to 
l l  and  I2, and  the fifth to the cell index. If there  is, 
then  the  o the r  node  of the  face in the  table  is com- 
pared  to I2. If these  match ,  then  the  table  face is the 
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same as the new face and so the current cell is the 
second cell corresponding to that face and the sixth 
entry is set appropriately. If they do not match then 
the whole process is repeated with the next face in 
the table which uses the first node of the new face, 
using the appropriate third or fourth pointer to find 
this face. This continues until one either finds a 
match for the new face, or runs out faces which use 
the first node. In the latter case the new face does not 
currently exist in the face table and so it is added to 
the face table. Also, the third or fourth entry (as 
appropriate) of the face that used to be the last in- 
volving node I1 is set to point to the new face in the 
table which is now the last. 

When the face table is complete, all faces with only 
one cell are labeled as being edge faces. The con- 
struction of polytriangles requires an additional table 
for the cells. If a cell has not yet been included in a 
polytriangle then the entry is zero. If it has been used 
the entry points to the cell's location in the 
polytriangle structure. The first part of the strip 
generator starts at edge faces and works into the 
domain. The edge face points to the neighboring cell; 
the cell points to its three nodes and so one obtains 
the index of the interior node, the one not in the edge 
face; using the node and face tables the node points 
to the face which is then the starting point for adding 
the next triangle to the strip. This continues until one 
reaches another edge face or a triangle which has 
already been used, which ends the strip. Once all 
edge faces have been used to start strips, there may 
still be some cells that have not been used. In this 
case additional strips are started from each unused 
cell (extending in both directions) until all cells have 
been used. 

There are some minor complications. As indicated 
in Fig. 10, a strip that starts at an edge face can grow 
inwards in two ways, depending on the order in 
which one takes the two edge nodes. The algorithm 
checks both possibilities and takes the one which 
gives the longer strip. Similarly, starting at an unused 
interior cell, there are three different possible strip 
orientations, and one chooses the one giving the 
longest strip. The final operation is to use the in- 
formation in the node, face and cell tables to con- 
struct the connection data between the polytriangles; 
the cell in one polytriangle points to its nodes, which 
point to the face, which points to the neighboring 
cell, which points to its location in the neighboring 
polytriangle. 

This strip generation algorithm is very efficient. 
Each node is involved in only six faces on average, so 

chasing through the face table to find and match faces 
is extremely rapid. For a grid with N triangles, the 
memory requirements are O(N), and the table 
generation and the strip generation phases both 
require O(N) operations. Only 2 s are required on a 
Stardent GS2000 to generate strips for an irregular 
triangular grid with 100,000 cells. This is comparable 
to the disk I/O time for reading in the data set, so it is 
re-calculated every time instead of being stored on 
disk. 

A very similar procedure is used in three dimen- 
sions to take an unstructured collection of cells and 
compute the neighboring cells and a list of surface 
faces. 

4.2. Three-dimensional volume slicing 

The task of the three-dimensional volume slicing 
algorithm is to extract two-dimensional surface in- 
formation from an unstructured three-dimensional 
data set. This procedure is used for the planar cutting 
plane, user-defined cutting plane, and iso-function 
surfaces listed which are three of the probes in 
VISUAL3. In all three cases, the description of the 
problem can be reduced to the following; given some 
function z', and a set of unstructured three- 
dimensional cells, how does one firstly determine the 
cells that are crossed by the surface z ' = Z ,  and 
secondly, for the crossed cells determine the surface 
piece to be plotted. 

Taking the second task first, there is an extremely 
fast method referred to as the "marching cubes" 
algorithm, developed by Lorensen and Cline, 9 and 
used by L6hner, Strid, Dannenhoffer and ourselves. 
Briefly, the technique for hexahedra is to calculate 
an eight-bit index for a cell, where each bit is 0 or 1 
depending whether the corresponding corner node 
value of z ' - Z  is positive or negative. This eight-bit 
index then points to an entry in a look-up table that 
gives the logical structure of the surface z ' = Z .  
Interpolation of geometry and function values along 
an edge completes the process. 

The harder task is the first task of determining the 
cells that are crossed. An exhaustive search of all 
cells is possible but extremely time-consuming. Strid 
improves the efficiency by performing the exhaustive 
search for all boundary cells, and then constructing 
the surface from the edges in, by using cell connec- 
tivity information to check neighboring cells to see if 
they are crossed. 6 Although not vectorizable, this 
works well for planar cutting planes. However, it 
does not work for user-defined surfaces and iso- 
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Fig. 10. Alternative polytriangle strips. 
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surfaces which do not cross the boundaries of the 
computational region. 

Our approach, part of which was published in an 
earlier paper, "~ begins with an initialization phase 
when the function z' is first defined. For each cell, j, 
Z ) , r n  m and z'j . . . . .  the minimum and maximum values 
of z' of the corner nodes, are calculated. Two 
ordered lists of cells are formed, Lmi n ordered by 
Z),mm, Lm~x by z' / . . . .  . The final initialization step is to 
evaluate Az', the global maximum value of 
Z )  . . . .  - - Z t / , m i n ,  which is the maximum cell "width." If 
there are N total cells then the initialization requires 
O(Nlog(N)) operations using a quick-sort al- 
gorithm. For N = 100,000, the initialization currently 
takes 15 s on the Stardent GS2000, but it is hoped 
that this will be reduced in the future by using fully- 
optimized assembly-level programming for the 
critical sort algorithm. 

If the constant Z is being set for the first time, or if 
it has changed from its previous value by more than 
Az', then an active cell list L~,~¢ is formed by taking 
the section of list Lmi n with cells whose Z),mm lie in the 
range [Z-Az',Z]. This requires only O(log(N)) 
operations to find the limits, and in general the active 
cell list has O(N z/3) cells. Purging the active list of the 
few cells that are not crossed by z' = Z gives the final 
list of crossed cells. 

If Z has changed by less than Az' then a different 
procedure is used. If Z,~w > Zo~d, the old active cell 
list is supplemented by the cells in list tmin that have 
values of Ztl,min in the range [Zojd, Z.~w]. If 
Z,~,~< Zo~d, the old active cell list is supplemented 
by the cells in list Lma x that have values of z) . . . .  in 
the range [Z . . . .  Zoo0]. The active cell list is then 
purged of all cells that are not crossed. For small 
changes in Z, this procedure is extremely efficient 
since it involves the addition and removal of just a 
few cells. This enables a rapid animation rate when 
interactively varying the value of Z smoothly to 
sweep through the entire computational domain. 

4.3. Three-dimensional streamlines 

The algorithm for integrating a vector function to 
produce streamlines is very similar to the techniques 
used in GRAFIC and PLOT3D, and differs only 
slightly from the method used by Strid and 
Eliasson. 6 The algorithm can be broken into two 
parts, a top-level part which performs the time- 
integration of the vector function, and a low-level 
part which is responsible for evaluating the inter- 
polated velocity at an arbitrary point in space. 

The top-level task is relatively straightforward. 
Assuming that somehow one knows the velocity field 
~i(. 0 ,  then the streamline, defined parametrically as a 
function of time t by the equation 

d x  ~ 
~ i  = u(x), (1) 

is integrated numerically by a fourth-order Runge-  
Kutta method. To obtain accurate streamlines at the 

lowest possible cost, an adaptive time-step is used, 
with the time-step being halved if the velocity direc- 
tion changes too much over one time-step, and 
doubled if it changes sufficiently less. 

The low-level task is to calculate ~ for an arbitrary 
£ on an unstructured grid. The explanation will be 
solely for hexahedral cells, but the extension to the 
other cell types is quite natural. 

For each hexahedral cell there is a trilinear 
mapping from a unit cube ( 0 < ~ < 1 ,  0<~2<1 ,  
0 < ~3 < 1) in computational space to the hexahedron 
in physical space. This can be represented as 

8 

= Y~(~ , ,  ~2, ~)~,,  (2) 
I 1 

where the sum is over the eight corner nodes, ~/, is 
the coordinate vector of the jth node, and ~ is a tri- 
linear function (linear in each of {t,{2,{3) which is 
equal to 1 at node j and 0 at all other nodes. Using an 
isoparametric representation, the velocity field can 
also be expressed as 

8 

a = )S f,(~,,~2,~,)a,. (3) 
/ = 1  

Thus the task for the low-level routine has been re- 
duced to finding the cell in which the desired £ is 
located, and then finding the corresponding value of 

and hence ft. The second part of this is accom- 
plished by a Newton-Raphson iterative solution of 
Eq. (2). The Newton-Raphson update is clipped to 
ensure that ~ does not go outside the computational 
cell. If~ lies on the computational cell boundary, and 
the update still wants to go outside the cell, then this 
proves that the desired ~ lies in another cell. Using 
the cell connectivity information the search switches 
to the neighboring cell and the Newton-Raphson 
procedure is restarted. The initial cell used for the 
search is taken to be the cell corresponding to the last 
point calculated in the top-level Runge-Kutta inte- 
gration. Thus the searching procedure will typically 
only need to move through one or two cells before 
finding the correct cell, and ti;en converges quadrati- 
cally to the correct value of ~. 

5.  C O N C L U S I O N S  

This paper has discussed the development of two 
graphics programs, VISUAL2 and VISUAL3, for 
the visualization of scalar and vector data in two and 
three dimensions, respectively. A strong effort was 
made to explain the reasons behind the choice of 
data structure and program architecture that was 
employed, and to present the pros and cons of alter- 
native approaches. This is a critical part of the design 
of a graphics package and deserves considerable 
thought before proceeding to the programming 
stage. The best approach is to first formulate a clear 
set of design goals for the functionality of the 
software. Together with the capabilities and limita- 
tions of the hardware, this then gives one a good 
basis on which to optimize the program design. 
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The  original  scientific con t r ibu t ions  of  this pape r  
lie in two areas.  The  first is a var iety of  innova-  
tive " p r o b e s "  for in te r roga t ing  the  numer ica l  data .  
A l though  mos t  of  these  p robes  are not  difficult to 

imp lemen t ,  and  so do not  r ep resen t  major  break-  
th roughs ,  collectively they prov ide  a set of  visualiza- 
t ion tools which is much  more  powerful  than  exist ing 
graphics  programs.  T he  second area  is in a lgor i thms 
for visual izat ion on  uns t ruc tu red  grids; the genera-  
t ion of two-d imens iona l  polyt r iangle  strips f rom an 
uns t ruc tu red  set of t r i angula r  cells, and  the  calcula- 
t ion of iso-funct ion surfaces and  arb i t ra ry  cut t ing  
planes  in th ree  d imens ions .  
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