
Approximating the erfinv function

Mike Giles
∗

The inverse error function erfinv is a standard component of mathemat-
ical libraries, and particularly useful in statistical applications for convert-
ing uniform random numbers into Normal random numbers. This chapter
presents a new approximation of the erfinv function which is significantly
more efficient for GPU execution due to the greatly reduced warp divergence.

1 Introduction

Like cosx , sinx , ex and log x , the error function

erf(x) =
2√
π

∫ x

0
e−t2 dt,

and its inverse erfinv(x) are a standard part of libraries such as Intel’s
MKL, AMD’s ACML and NVIDIA’s CUDA math library.

The inverse error function is a particularly useful function for Monte
Carlo applications in computational finance, as the error function is closely
related to the Normal cumulative distribution function

Φ(x) =
1√
2π

∫ x

−∞

e−t2/2 dt =
1

2
+

1

2
erf

(

x√
2

)

so
Φ−1(x) =

√
2 erfinv(2x−1).

If x is a random number uniformly distributed in the range (0, 1) , then
y = Φ−1(x) is a Normal random variable, with zero mean and unit variance.
Other techniques such as the polar method and Marsaglia’s Ziggurat method
are usually used to transform pseudo-random uniforms to psuedo-random
Normals, but Φ−1(x) is the preferred approach for quasi-random uniforms

∗Oxford-Man Institute of Quantitative Finance, Eagle House, Walton Well Road, Ox-

ford OX2 6ED

1

generated from Sobol sequences and lattice methods, as it preserves the
beneficial properties of these low-discrepancy sequences [Gla04].

Like trigonometric functions, erfinv(x) is usually implemented using
polynomial or rational approximations [BEJ76, Str68, Wic88]. However,
these approximations have been designed to have a low computational cost
on traditional CPUs. The single precision algorithm from [BEJ76] which
was used in the CUDA 3.0 math library has the form shown in Table 1.

Table 1: Pseudo-code to compute y = erfinv(x) , with pn(t) representing
a polynomial function of t .

a = |x|

if a > 0.9375 then

t =
√

log(a)
y = p1(t) / p2(t)

else if a > 0.75 then

y = p3(a) / p4(a)

else

y = p5(a) / p6(a)

end if

if x < 0 then

y = −y
end if

If the input x is uniformly distributed on (−1, 1) , there is a 0.75 proba-
bility of executing the third branch in the code, and only a 0.0625 probability
of executing the expensive first branch which requires the computation of
log(a) and its square root.

However, on an NVIDIA GPU with 32 threads in a warp, the probability
that all of them take the third branch is 0.7532 ≈ 0.0001 , while the prob-
ability that none of them take the first branch is 0.937532 ≈ 0.13 . Hence,
in most warps there will be at least one thread taking each of the three
branches, and so the execution cost will approximately equal the sum of the
execution costs of all three branches.

The primary goal of this paper is to improve the execution speed of

2

erfinv(x) through constructing single and double precision approximations
with greatly reduced warp divergence, i.e. with most warps executing only
one main branch in the conditional code. The technique which is used can
be easily adapted to other special functions. The MATLAB code which gen-
erates the approximations is provided on the accompanying website, along
with the CUDA code for the erfinv approximations, and test code which
demonstrates its speed and accuracy.

The efficiency of the new approximations is demonstrated in comparison
with the implementations in CUDA 3.0. While this chapter was being writ-
ten, CUDA 3.1 was released. Its single precision erfinv implementation
incorporates the ideas in this chapter, though the code is slightly different
to that shown in Table 5. The double precision implementation is still the
same as in CUDA 3.0, but a new version is under development.

These approximations were originally developed as part of a commercial
maths library providing Numerical Routines for GPUs [NAG09, BTGTW10].
Similar approximations have also been developed independently for the same
reasons by Shaw and Brickman [Sha09].

The CUDA source code, the MATLAB code used to create the approxi-
mations, and the test code for the evaluation are all freely available [Gil10].

2 New erfinv approximations

2.1 Single precision

The new single precision approximation erfinvSP is defined as

erfinvSP(x) =

{

x p1(w), w ≤ w1 central region

x p2(s), w1 < w tail region

where w = − log(1−x2) , s =
√
w , and p1(w) and p2(s) are two poly-

nomial functions. The motivation for this form of approximation, which in
the tail region is similar to one proposed by Strecok [Str68], is that

• erfinv is an odd function of x , and has a Taylor series expansion in
odd powers of x near x=0 , which corresponds to p1(w) having a
standard Taylor series at w=0 ;

• erfinv is approximately equal to ±√
w near x=±1

3

Using x =
√
1− e−w, the left part of Figure 1 plots erfinv(x) / x

versus w for 0<w < 16 which corresponds to the entire range of single
precision floating point numbers x with magnitude less than 1. The right
part of Figure 1 plots erfinv(x) / x versus s≡√

w for 4<w< 36 . The
extension up to w≈36 is required later for double precision inputs.

Using polynomials Pn of degree n , a standard L∞ approximation for
the central region would be defined by

p1 = arg min
p∈Pn

max
w∈(0,w1)

∣

∣

∣

∣

p(w)− erfinv(x)

x

∣

∣

∣

∣

.

However, what we really want to minimise is the relative error defined as
(erfinvSP(x) − erfinv(x))/erfinv(x) , so it would be better to define p1
as

p1 = arg min
p∈Pn

max
w∈(0,w1)

∣

∣

∣

∣

x

erfinv(x)

(

p(w)− erfinv(x)

x

)
∣

∣

∣

∣

.

Since this weighted L∞ minimisation is not possible using MATLAB, p1 is
instead approximated by performing a weighted least-squares minimisation,
minimising

∫ w1

0

1
√

w(w1−w)

(

x

erfinv(x)

(

p(w)− erfinv(x)

x

))2

dw.

0 5 10 15
0

1

2

3

4

5

6

w
2 3 4 5 6

0

1

2

3

4

5

6

s

Figure 1: erfinv(x) / x plotted versus w and s ≡ √
w .

4

Table 2: Three alternatives for single precision approximation of erfinv

w1 p1 degree p2 degree tail prob.

5.00 8 8 0.3%
6.25 9 7 0.1%
16.00 14 n/a 0%

The weighting is a standard one under which Chebyshev polynomials are
orthogonal, and is introduced to control the errors near the two ends of the
interval. A similar construction is used for p2 .

Table 1 shows the degree of polynomial required for p1 and p2 , to re-
duce the relative approximation error to less than 10−7 , depending on the
choice of the dividing point w1 . The fourth column gives the approximate
probability that a random input x , uniformly distributed on (−1, 1) , will
lie in the tail region. Multiplying this by 32 gives the approximate proba-
bility that one or more inputs in a CUDA warp of 32 threads will lie in the
tail region, and hence that a CUDA implementation will have a divergent
warp.

Using w1 =5 , there is roughly a 10% probability of a divergent warp,
but the cost of the central region approximation is the least since it requires
only a degree 8 polynomial for p1 . On the other hand, using w1 = 16 ,
there is no tail region; the central region covers the whole interval. However,
p1 is now of degree 14 so the cost has increased. The second option uses
w1=6.25 , for which p1 needs to be of degree 9. In this case, there is only
a 3% probability of a divergent warp.

2.2 Double precision

The double precision approximation erfinvDP is defined similarly, but it
is defined with up to two tail regions as it needs to extend to w ≈ 36 to
cover the full double precision range for x .

erfinvDP(x) =















x p1(w), w ≤ w1 central region

x p2(s), w1<w≤w2 tail region 1

x p3(s), w2 < w tail region 2

Table 2 shows the degree of polynomial required for p1 , p2 and p3 to

5

Table 3: Two alternatives for double precision approximation of erfinv

w1 w2 p1 degree p2 degree p3 degree tail prob.

6.25 16.0 22 18 16 0.1%
6.25 36.0 22 26 n/a 0.1%

reduce the relative approximation error to less than 2×10−16 , depending on
the choice of the dividing points w1 and w2 . The last column again gives
the approximate probability that a uniformly distributed random input x
is not in the central region.

In constructing the weighted least-squares approximation using MAT-
LAB, variable precision arithmetic (an extended precision feature of the
Symbolic Toolbox) is required to evaluate the analytic error function to
better than double precision in order to compute the accuracy of the ap-
proximation.

2.3 Floating point error analysis

In this section we look at the errors due to finite precision arithmetic. The
floating point evaluation of (1−x)(1+x) will yield a value equal to

(1−x)(1+x)(1 + ε1)

where ε1 corresponds to at most 1 ulp (unit of least precision) which is
roughly 10−7 for single precision and 10−16 for double precision. Com-
puting w by evaluating the log of this will yield, approximately,

w + ε1 + ε2

where ε2 is the error in evaluating the log function, which is approximately
5 × 10−8max(1, 3w) when using the CUDA fast single precision function
logf(), and 10−16w when using the double precision function log().

Computing p1(w) will then yield, approximately

p1(w)

(

1 + (ε1 + ε2)
p′1(w)

p1(w)
+ ε3

)

where ε3 is the relative error in evaluating p1 . The relative error in the

6

final product x p1(w) will then be approximately

(ε1 + ε2)
p′1(w)

p1(w)
+ ε3 + ε4,

where ε4 is again of order 10−7 .

Since p1(w) ≈ 1+ 0.2w , the combined contributions due to ε1 and ε2
are about 1.5 ulp in single precision, and about 0.5 ulp in double precision.
The errors due to ε3 and ε4 will each contribute another 0.5 ulp. These
are in addition to a relative error of roughly 1 ulp due to the approximation
of erfinv. Hence, the overall error is likely to be up to 4 ulp for single
precision and up to 3 ulp for double precision.

In the tail region, there is an extra step to compute s =
√
w . Since

√
w + ε ≈

√
w +

ε

2
√
w

the value which is computed for s is approximately

s+
1

2s
(ε1 + ε2) + ε5 s

where ε5 is the relative error in evaluating the square root itself, which for
the CUDA implementation is 3 ulp in single precision and less than 0.5 ulp

in double precision. Noting also that p2(s) ≈ s , the relative error in the
final result is

1

2w
(ε1 + ε2) + ε5 + ε3 + ε4,

In single precision, ε2/w is about 3 ulp and ε5 is also 3 ulp, so the overall
error, including the p2 approximation error will be about 6 ulp. In double
precision, ε2/w and ε5 are about 1 ulp and 0.5 ulp, respectively, so the
overall error is 2 to 3 ulp.

3 Performance and accuracy

Table 4 gives the performance of the first of the new approximations
in Tables 2 and 3, compared to the existing ones in CUDA 3.0. Table 5
gives the code for the new single precision approximation. The times are in
milliseconds to compute 100M values, using 28 blocks with 512 threads, and
each thread computing 7000 values.

There are two conditions for the tests, “uniform” and “constant”. In
the uniform case, the inputs x for each warp are spread uniformly in a

7

Table 4: Times in milliseconds to compute 100M single precision (SP) and
double precision (DP) values using CUDA 3.0 on C1060 and C2050

C1060 C2050
time (ms) SP DP SP DP

uniform, old 24 479 31 114
uniform, new 8 219 10 49
constant, old 8 123 11 30
constant, new 8 213 9 48

way which ensures 100% warp divergence for the existing implementation.
This worst case scenario is slightly worse than the 87% divergence which
would result from random input data, as discussed in the Introduction. The
constant case represents the best case scenario in which all of the threads
in each warp use the same input value, though this value is varied during
the calculation so that overall each conditional branch is exercised for the
appropriate fraction of cases.

The results show a factor 3 or more difference in the performance of the
existing implementation on the two test cases. This reflects the penalty of
warp divergence, with a cost equal to the sum of all branches which are
taken by at least one thread, plus the fact that the execution of the main
branch (the one which is taken most often) is significantly less costly because
it does not require a log calculation.

The cost of the new approximations varies very little in the two cases,
because even in the “uniform” case almost all warps are non-divergent. On
the other hand, all warps have to perform a log calculation, and therefore
in double precision the new implementation is slower than the existing one
for the constant case.

Regarding accuracy, the maximum error of the new single precision ap-
proximation, compared to the existing double precision version, is around
7× 10−7 , which is better than the existing single precision version, and the
maximum difference between the new and existing double precision imple-
mentations is approximately 2× 10−15 .

8

Table 5: CUDA code for single precision implementation

__inline__ __device__ float MBG_erfinv(float x)

{

float w, p;

w = - __logf((1.0f-x)*(1.0f+x));

if (w < 5.000000f) {

w = w - 2.500000f;

p = 2.81022636e-08f;

p = 3.43273939e-07f + p*w;

p = -3.5233877e-06f + p*w;

p = -4.39150654e-06f + p*w;

p = 0.00021858087f + p*w;

p = -0.00125372503f + p*w;

p = -0.00417768164f + p*w;

p = 0.246640727f + p*w;

p = 1.50140941f + p*w;

}

else {

w = sqrtf(w) - 3.000000f;

p = -0.000200214257f;

p = 0.000100950558f + p*w;

p = 0.00134934322f + p*w;

p = -0.00367342844f + p*w;

p = 0.00573950773f + p*w;

p = -0.0076224613f + p*w;

p = 0.00943887047f + p*w;

p = 1.00167406f + p*w;

p = 2.83297682f + p*w;

}

return p*x;

}

9

4 Conclusions

This chapter illustrates the cost of warp divergence, and the way in which
it can sometimes be avoided by re-designing algorithms and approximations
which were originally developed for conventional CPUs.

It also illustrates the dilemma which can face library developers. Whether
the new double precision approximations are viewed as better than the ex-
isting ones depends on how they are likely to be used. For random inputs
they are up to 3 times faster, but they can also be slower when the inputs
within each warp are all identical, or vary very little.

References

[BEJ76] J.M. Blair, C.A. Edwards, and J.H. Johnson. Rational Cheby-
shev approximations for the inverse of the error function.
Mathematics of Computation, 30(136):827–830, 1976.

[BTGTW10] T. Bradley, J. du Toit, M. Giles, R. Tong, and P. Wood-
hams. Parallelisation techniques for random number gener-
ators. GPU Computing Gems, Volume 1, Morgan Kaufmann,
2010.

[Gil10] M.B. Giles. Approximating the erfinv function (source code).
http://gpucomputing.net/?q=node/1828, 2010

[Gla04] P. Glasserman. Monte Carlo Methods in Financial Engineer-
ing. Springer, New York, 2004.

[NAG09] Numerical Algorithms Group. Numerical Routines for GPUs.
http://www.nag.co.uk/numeric/GPUs/, 2009

[Sha09] W.T. Shaw and N. Brickman. Differential equations for Monte
Carlo recycling and a GPU-optimized Normal quantile. Work-
ing paper, available from arXiv:0901.0638v3, 2009.

[Str68] A.J. Strecok. On the calculation of the inverse of the er-
ror function. Mathematics of Computation, 22(101):144–158,
1968.

[Wic88] M.J. Wichura. Algorithm AS 241: the percentage points of the
Normal distribution. Applied Statistics, 37(3):477–484, 1988.

10

