
International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Finite Element Algorithms and Data Structures on Graphical
Processing Units

I. Z. Reguly · M.B.Giles

Received: date / Accepted: date

Abstract The finite element method (FEM) is one of

the most commonly used techniques for the solution of

partial differential equations on unstructured meshes.

This paper discusses both the assembly and the so-

lution phases of the FEM with special attention to

the balance of computation and data movement. We

present a GPU assembly algorithm that scales to ar-

bitrary degree polynomials used as basis functions, at

the expense of redundant computations. We show how

the storage of the stiffness matrix affects the perfor-

mance of both the assembly and the solution. We in-

vestigate two approaches: global assembly into the CSR

and ELLPACK matrix formats and matrix-free algo-

rithms, and show the trade-off between the amount of

indexing data and stiffness data. We discuss the per-

formance of different approaches in light of the implicit
caches on Fermi GPUs and show a speedup over a two-

socket 12-core CPU of up to 10 times in the assembly

and up to 6 times in the solution phase. We present our

sparse matrix-vector multiplication algorithms that are

part of a conjugate gradient iteration and show that a

matrix-free approach may be up to two times faster

than global assembly approaches and up to 4 times

faster than NVIDIA’s cuSPARSE library, depending on

the preconditioner used.

I. Z. Reguly
Pázmány Péter Catholic University, Práter u. 50/a, Bu-
dapest, 1083, Hungary
Tel.: +44-1865-610654
E-mail: reguly.istvan@itk.ppke.hu
Present address: Oxford e-Research Centre, 7 Keble Road,
Oxford OX1 3QG, UK

M. B. Giles
Oxford e-Research Centre, 7 Keble Road, Oxford, OX1 3QG,
United Kingdom
E-mail: mike.giles@maths.ox.ac.uk

Keywords Graphical Processing Unit · Finite El-

ement Method · Performance Analysis · Sparse

Matrix-Vector Multiplication · Preconditioned Conju-

gate Gradient Method

1 Introduction

Due to the physical limitations to building faster single

core microprocessors, the development and use of multi-

and manycore architectures has received increasing at-

tention for the past few years. Besides the increasing

number of processor cores on a single chip, new ar-

chitectures have emerged that support general purpose

massively parallel computing - the most prominent of

which are Graphical Processing Units (GPUs). Com-

puting on Graphical Processors has become very pop-

ular in the high performance computing community;

a great number of papers discuss its viability in ac-

celerating applications ranging from molecular dynam-

ics through dense and sparse linear algebra to medical

imaging [14].

The evolution trend of computing architectures shows

an increasing gap between computational performance

and bandwidth to off-chip memory [8]; it is already ap-

parent that while GPUs have a theoretical compute per-

formance ten times higher than CPUs, the bandwidth

to off-chip DRAM is only 3-5 times faster. Also, with an

increasing number of cores on a single chip the amount

of on-chip memory per core decreases. Thus, it is be-

coming increasingly important to move as little data as

possible - sometimes even at the expense of redundant

computations.

The numerical approximation of Partial Differen-

tial Equations (PDEs) can be split into two main cate-

gories: structured and unstructured grids. Finite differ-



2 I. Z. Reguly, M.B.Giles

ence methods are well suited for structured grids; their

data access patterns are regular and easily vectorisable.

These methods are usually described as applying sten-

cil operations to the elements of a structured grid. This

approach to solving PDEs is a natural fit for GPUs,

and several studies have shown considerable speedup

over multicore CPUs [7,9]. However, in practice the do-

main over which PDEs are defined is often complex and

requires numerical accuracy in some areas more than

other, which may require the use of unstructured grids.

For the solution of these problems, the finite volume

and the finite element methods are more convenient

[15]. When using these unstructured grids, the memory

access pattern becomes complicated. It usually involves

gathering input data and scattering output data, which

results in having to deal with race conditions on parallel

hardware.

2 Related work

Due to the high demand for accelerating finite element

methods (FEM) several studies have investigated FEM

implementation on GPUs. The method can be divided

into two phases: the assembly of a matrix, then the solu-

tion of a linear system using that matrix. In general the

solution phase is the more time consuming one, specifi-

cally the sparse matrix-vector product between the as-

sembled matrix and vectors used by iterative solvers.

Because this is a more general problem, several studies

focused on the performance evaluation of this operation

on the GPU [4,3,27] and in the FEM context [13]. Fi-

nite element assembly has also been investigated both

in special cases [4,17,16,12] and in more general cases

to show the alternative approaches to matrix assembly

for more general problems [6,18,11,23]. Their results

show a speedup of 10 to 50 compared to single thread

CPU performance in the assembly phase, but only very

limited speedup in the iterative solution phase.

The goal of this paper is to explore different options

for assembling and solving finite element problems on

unstructured grids. Our hand-written tests focus on us-

ing the Compute Unified Device Architecture (CUDA)

on NVIDIA GPUs, and OpenMP on Intel CPUs. Sev-

eral aspects are explored that impact the performance

of these algorithms such as memory layout of input and

output data, the trade-off between computation and

storage, preprocessing, and autotuning. The effects of

these on performance are discussed and recommenda-

tions are made. To our knowledge, this paper is one of

the most comprehensive studies of finite element algo-

rithms that consider different memory layouts and bot-

tlenecks including implicit caches that were introduced

with NVIDIA’s Fermi architecture.

The contributions of this paper are the following:

1. Presents the trade-offs between computation, data

storage and movement, develops an assembly algo-

rithm that scales to high degree polynomials and

discusses data transfer requirements for different stor-

age approaches.

2. Presents and discusses the local and global matrix

assembly approaches using several storage formats,

evaluates and compares their performance revealing

the bottlenecks of the assembly, iterative solution

and preconditioning phases of the calculation.

3. Presents and discusses GPU specific techniques to

avoid race conditions, makes use of caching by pre-

processing techniques, and optimises occupancy with

autotuning.

The paper is organised as follows: Section 3 dis-

cusses the essential mathematical background of the fi-

nite element method that is referred to throughout the

paper. Section 4 briefly discusses the different aspects

of GPU programming, presents the algorithm for finite

element assembly that is used throughout the tests, and

also introduces the sparse matrix storage formats used.

In Section 5 we present the test hardware and problem,

and briefly describe the different test cases. Sections

6 through 9 present and discuss the different versions

for global and local matrix assembly. Sections 10 and

11 perform the comparative analysis of different ap-

proaches and assesses the performance bottlenecks of

each phase in the finite element method. Finally, Sec-

tion 12 draws conclusions.

3 The Finite Element Method on Unstructured

Meshes

Unstructured meshes are used in many engineering ap-

plications as a basis for the discretised solution of PDEs,

where the domain itself or the required accuracy of the

solution is nonuniform. Variations of the Finite Element

Method (FEM) can handle most types of partial differ-

ential equations, but to understand the algorithm, con-

sider the following simple boundary value problem over

the domain Ω [15]:

−∇ · (κ∇u) = f in Ω, (1)

u = 0 on ∂Ω. (2)

The solution is sought in the form of u : Ω → <. With

the introduction of a test function v on Ω, the varia-

tional form of the PDE is as follows:

Find u ∈ V such that

∫
Ω

κ∇u · ∇v dV =

∫
Ω

fv dV , ∀v ∈ V,

(3)



Finite Element Algorithms and Data Structures on Graphical Processing Units 3

where V is the finite element space of functions which

are zero on ∂Ω, or as reformulated below:

u : a(u, v) = `(v), ∀v ∈ V, (4)

a(u, v) =

∫
Ω

κ∇u · ∇v dV , (5)

`(v) =

∫
Ω

fv dV . (6)

The standard finite element method constructs a

finite dimensional space Vh ⊂ V of functions over Ω,

and searches for an approximate solution uh ∈ Vh. Let

{φ1...Nv} be a basis for Vh, then:

uh =
∑
i

ūiφi (7)

To find the best approximation to u, it is necessary

to solve the system:

Kū = l̄, (8)

where K is the n×n matrix, usually called the stiffness

matrix, defined by:

Kij = a(φi, φj), ∀i, j = 1, 2, . . . , Nv, (9)

and l̄ ∈ <n, usually called the load vector, is defined by:

l̄i = `(φi), ∀i = 1, 2, . . . , Nv. (10)

If the underlying discretisation mesh has nodes x̄i,

it is possible to choose a finite element space Vh with

basis functions such that φi(x̄j) = δi,j . In this case uh
is determined by its values at x̄i, i = 1, 2, . . . Nv. The

mesh is a polygonal partitioning of the domain Ω into

a set of disjoint elements ei ∈ E, i = 1 . . . Ne. The

basis functions are constructed so that φi is nonzero

only over those elements e which have x̄i as a vertex.

This means that finite element basis functions φi have

their support restricted to neighbouring elements.

The essential data to describe the mesh is as follows:

1. Global index for each node in the mesh I = {1 . . . Nv}.
2. Coordinate data for each node in the mesh x̄i ∈ <d.
3. List of elements E = {1 . . . Ne};
4. Element → node mapping Me mapping from ele-

ments of E to a subset of I, where n is the number

of degrees of freedom - d.o.f. in an element. This

mapping is an ordered list of global node indices,

for example in a counter-clockwise fashion.

3.1 Finite Element Assembly

Because the basis functions φi have their support re-

stricted to neighboring nodes, the bilinear form in (5)

can be partitioned and constrained to be the sum of

integrals over a few elements. In practice the stiffness

matrix can be constructed by iterating through every

element and adding up the contributions from integrals

of nonzero basis functions φi, i ∈ Me(e) over the cur-

rent element Ωe, as shown in Algorithm 1.

Algorithm 1 Element by element assembly of the stiff-

ness matrix and the load vector
for each element e ∈ E do

for each degree of freedom i ∈Me(e) do
for each degree of freedom j ∈Me(e) do
Kij + =

∫
Ωe

κ∇φi · ∇φj dV

end for
l̄i + =

∫
Ωe

fφi dV

end for
end for

The resulting matrix K will be sparse because only

neighboring basis functions’ products will be nonzero.

The bilinear form a(., .) is symmetric, soK is symmetric

too. This algorithm can be decribed in another way as

assembling dense local matrices Ke which contain the

nonzeros that the current element contributes to the

global matrix, then scattering these values to their place

in the global matrix.

3.2 Dirichlet boundary conditions

In general, essential boundary conditions constrain the

solution u:

u = g on ΓDirichlet ⊂ ∂Ω, (11)

for some function g on the constrained part of the bound-

ary ∂Ω. This means the nodes on the boundary have

fixed values. This change of course has to appear in the

linear system Kū = f̄ . In our experiments we assume

g = 0 and Γ = ∂Ω according to equation (2). There

are two popular ways to implement this, either via pre-

or post-processing:

1. Before assembly, renumber the nodes of the mesh

in a way that constrained nodes are not included

in the linear system, thereby eliminating them from

further computations at the expense of having to

look up different indices for accessing data on the

nodes and accessing the linear system.



4 I. Z. Reguly, M.B.Giles

2. Assemble the stiffness matrix and load vector as

if no nodes were constrained, then set each con-

strained node’s row and column to zero, the diago-

nal element to one, and the entry in the right hand

side vector to the prescribed value.

Our test programs use the first approach, the non-constrained

nodes are referred to as free nodes or degrees of freedom

If = {1 . . . Nf}, Nf ≤ Nv.

3.3 The Local Matrix Approach (LMA)

The previous sections described the assembly of the

stiffness matrix by scattering the values of the element

matrices. There are many numerical methods to ap-

proximate the solution of the system of equations Kū =

l̄; many of them, such as the conjugate gradient method,

only perform matrix-vector products and do not explic-

itly require the matrix K. In the ȳ = Kx̄ multiplication

the local matrix approach gathers the values of x̄, per-

forms the multiplication with the local matrices, and

finally scatters the product values to ȳ [18,5]. Formally

this can be described as follows:

ȳ = AT (Ke(Ax̄)), (12)

where Ke is the matrix containing the local matrices in

its diagonal and A is the local-to-global mapping from

the local matrix indices to the global matrix indices.

Formally this requires three sparse matrix-vector prod-

ucts, but as it is shown in Section 8 the mapping matrix

A does not have to be constructed, and the whole op-

eration reduces to Ne dense matrix - vector products,

the gathering of x̄, and the scattering of products to ȳ.

3.4 The Matrix-Free Approach

The logic of the local matrix approach can be taken

a step further; never writing local stiffness matrices to

memory but recalculating them every time the matrix-

vector product is performed. This approach can save a

high amount of memory space and bandwidth by not

moving stiffness data to and from memory. This method

has a different data transfer versus computation ratio

than the others, thus makes an interesting case when

exploring performance bottlenecks of the finite element

algorithm.

4 Implementation considerations for GPUs

GPUs are naturally parallel architectures with their

own performance considerations:

1. On NVIDIA GPUs, groups of 32 threads called warps

are executed in a single instruction multiple data

(SIMD) fashion. A collection of threads called a

thread block is assigned to a Streaming Multipro-

cessor (SM); each SM can process up to 8 thread

blocks at the same time, but no more than 1536

threads (for compute capability 2.0). If there are

too many thread blocks, then some execute only af-

ter others have finished.

2. The problem has to be decomposed into fairly inde-

pendent tasks because collaboration is very limited.

Threads in a thread block can communicate via on-

chip shared memory. For threads that are not in the

same thread block, communication is only possible

indirectly via expensive operations through global

memory, and even then synchronization is only pos-

sible by starting a new kernel.

3. Memory bandwidth is very limited between the host

and the GPU and has a high latency thus any un-

necessary transfers should be avoided.

4. Memory bandwidth to off-chip graphics memory is

highly dependent on the pattern of access and type

of access. If threads in the same warp access memory

locations adjacent to each other, than these memory

transfers can be bundled together resulting in a so

called coalesced memory access and the full width of

the memory bus can be utilised. With the introduc-

tion of caching, coalesced access is no longer a strict

requirement, however, for reasons described below,

it is still desirable.

5. Implicit L1 and L2 caches were introduced with the

Fermi architecture; each Streaming Multiprocessor

(SM) has a 16k/48k L1 cache, and there is a sin-

gle shared 768k L2 cache for the whole chip. The

L1 cache size is comparable to the cache on the

CPU (usually 32k), however while a CPU core ex-

ecutes only a few (1-2) threads, the GPU executes

up to 1536 threads per SM. This results in very con-

strained cache size per thread: since a cache line is

128 bytes long, even when using 48k L1 cache, only

384 lines can be stored. If all threads read or write

in a non-coalesced way, only 384 of them can get

cache hits when accessing that cache line, the oth-

ers get a cache miss. Cache hits can greatly improve

performance, but misses cause high latency and po-

tentially cache trashing. It is therefore very impor-

tant for threads in the same block to work on the

same cache lines, to have so called ”cache locality”.

6. Instruction throughput depends on both the num-

ber of threads per SM and the type of instructions:

Fermi’s support for Fused Multiply-Add (FMA) en-

ables high floating point throughput, however un-

structured grids require a considerable amount of



Finite Element Algorithms and Data Structures on Graphical Processing Units 5

pointer arithmetic for which there are no separate

integer units - unlike in CPUs.

7. Precision requirements are linked to all of the above

as double precision floating point arithmetic requires

more clock cycles for execution, and doubles the

bandwidth requirements.

When working on unstructured grids, the biggest

problem is the gather-scatter type of memory access,

and much depends on the ordering of elements and their

nodes. In the assembly phase the nodal data (coordi-

nates and state variables) have to be gathered for each

degree of freedom in an element. This data is accessed

indirectly via the Me mapping, which usually results

in an uncoalesced memory access. After assembling the

local matrices, their elements have to be scattered to

populate the global stiffness matrix. The latter oper-

ation poses a data hazard, as neighbouring elements

have to write to overlapping segments of memory in

the global matrix. This problem can be solved either by

colouring the elements and executing the writes colour

by colour [24], or by the use of atomic operations -

however these are not yet available for double precision

variables. The problem can be avoided altogether by

choosing either nonzeros or whole lines of the stiffness

matrix as a unit of work to be assigned to threads [6].

These approaches only involve gather type operations,

however the amount of computation required is higher

since the algorithm has to iterate through all the ele-

ments connected to the given degree of freedom.

4.1 The Finite Element Algorithm on GPUs

The algorithms in this paper are based on quadrilateral

elements and can work for elements of any order. The

calculation of the coefficients of the basis functions, the

local quadrature points and the gradients are based on

a transformation from the reference square. This bilin-

ear transformation is calculated for every element and

applied to the data of the reference square stored in

constant memory. The pseudocode for each element is

described by Algorithm 2.

When increasing the degree of polynomials used as

basis functions, both the number of degrees of free-

dom and the number of quadrature points increase as

a square function of the degree. For 2D quadrilateral

elements it is equal to: (degree + 1)2. To perform the

minimal amount of computations, the local quadrature

points and the inverse of the jacobian evaluated at each

one of them can be precomputed and reused in the in-

nermost loop of Algorithm 2. Alternatively, any of these

can be recalculated every time they are needed thereby

saving local storage. This enables us to trade compu-

tations for local storage space. In the CPU versions,

where register pressure does not pose a problem, all

these values are precomputed and contained by on-chip

caches. However, the quickly growing register pressure

makes GPU implementation infeasible for higher de-

grees. Thus, we have two implementations for the GPU,

one which precomputes the coordinates of local quadra-

ture points and reuses them and one which recalculates

the them every time they are needed in the innermost

loop. The latter kernel does not store anything in local

arrays that would grow in size with the increasing de-

gree of polynomials used - thus it uses the same number

of registers for any degree.

The third approach to the assembly is to exchange

the loops over the quadrature points and the pairs of

degrees of freedom, in which case the coordinates of the

local quadrature points and the jacobian do not have to

be recalculated. However, in this case the values of the

local stiffness matrix are updated repeatedly. This is a

viable option on the CPU, but on the GPU these local

matrices cannot fit in either the local memory or the

cache which results in dramatically increased memory

traffic.

For testing purposes meshes were generated with

different numbers of elements and with different degree

elements in a way such that all meshes have approxi-

mately the same total number of degrees of freedom.

The default numbering of the degrees of freedom is

based on iterating through elements and their degrees of

freedom and assigning a number in an increasing order.

In several scenarios a colouring of these elements [24]

is required to avoid write conflicts. An example mesh

with seven second order elements and a total number

of 39 degrees of freedom is shown in Figure 1; different

colours are indicated with different capital letters.

Colouring is done on two levels: block and element.

Since there is no explicit synchronisation between blocks

in CUDA, blocks of elements with different colour are

processed by different kernel calls, thereby making sure

that no two blocks access the same data at the same

time. Within these blocks different elements are as-

signed to each thread along with their colour. When

these threads access memory in a potentially conflict-

ing way, these accesses are executed colour-by-colour

with an explicit synchronisation between each one. The

colouring of elements was done by iterating through

them and assigning the first colour available that was

not used by any of the element’s neighbours.

Most GPU algorithms differ only in the way the lo-

cal stiffness matrix and load vector are written to global

memory.



6 I. Z. Reguly, M.B.Giles

A

A

B

C

C

D

A

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18
19

20

21

22

23 24

25 26
27

28

29

30

31

32
33

34

35

36

37

38

39

Fig. 1 An example of an unstructured grid along with the
numbering of the degrees of freedom and colouring of the
elements

Algorithm 2 Local stiffness matrix and load vector

assembly

Ilocal ←Me(e)
generate bilinear mapping based on the four vertices
calculate local quadrature points quadPointslocal
Calculate jacobians J to map to each quadrature point
for i = 1 to length(Ilocal) do

if i is not constrained then
for j = i to length(Ilocal) do

if k is not constrained then
for each quadrature point p in quadPointslocal
do
Klocal(i, j)+ = weights(p) ∗ ∇φi(p) ∗ ∇φj(p)

end for
Klocal(i, j) = Klocal(j, i)

end if
end for
for each quadrature point p in quadPointslocal do
l̄local(i)+ = weights(p) ∗ φi(p) ∗ f(p)

end for
end if

end for

4.2 Data layout

To minimise the amount of data transferred and im-

prove data reuse on the GPU, the access pattern and

thus the layout of the data that is accessed is very im-

portant. There are two stages of computation that take

the most time: the assembly and the sparse matrix-

vector product. This section discusses the layout of in-

put data for the assembly phase and the layout of the

sparse matrix that is both the output of the assembly

and the input of the matrix-vector product phase.

Input mesh data consists of the mapping Me, the

node coordinates, the mapping from nodes to the in-

dices of the linear system and the state variables for

each node. Since the algorithm iterates through ele-

ments, only the mapping data Me is accessed directly.

To achieve coalesced reads this is arranged so that the

global node indices of the nth degree of freedom in each

element e are adjacent to each other:

index = n ∗Ne + e. (13)

Hence, when a warp of 32 threads loads in the map-

ping data for the nth d.o.f. of their respective elements,

that data is a consecutive block in memory, giving a

coalesced transfer.

The rest of the input data in the assembly phase

is accessed in an indirect fashion, based on the global

indices of the degrees of freedom.

The layout of stiffness matrix data is one of the most

important factors that determine the speed of the finite

element method on the GPU: in the assembly phase the

amount of data written to the stiffness matrix is at least

comparable to the amount of input mesh data, but for

higher order elements it is many times higher. Since

the sparse-Matrix Vector (spMV) product is evaluated

repeatedly, the matrix data will be read multiple times

and hence it is very important to optimise its access.

There are several different sparse matrix storage for-

mats used on GPUs [3]; this paper uses the CSR and

ELLPACK formats in addition to storage according to

the local matrix assembly approach described in Sec-

tion 3.3:

1. COO (COOrdinate storage) stores every non-zero,

their row, and column indices separately. These vec-

tors are not necessarily ordered, so in the spMV

phase this may result in random accesses to the

multiplicand and the result vector and in the lat-

ter case write conflicts may occur. It is also difficult

to populate such a matrix on a parallel architecture.

Because of these disadvantages our tests did not use

this storage scheme.

2. CSR (Compressed Sparse Row) stores the non-zeros

in a row-major order. As shown in Figure 2, this for-

mat uses two arrays storing every non-zero and their

column indices, and an additional array with point-

ers to the first nonzero of every row and the total

number of non-zeros at the end. The size of the first

two arrays are the same as the number of non-zeros

in the matrix, the size of the third array equals the

number of rows plus one. The advantage of CSR is

that it is very compact and easy to read, however it

is very difficult to populate in a dynamic way; pre-

processing is necessary to determine the locations of

the non-zeros beforehand. This also results in a lot

more input data in the assembly phase.



Finite Element Algorithms and Data Structures on Graphical Processing Units 7

Row pointers

Column indices

Values

0 3 7 10 14

0 1 5 1 3 6 7 0 1 3 3 4 5 7

0.3 1.4 0.5 1.1 3.7 0.6 7.1 1.0 0.1 3.2 8.3 1.4 4.5 2.7

Fig. 2 Memory layout of the Compressed Sparse Row (CSR)
format on the GPU

Column indices Values

0 1 5

1 3 6 7

0 1 3

3 4 5 7

0.3 1.4 0.5

1.1 3.7 0.6 7.1

1.0 0.1 3.2

8.3 1.4 4.5 2.7

0

0

0

0

1st

row

2nd

row

3rd

row

4th

row

Fig. 3 Memory layout of the ELLPACK format. Rows are
padded with zeros

3. ELLPACK [3,27] stores the sparse matrix in two

arrays, one for the values and one for the column

indices. Both arrays are of size number of rows ∗
max row length. Note that the size of all rows in

these compressed arrays are the same because ev-

ery row is padded as shown in Figure 3. In a stan-

dard CPU implementation the data (both indices

and values) are stored row-by-row. In our GPU im-

plementation we transpose this, enabling coalesced

transfers when threads are assigned to different rows

of the matrix.

4. Hybrid ELLPACK [3] stores the elements up to a

certain row length in the ELLPACK format and the

rest in a COO format. This layout has smaller mem-

ory requirements than the ELLPACK, but it is more

difficult to use because of the COO part. Due to the

relatively well-known length of the rows in the stiff-

ness matrix, we only use the ELLPACK format.

5. In the LMA approach we store the dense element

matrices, which are of size (#d.o.f. per element)2.

These matrices are stored in vectors, each one con-

taining the local matrix in a row-major order as

shown in Figure 4. These vectors are then stored

row-by-row in memory. In a similar way to ELL-

PACK, on the GPU we transpose this layout to get

coalesced memory transfers.

4.3 Estimating data transfer requirements

There is disparity between memory bandwidth and com-

putational power on modern many-core architectures -

the Tesla C2070 has a peak floating-point instruction

throughput of 1 TFLOPS and a memory bandwidth of

LM1

LM3

LM2

LM5

LM4

(1,1) (1,2) (2,1) (2,2)

(1,1) (1,2) (2,1) (2,2)

(1,1) (1,2) (2,1) (2,2)

(1,1) (1,2) (2,1) (2,2)

(1,1) (1,2) (2,1) (2,2)

Fig. 4 Memory layout of local matrices (LM). Elements are
stored in a row vector with row-major ordering. On the GPU,
this layout is transposed to enable coalesced memory accesses

144 GB/s, thus for any single precision number trans-

ferred there have to be 27 floating-point instructions to

balance data transfer with computation. It is therefore

essential to minimise the amount of data transferred,

and to optimise the memory access patterns to fully

utilise the bandwidth available. To provide an estimate

of the amount of data to be transferred in the assembly

and solution phases, consider a 2D mesh with quadri-

lateral elements where the average degree of vertices is

four, and the number of elements is Ne. Let p denote

the degree of polynomials used as basis functions.

The total number of degrees of freedom is the sum

of d.o.f.s on the vertices, the edges and inside the ele-

ments, not counting some on the boundaries, their num-

ber is approximately:

Nvertex = Ne,

Nedge = 2 ∗Ne(p− 1),

Ninner = Ne(p− 1)2.

(14)

In the assembly phase every approach has to read

the coordinates of the four vertices, the mapping Me,

write the elements of the stiffness matrix and the load

vector. Additionally, global assembly approaches have

to read indexing data to determine where to write stiff-

ness values, which involves at least as many reads per

element as there are values in the local stiffness matri-

ces. Thus, for every element,

Tassembly,LMA = 2 ∗ 4 + (p+ 1)2 + (p+ 1)4 + (p+ 1)2,

(15)

Tassembly,GMA = Tassembly,LMA + (p+ 1)4, (16)

where TLMA, TGMA denote the units of data transferred

per element for the local and the global matrix ap-

proaches. It is clear that the local matrix approach

moves significantly less data than the global assembly

approaches when p is large

In the sparse matrix-vector multiplication the ma-

trix values, row indices, column indices and the values

of the multiplicand and result vectors have to be moved.



8 I. Z. Reguly, M.B.Giles

Table 1 Ratio between data moved by local and global ma-
trix approaches during the spMV in single and double preci-
sion.

Degree 1 2 3 4
ELLPACK/LMA single 1.0 1.81 2.25 2.49
CSR/LMA single 1.04 1.85 2.28 2.51
ELLPACK/LMA double 0.9 1.58 1.93 2.12
CSR/LMA double 0.92 1.6 1.95 2.13

The local matrix approach has to access all of the local

stiffness matrices, the mapping Me to index rows and

columns and the corresponding values of the two vec-

tors for every element. Thus, the amount of data moved

is:

TspMV,LMA = Ne(p+ 1)4 + 3 ∗Ne(p+ 1)2. (17)

For global assembly approaches, the matrix is al-

ready assembled when performing the spMV, the length

of any given row depends on whether the d.o.f. corre-

sponding to that row was on a vertex, an edge, or inside

an element:

Lvertex = (2p+ 1)2,

Ledge = (2p+ 1)(p+ 1),

Linner = (p+ 1)2,

(18)

based on (14), the total number of stiffness values plus

the column indices and the values of the multiplicand

and result vectors:

TspMV,GMA = 3 ∗ (Nvertex ∗ Lvertex
+Nedge ∗ Ledge +Ninner ∗ Linner)
+Nvertex +Nedge +Ninner.

(19)

In addition to this, the CSR format has to read indexing

data for rows as well, the size of which is Nvertex +

Nedge +Ninner.

Table 1 shows the relative amount of data moved by

global matrix approaches compared to the local matrix

approach for different degree of polynomials used at sin-

gle and double precision. Observe, that based on these

calculations it would be always worth doing LMA ex-

cept for first degree elements at double precision. How-

ever these figures do not take the effects of caching nor

the atomics/colouring employed by LMA into account,

so we expect the actual performance to be somewhat

different. Similar calculations can be carried out for the

three dimensional case as well, with the global matrix

approaches moving less data in both precisions at first

degree elements and significantly more at higher de-

grees.

5 Experimental results

5.1 Test problem

Since our goal was to investigate the relative perfor-

mance of the finite element method using different ap-

proaches on different hardware we chose a simple Poisson-

problem with a known solution:

−∆u(x̄) = sin(πx1) · sin(πx2), (20)

u(x̄) = 0 on ∂Ω. (21)

The underlying two dimensional grid consists of quadri-

lateral elements with up to 16 million nodes and the

order of elements ranges from 1 to 4. The tests run on

grids that have the same number of degrees of freedom,

so the number of elements in a fourth degree test case is

one sixteenth of the number of elements in a first degree

test case. A conjugate gradient iterative method was

used to approximate the solution of the linear system

Kū = l̄, that is first evaluated without using precon-

ditioners. We analyse the implications of precondition-

ers separately, by comparing a simple diagonal (Jacobi)

and a Symmetric Successive Over-Relaxation (SSOR)

type preconditioner.

5.2 Test hardware and software environment

The performance measurements were obtained on a work-

station with two Intel Xeon X5650 6-core processors,

clocked at 2.67GHz with 12Mb shared L3 cache, 256kB

L2, and 32kB L1 cache per core, 24GBytes of system

memory running Ubuntu 10.10 with Linux kernel 2.6.35.

The system had 2 NVIDIA Tesla C2070 graphical pro-

cessors installed, both with 6GB global memory clocked

at 1.5GHz and 364-bit bus width, 448 CUDA cores in 14

streaming multiprocessors (SMs) clocked at 1.15GHz.

The CPU codes were compiled with Intel’s C Compiler

11.1, using SSE 4.2, Intel’s OpenMP library and the O2

optimisation flag. The GPU codes were compiled with

NVIDIA’s nvcc compiler with the CUDA 4.2 framework

and the −use fast math flag.

For accurate timing of GPU computations we used

CUDA Events as described in Section 8.1.2 of the CUDA

C Best Practices Guide [20]. CPU timings were ob-

tained by using the clock gettime(CLOCK MONOTONIC)

function in the standard linux time.h header, called

outside of any OpenMP parallel region.

5.3 Test types

Several tests were performed that aim at investigating

different aspects of the finite element algorithm. These



Finite Element Algorithms and Data Structures on Graphical Processing Units 9

tests are analysed from the viewpoint of different per-

formance metrics such as speed and limiting factors,

and also their place in the whole algorithm.

1. Stiffness matrix assembly: different approaches to

assembly were tested, using the CSR and the ELL-

PACK sparse storage format, the LMA and the Matrix-

free approach. Assembly approaches trading off com-

putations for communications (discussed in Section

4.1) are evaluated, but only the best ones are shown.

2. Conjugate gradient iteration: the spMV product is

the most time-consuming part of the conjugate gra-

dient method and the only one that depends on the

matrix layout. The performance of different storage

and calculation schemes was analysed.

3. Data conflicts: race conditions can be handled in two

ways: with the use of atomic operations or colouring.

The former is straightforward and does not require

any special implementation considerations. Optimal

colouring on the other hand is an NP-hard prob-

lem, but suboptimal colouring algorithms are fast.

The GPU algorithm uses two levels of colouring:

thread and block colouring. Blocks with different

colours are executed after each other by a kernel call.

Memory writes for threads with different colours are

separated by a syncthreads() call. To decrease

the number of synchronisations, these writes were

buffered and grouped.

4. CPU and GPU: the algorithms are implemented as

CPU codes using OpenMP threads executing Algo-

rithm 2 by blocks of elements. In the GPU version

one element is assigned to each thread.

5. Renumbering to improve cache efficiency: several

cache blocking renumbering schemes have been ap-

plied to improve cache locality.

6. Preconditioning: a simple Jacobi or an SSOR pre-

coditioner are included in the conjugate gradient it-

eration, and their impact on performance is anal-

ysed.

5.4 CPU implementation

Comparing single-core CPU performance to the perfor-

mance of GPUs with hundreds of processing cores is

not realistic since modern systems have multiple CPU

cores. To provide a fair comparison, we implemented

the assembly and the solution phase using OpenMP.

Our test system included a 2 socket Intel Xeon X5650

processor, with a total of 12 physical cores, 24 with

hyper-threading enabled.

The CPU implementations use a block-colouring ap-

proach to avoid race conditions, each thread works on a

block of quadrilaterals and no two blocks with the same

colour have neighboring quadrilaterals. During assem-

bly in these implementations we do not do any redun-

dant computations, jacobians and local local quadra-

ture point coordinates are precomputed and stored in

local arrays because these fit easily in the cache of the

CPU. To further optimise performance, threads were

pinned to CPU cores through theKMP AFFINITY =

compact environment variable to avoid migration be-

tween sockets. To minimise the effects of non-uniform

memory access (NUMA), memory is initialised from

within OpenMP loops corresponding to further com-

putational loops so as to make sure that memory most

frequently used by different threads during the assem-

bly and the solution process is allocated to physical

memory attached to the appropriate CPU socket (this

relies on the first touch page allocation policy of the

operating system). Every CPU figure below shows per-

formance using 24 threads.

The benefit from having more threads is clear in

both phases, using 24 threads there is a 7 to 12 times

speedup over a single thread during assembly, and a

speedup between 5 and 8 during solve.

6 The CSR layout

The compressed sparse row format (CSR) is one of the

most widely used sparse storage formats, supported by

several libraries such as NVIDIA’s CUSPARSE [19],

which implements several kinds of sparse matrix op-

erations. In the case of the finite element method the

matrix layout can be calculated from the mapping Me

and used in the assembly phase to find the location of a

nonzero within its row. Our tests use this approach but

it is out of scope of this paper to optimize this precom-

puting phase; in practice we do this on the CPU and

use it as an input to the algorithm.

6.1 Assembly phase

In the assembly phase described by Algorithm 2 the

global memory address of Kij has to be determined

by accessing the row and column pointers for the cur-

rent local matrix element, then writing the value while

avoiding write conflicts either via atomic operations or

colouring. Only the column pointer lookup can be coa-

lesced due to the unstructured nature of the grid. The

impact of this overhead decreases with the increasing

computational requirements of higher order elements.

Figure 5 shows a speedup of up to 4.5 times over the

CPU.



10 I. Z. Reguly, M.B.Giles

1 2 3 4

10
6

10
7

A
ss

em
b

le
d

 e
le

m
en

ts
 /

 s
ec

o
n

d

Degree of polynomials

 

 

CSR atomics

CSR colouring

CSR colouring doubles

CPU CSR

CPU CSR doubles

Fig. 5 Number of elements assembled and written to the
global stiffness matrix using the CSR storage format

6.2 spMV phase

There are two approaches to evaluate the matrix-vector

product: assign one thread per row and add up the

products with the multiplicand or to assign multiple

threads per row thereby achieving coalesced memory

access to the values in the same row. The partial sums

in the latter case are added up by a binary-tree reduc-

tion algorithm. We investigate the effects of assigning

different number of threads to each row of the sparse

matrix. The number of threads per row is directly re-

lated to coalesced memory accesses, but with the intro-

duction of implicit caches in the Fermi architecture the

performance is also affected by cache hits and misses. In

Fermi, each global memory access loads a whole cache

line (128 bytes) and since the size of L1 cache is at most

48 kBytes only a very limited number of them can be

actually reused. This results in a high amount of cache

misses. As shown in Figure 6 the optimal number of

threads assigned to each row varies with the degree of

elements, which is directly related to the length of the

rows. The difference between the best and worst choice

can be as much as 10:1.

Figure 7 shows the performance of only the optimal

versions of our CSR spMV kernel compared to CUS-

PARSE and CPU versions. By always evaluating and

assigning the optimal number of threads to process the

rows of the matrix, our algorithm, compared to CUS-

PARSE, shows a speedup of up to 2 times in single and

1.4 in double precision and between 3 to 5 times over

the CPU. A heuristic decision algorithm for the number

of threads assigned to process each row was presented

in [25] and submitted to NVIDIA, it will be part of a

future release of CUSPARSE.

1 2 3 4

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 

CSR 1 thread

CSR 2 threads

CSR 4 threads

CSR 8 threads

CSR 16 threads

CUSPARSE

Fig. 6 Number of CG iterations per second on a 4 million
row matrix using the CSR storage format. During the spMV,
different numbers of GPU threads were assigned to each row
of the sparse matrix

1 2 3 4

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 

CSR handcoded

CUSPARSE

CSR handcoded doubles

CUSPARSE doubles

CPU CSR

CPU CSR doubles

Fig. 7 Number of CG iterations per second on a 4 million
row matrix using the CSR storage format. The spMV was
performed by a hand-coded kernel and by CUSPARSE

7 The ELLPACK layout

The ELLPACK storage format has gained popularity

for use on the GPUs because of its aligned rows as

shown in Figure 3. The population of the matrix can

be done in a similar way to CSR - precomputing the

matrix layout and writing to those memory locations

in a thread-safe way. The other possibility is to allo-

cate an empty matrix with an extra field for each row

that stores the current length of that row. The maxi-

mum length of the rows can be upper-bounded by the

number of degrees of freedom in each element and the

maximum degree of vertices in the mesh. Then in the

assembly phase each new value and its column index are

appended to the end of the row. This of course requires



Finite Element Algorithms and Data Structures on Graphical Processing Units 11

more memory space allocated for the matrix, but when

computing the local matrices row by row, each row can

be written to global memory safely by increasing the

row length only once with the number of new values

to be written. After the assembly, these rows can be

consolidated by sorting them by column indices and

adding up values with the same index. This approach

will result in the same matrix as if the layout was pre-

computed. The other approach we call ’lazy ELLPACK’

is to leave the rows as they are, which will still produce

a valid result in the spMV phase, but the rows will be

longer. The relative number of multiple entries for the

same column index in a row decreases as the order of

elements increases, making this overhead smaller.

7.1 Assembly phase

Computationally the assembly phase is exactly like the

others, only the memory access patterns differ. In the

lazy scheme less memory input is required as only one

pointer (the row length) per local matrix row is nec-

essary to determine where to write its values in global

memory, unlike the precomputed version, where a pointer

is required for each local matrix element - but this infor-

mation can be laid out in memory so the access to it will

be coalesced. When writing data to memory the lazy

scheme has to store column indices for every value, in

the precomputed version this is already known. Figure

8 shows that the two schemes perform almost the same

when using atomics to avoid race conditions, but when

using colouring the lazy version outperforms the pre-

computed one as it requires less synchronisation. The

atomic and lazy approaches have a speedup of up to

20 times over the CPU in single precision and up to 3

times in double precision mode.

7.2 spMV phase

In our tests one thread is assigned to each row of the

matrix, and since the matrix is transposed in GPU

memory, these threads are reading the values and col-

umn indices of the matrix in a coalesced way - that is if

the rows had the same length. Due to caching in Fermi

GPUs, even then whole cache lines will be loaded re-

sulting in excess use of bandwidth. The lazy scheme has

similar issues, but the imbalance between the length of

the rows is worse - when a degree of freedom belongs to

more elements, its row in the stiffness matrix will have

more values with the same column index. As shown in

Figure 9, the GPU is up to 6 times faster than the CPU

in single and 5 times in double precision.

1 2 3 4

10
6

10
7

10
8

A
ss

em
b

le
d

 e
le

m
en

ts
 /

 s
ec

o
n

d

Degree of polynomials

 

 
ELL lazy

ELL atomics

ELL lazy colouring

ELL colouring

ELL lazy colouring dbls

ELL colouring doubles

CPU ELL

CPU ELL doubles

Fig. 8 Number of elements assembled and written to the
global stiffness matrix using the ELLPACK storage format.
The lazy version does not write to predetermined memory
locations, but appends every new value to the end of the row

1 2 3 4

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 ELLPACK

ELLPACK lazy

ELLPACK doubles

ELLPACK lazy doubles

CPU ELLPACK

CPU ELLPACK doubles

Fig. 9 Number of CG iterations per second on a 4 million
row matrix using the ELLPACK storage format. The rows of
the lazy version are not sorted and may have multiple values
for the same column index

8 The LMA method

The local matrix assembly method is based on the fact

that in the iterative solver, the stiffness matrix K is

not required explicitly. This approach circumvents the

sparse matrix issues that arise when dealing with un-

structured grids by storing stiffness values on a local

matrix basis. This enables completely coalesced access

to stiffness values in both the assembly and the spMV

phase - at the expense of redundant storage. Contibut-

ing stiffness values related to degrees of freedom that

are on edges or vertices connecting elements are stored

in the local matrices of those elements. This overhead

decreases as the order of elements increases.



12 I. Z. Reguly, M.B.Giles

8.1 Assembly phase

The assembly phase requires the mapping from ele-

ments to node indices and the node coordinates to be

read from global memory - the only part of the LMA

method that cannot be coalesced, all writes to global

memory are aligned by the thread index. Also an im-

portant aspect of LMA assembly is that there are no

write conflicts as each thread writes to its own memory

space. As shown in Figure 10, the speedup of the GPU

over the CPU is up to 20 times in single and 5 times in

double precision.

8.2 spMV phase

The spMV kernel is slightly different from the others as

it is based on elements and not the rows of the matrix.

Given these small dense local matrices, it is possible to

efficiently exploit the symmetric nature of the stiffness

matrix. In the implementation of the multiplication this

would mean a nested loop with the bounds of the in-

ner loop depending on the outer loop. However, the

compiler is not able to create an efficient machine code

from such a nested loop, so we unrolled the whole dense

matrix-vector multiplication by hand. While CSR and

ELLPACK spMV multiplications have to read a col-

umn index for each value in the stiffness matrix, the

LMA method uses the mapping Me to get row and col-

umn indices. Thus, as we have shown in Section 4.3, at

higher degrees the data moved by LMA is significantly

less then the data moved by global matrix approaches.

In this scenario however, more threads can incre-

ment the same value of the product vector; thread safety

is guaranteed by the use of atomics or colouring. Figure

11 clearly shows the penalty incurred by the synchro-

nisation between colours. As the spMV phase is band-

width limited, and those memory accesses which may

conflict (i.e. writing to the product vector) are probably

not coalesced anyway, a separate memory transaction

has to be issued for each atomic operation and each

coloured write alike. This makes the overhead of syn-

chronisation between colours a key limiting factor. The

GPU achieves speedups of up to 8 times in single and

4 times in double precision over the CPU.

9 The Matrix-free method

The matrix free method is very similar to the LMA

method, but instead of writing the local matrices to

global memory, it uses them to perform the matrix-

vector product, thereby fusing the assembly and the

1 2 3 4

10
6

10
7

10
8

A
ss

em
b

le
d

 e
le

m
en

ts
 /

 s
ec

o
n

d

Degree of polynomials

 

 

LMA

LMA doubles

CPU LMA

CPU LMA doubles

Fig. 10 Number of elements assembled and written to the
global memory using the LMA method

1 2 3 4

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 

LMA atomics

LMA colouring

LMA colouring doubles

CPU LMA

CPU LMA doubles

Fig. 11 Number of CG iterations per second on a grid with
4 million degrees of freedom using the LMA method

spMV phase. This of course means that the local ma-

trices have to be recalculated every time the spMV mul-

tiplication is performed. The matrix-free approach has

the advantage of not having to move the stiffness ma-

trix to and from memory, which saves a lot on band-

width. On the other hand calculating local stiffness ma-

trices is increasingly more computationally expensive

with higher order elements. As a result the matrix-free

approach can only be better than the other methods,

if the computation of the local matrices is faster than

moving them from global memory to the chip. Fig-

ure 12 shows a clearly steeper decline in performance

compared to the spMV phase of other methods, which

means that at higher degree elements the matrix-free

method is more compute limited than the other meth-

ods are bandwidth limited. On current hardware the

gap between memory transactions and computations is



Finite Element Algorithms and Data Structures on Graphical Processing Units 13

1 2 3 4

10
0

10
1

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 MF atomics

MF colouring

MF colouring doubles

CPU MF

CPU MF doubles

Fig. 12 Number of CG iterations per second on a grid with
4 million degrees of freedom using the matrix-free method

not wide enough to support such a high amount of re-

dundant computations.

10 Bottleneck analysis

When trying to optimize algorithms to run faster on

the GPU, the most important thing to investigate is

whether thay are compute or bandwidth limited. The

NVIDIA Tesla C2070 has a theoretical maximum band-

width of 144 GB/s, and a compute capacity of 1,03

TFLOPS for single and 515 GFLOPS for double pre-

cision calculations [21], although these numbers assume

fully coalesced memory accesses and purely fused multiply-

add floating point operations, which have a throughput

of one instruction per clock cycle, but are counted as

two operations. Applications rarely achive more than

two thirds of the theoretical peak performance. Un-

structured grids deal with scattered data access and

a high amount of pointer arithmetics, both of which

make the utilization of GPU resources difficult. The

introduction of L1 and L2 implicit caches with Fermi

helps achieve better memory bandwidth, but in some

cases it can degrade performance: cache trashing can

result in a high fraction of the moved data being un-

used. As a comparison, the Intel Xeon X5650 system

has a theoretical performance of around 120 GFLOPS

when SSE vectorisation is fully utilised, which amounts

to 10 GFLOPS per core.

On the computation side, there are certain opera-

tions that are a natural fit for the GPU and provide high

throughput, such as floating point multiply and add (32

operations per clock cycle per multiprocessor). Some

integer operations are more expensive: 32 operations

per cycle for addition but only 16 for multiplication

and compare. The most expensive operations are float-

ing point division and special functions such as square

root, sine, cosine, and exp, which have a throughput of

4 operations per cycle per multiprocessor.

From a single thread perspective the algorithm is

a sequence of memory operations and compute oper-

ations. To utilise the maximum amount of bandwidth

there have to be enough threads and enough compute

operations so that while some threads are waiting for

data from memory, others can execute compute instruc-

tions. In theory, for the Tesla C2070 to operate at max-

imum efficiency from both the memory and compute

perspective there have to be 28 floating point multiply-

add operations for every single precision floating num-

ber loaded from global memory. In practice because of

control overhead, other kinds of operations, and caching

this number is significantly less (around 10).

The NVIDIA Visual Profiler gives very useful hints

to decide whether a GPU kernel is compute or memory

limited, but it also displays metrics such as ratio of di-

vergence, cache statistics etc. which can be very helpful

when analysing non-trivial aspects of an algorithm.

10.1 The assembly phase

As the GPU has significantly less resources per thread

than the CPU, it is improtant to investigate the balance

of computations and communications when it is possi-

ble to trade one for the other. As described in Section

4.1 we have implemented three different approaches, the

first using local memory to precompute the coordinates

of local quadrature points to save on computations in

the innermost loop (labeled as Local reuse), the second
which recomputes these coordinates and hence it is the

most computationally intensive (labeled as Redundant

compute) and the third that interchanges the loop over

quadrature points with the loop over pairs of degrees

of freedom, performing the least amount of computa-

tions but resulting in increased memory traffic because

the stiffness values, residing in global memory, are up-

dated repeatedly (labeled as Global reuse). Figure 13

shows that the third approach on the GPU is not a vi-

able option, however for low degree polynomials the L1

cache can contain the register spillage resulting from

the increased memory footprint of the first approach

making it faster than the redundant compute version.

For higher degree polynomials this is no longer true,

the precomputed values are spilled to global memory

resulting in a dramatic drop in instruction throughput

and performance. The second approach scales very well

with the increasing degree of polynomials, using the

same amount of registers and showing a steady instruc-

tion throughput rate.



14 I. Z. Reguly, M.B.Giles

1 2 3 4
10

5

10
6

10
7

10
8

10
9

A
ss

em
b
le

d
 e

le
m

en
ts

 /
 s

ec
o
n

d

Degree of polynomials

 

 

1 2 3 4
10

10

10
11

10
12

In
st

ru
ct

io
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 

Local reuse

Global reuse

Redundant compute

Fig. 13 Number of elements assembled and instruction
throughput using assembly strategies that trade off compu-
tations for communications. Values are stored in the LMA
format

Both the assembly and the spMV phases have to

move the entire stiffness matrix to or from memory, and

this transfer makes up the bulk of all memory traffic in

both phases. Looking at the performance degradation

in Figure 14, as the order of elements increase, it is

apparent that the assembly becomes much slower than

the spMV. This means that while increasing the order

of the elements results in having to move more data to

and from memory, it also requires more computation in

the assembly phase because the number of quadrature

points also increases as a square function (in 2D) of the

degree of polynomials used. Figure 15 shows a slight

increase in instruction throughput for the LMA and

ELLPACK approaches, and Figure 16 shows quickly

decreasing bandwidth in the assembly phase. These fac-

tors indicate that the assembly phase is compute lim-

ited. CSR throughput figures on the other hand show

an increasing tendency, while its bandwidth utilisation

is the same as that of the other two approaches. The

reason for this is the high percentage of cache misses;

while threads writing to LMA and ELLPACK data lay-

outs work on a small set of cache lines at the same time,

thanks to their transposed data layout, threads writing

to the CSR layout do not.

Based on these observations, it can be stated that

the assembly kernel is increasingly compute limited with

higher order elements. According to the Visual Pro-

filer’s output and our own calculations the instruction

throughput of the LMA approach is around 500∗109 in-

structions per second, which is a good proportion of the-

oretical 1TFLOPS throughput considering the amount

of integer arithmetic and control overhead - as a com-

parison, the CUBLAS [22] dense matrix-matrix mul-

tiplication benchmark reports 630 GFLOPS in single

1 2 3 4

10
6

10
7

10
8

A
ss

em
b

le
d

 e
le

m
en

ts
 /

 s
ec

o
n

d

Degree of polynomials

 

 
LMA

ELLPACK

CSR

LMA doubles

ELLPACK dbls

CSR doubles

CPU ELL

CPU ELL dbls

Fig. 14 Number of elements assembled and written to global
memory when using different storage formats and storage pre-
cision

and 303 GFLOPS in double precision. It is also inter-

esting to see the performance penalty for colouring (2

to 4 times) - that is the cost of synchronisation within

thread blocks and the multiple kernel calls for different

block colours.

When moving to double precision, it can be seen

in Figure 14 that the LMA assembly performance per-

formance is only a fourth of its single precision ver-

sion. Double precision ELLPACK and CSR have to use

colouring due to the lack of native support for atomic

operations with doubles. In the case of the CPU, the

compute limits are again apparent, even though the

CPU versions have to perform less computations at the

expense of having to store local quadrature points and

their jacobians. Regardless of the memory access pat-

tern, all versions perform similarly.

Using LMA, the GPU’s speedup over the CPU is

between a factor of 10 and 30 in single precision using

atomics, and between 2.5 and 7 in double precision.

The speed difference in the actual calculations and in

the theoretical performance of the GPU versus the CPU

are very close.

10.2 The spMV phase

The sparse matrix-vector product is commonly known

to be a bandwidth limited operation [3]. In fact it has to

move just a little less data than the assembly phase, but

the number of operations is significantly less: approxi-

mately one fused multiply-add for each nonzero element

in the matrix. Figure 16 clearly shows a low instruction

throughput compared to the theoretical maximum. Us-

ing the LMA approach incurs an overhead of having to

avoid race conditions using atomics or colouring. The



Finite Element Algorithms and Data Structures on Graphical Processing Units 15

1 2 3 4
0

100

200

300

400

500

600

1
0

9
 *

 (
F

lo
p

s|
In

st
ru

ct
io

n
s)

 /
 s

ec
o

n
d

Degree of polynomials

 

 

LMA Instr

ELLPACK Instr

CSR Instr

LMA Flops

ELLPACK Flops

CSR Flops

Fig. 15 Number of general and floating point instructions
executed in the assembly phase by different approaches on a
grid with 4 million degrees of freedom

1 2 3 4

10

20

30

40

50

60

Assembly

A
ch

ie
v

ed
 e

ff
ec

ti
v

e 
b

an
d

w
id

th
 (

G
B

y
te

s/
se

c)

Degree of polynomials

 

 

ELL

LMA

CSR

1 2 3 4

10

15

20

25

Solve

G
F

lo
p

s/
se

c

Degree of polynomials

 

 

ELL

LMA

CSR

Fig. 16 Achieved effective bandwidth in the assembly phase
and number of floating point instructions in the spMV phase
by different approaches on a grid with 4 million degrees of
freedom

LMA approach offers fully coalesced access to the ele-

ments of the stiffness matrix, and both ELLPACK and

CSR use optimizations to improve bandwidth efficiency.

However, the access to the elements of the multiplicand

vector is not coalesced, but caching can improve per-

formance. Global matrix approaches using CSR store

the least amount of stiffness data, but they have to

read a column index for every nonzero of the sparse

matrix. The LMA approach uses the mapping Me to

get row and column indices. As shown in Section 4.3

the local matrix approach has to move significantly less

data, especially at higher degree polynomials. Figure 17

shows that global matrix approaches have very similar

performance, but the less data-intensive local matrix

approach provides the best performance for higher or-

1 2 3 4

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 ELLPACK

LMA

CSR

CUSPARSE

CPU ELL

CPU LMA

CPU CSR

Fig. 17 Number of CG iterations per second with different
storage formats at single precision

1 2 3 4

50

60

70

80

90

100

110

A
ch

ie
v

ed
 e

ff
ec

ti
v

e 
b

an
d

w
id

th
 (

G
B

y
te

s/
se

c)

Degree of polynomials

 

 
ELL

LMA

CSR

CUSPARSE

ELL doubles

LMA doubles

CSR doubles

CUSPARSE dbl

Fig. 18 Achieved effective bandwidth in the spMV phase
by different approaches on a grid with 4 million degrees of
freedom

der elements. As expected, the difference increases with

the increasing degree of elements. This also supports

the conclusion that the sparse matrix-vector product

is bandwidth limited. Furthermore Figure 18 shows the

bandwidth utilisation of different approaches. The ELL-

PACK layout shows the best bandwidth utilisation, but

since it has to move more data it is still up to 50% slower

than the LMA layout. Although using either the CSR

or the ELLPACK layout results in having to move the

same amount of useful data, the transposed layout of

ELLPACK provides up to 10% higher effective band-

width. The zeros padding the rows of ELLPACK are

not factored into these figures. Figure 19 shows that

in double precision, the performance of the LMA ap-

proach falls back because colouring has to be used to

avoid race conditions.



16 I. Z. Reguly, M.B.Giles

1 2 3 4

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 

ELLPACK dbl

LMA dbl

CSR dbl

CUSPARSE dbl

CPU ELL dbl

CPU LMA dbl

CPU CSR dbl

Fig. 19 Number of CG iterations per second with different
storage formats at double precision

The GPU’s speedup over the CPU using global ma-

trix approaches is up to 5 in single precision and 3 in

double precision. Local matrix approaches outperform

the CPU by up to 7 times in single and 5 in double

precision.

10.3 Occupancy and block size

For the GPU to achieve maximum instruction through-

put there have to be enough threads to hide the latency

of access to global memory and to have a full instruction

pipeline: in GPU terms this is called occupancy and it

is measured as the fraction of active threads per mul-

tiprocessor versus the theoretical maximum, which on

Fermi is 1536. The most important factors determining

occupancy are the number of registers each thread uses

and the amount of shared memory used by each block.

Also an important factor that is tied to the first two is

the size of the blocks: each multiprocessor can have up

to 8 active blocks at the same time. The number of reg-

isters and shared memory available per multiprocessor

is limited: 32768 and 48 kBytes respectively. Thus using

a high amount of these resources may limit the num-

ber of active blocks. Furthermore, when threads within

the block have to synchronise - e.g. when using colour-

ing in the assembly phase - the more threads there are

in a block the more overhead it poses. It is important

to find the best block size to achieve the best perfor-

mance. Since the spMV phase is bandwidth limited and

the usage of shared memory and registers is very low

there are no occupancy or synchronisation problems, so

this section focuses on finding the best blocksize for the

assembly phase.

64 128 192 256 320 384 448 512
1.95

2

2.05
x 10

8

 

 1
st

 degree

64 128 192 256 320 384 448 512
2.62

2.64

2.66
x 10

7

 

 2
nd

 degree

64 128 192 256 320 384 448 512
5

5.5
x 10

6

 

 

3
rd

 degree

64 128 192 256 320 384 448 512
1.3

1.4

1.5
x 10

6

Blocksize

A
ss

em
b

le
d

 e
le

m
en

ts
 /

 s
ec

o
n

d

 

 4
th

 degree

Fig. 20 Number of elements assembled at different block
sizes using the LMA approach

Tests are run using an autotuning framework called

Flamingo [26]. Performance is evaluated at several block

sizes and the degree of elements ranges from one to four.

Figure 20 shows the performance of assembly with

different order elements at different lock sizes. The as-

sembly phase of the LMA approach has no write con-

flicts thus no need for synchronisation, nor does it use

any shared memory, so the occupancy varies based on

register usage and size of blocks. For these reasons -

as the figure shows - there is a small variation is the

performance when using different block sizes: for low

order elements below 2%, for higher order elements up

to 10%.

The ELLPACK storage format requires thread safe

access to the global matrix via either atomics or colour-

ing. The colouring approach has to ensure this by us-

ing synchronisation between different colours, which as

shown in the previous section has a significant over-

head. In this case the number of threads within a block

factors heavily into the cost of synchronisation. Figure

21 shows variations around 20% and at high order ele-

ments the difference can reach even 50%.

10.4 Renumbering and cache blocking

As it was shown earlier, the assembly phase of the finite

element method is compute bound, thus it cannot bene-

fit significantly from better caching. The sparse matrix-

vector multiply on the other hand is heavily bandwidth

limited. Access to the multiplicand vector is not coa-

lesced, so accessing it element-by-element wastes band-

width - this is where Fermi’s L1 and L2 cache can help.

The size of these caches is relatively small compared

to the number of threads running concurrently, so by



Finite Element Algorithms and Data Structures on Graphical Processing Units 17

64 128 192 256 320 384 448 512
4

5

6
x 10

7

 

 
1

st
 degree

64 128 192 256 320 384 448 512
5

6

7
x 10

6

 

 
2

nd
 degree

64 128 192 256 320 384 448 512
1

1.5

2
x 10

6

 

 
3

rd
 degree

64 128 192 256 320 384 448 512
3

4

5
x 10

5

Blocksize

A
ss

em
b

le
d

 e
le

m
en

ts
 /

 s
ec

o
n

d

 

 
4

th
 degree

Fig. 21 Number of elements assembled at different block
sizes using the ELLPACK approach with colouring

using the well-known cache blocking method in combi-

nation with the renumbering of the degrees of freedom,

better caching efficiency can be achieved. Renumbering

can also improve the efficiency of the ELLPACK spMV

by reordering degrees of freedom that have similar row

length to be adjacent to each other in the global stiffness

matrix as shown in Figure 22. This way when reading

the matrix there will be minimal divergence between

the threads iterating through those rows. In this section

we show the effects of these methods on the ELLPACK

storage format, which can potentially benefit from both

blocking and renumbering. Figure 23 shows the effects

of different combinations of these methods: ”Original”

uses the same numbering scheme as in the previous

tests, ”blocked renumbering” uses the same method of

numbering as before, but blocks the iteration through
elements, ”aligned renumbering” uses the scheme this

section describes, and ”blocked aligned renumbering”

combines blocking and aligned renumbering. 16k and

48k designate the size of the L1 cache used.

1. Renumbering for aligned length rows: This renum-

bering scheme is simple: iterate through every ver-

tex of the mesh, then every node that is on an edge,

and at last the degrees of freedom that are inside

the elements. Figure 22 shows an example of this

reordering. This will balance the length of the adja-

cent rows, because unless vertices have highly vary-

ing degrees or many constrained neighbours, they

will have a non-zero integral with the same num-

ber of adjacent basis functions, and thus have the

same row length. As shown in Figure 23 this scheme

performs poorly despite almost 0% divergence. The

reason for this is the high number of L1 cache misses

and thus the high number of instructions reissued:

about three times as more for 16kB L1 cache than in

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29
30

31
32

33

34

35

36

37

38

39

Fig. 22 Renumbering the degrees of freedom in a mesh in
order to have aligned length rows in the stiffness matrix

the original numbering scheme. Increasing the size

of the L1 cache to 48kB decreases the number of

cache misses, but the performance is still poor.

2. Blocking: The blocking scheme partitions the grid

into blocks of n∗n geometrically close elements and

renumbers their degrees of freedom. This serves to

improve cache locality, as threads will access ele-

ments of the multiplicand vector that are close to

each other. As shown in Figure 23 blocking alone

did not improve performance either.

3. Blocking and aligned renumbering: Combining both

approaches results in a numbering scheme, where

vertices of geometrically close elements have sequen-

tially ordered indices, so do nodes on edges and in-

side elements. This gives a performance improve-

ment of about 10%.

The CPU version behaves similarly, the combined

blocking and aligned renumbering approach gives a 10%

performance improvement, while other methods have

slightly worse performance compared to the original

numbering scheme.

11 Preconditioning

When solving ill-conditioned problems with a high con-

dition number, one usually relies on preconditioners to

ensure and accelerate convergence during the iterative

solution phase. This consists of the insertion of a step

in the iterative algorithm that performs the precondi-

tioning:

z = M−1r, (22)

where M is the preconditioning matrix. These precon-

ditioners can range from simple diagonal (Jacobi), pop-

ular for its ease of use, through SSOR , Cholesky and



18 I. Z. Reguly, M.B.Giles

150

200

250

300

350

400

450

O
ri

gi
na

l 4
8k

A
li
gn

m
en

t r
en

um
be

ri
ng

 4
8k

B
lo

ck
ed

 (
8)

 a
li
gn

m
en

t r
en

um
be

ri
ng

 4
8k

B
lo

ck
ed

 (
16

) 
al

ig
nm

en
t r

en
um

be
ri

ng
 4

8k

B
lo

ck
ed

 (
32

) 
al

ig
nm

en
t r

en
um

be
ri

ng
 4

8k

B
lo

ck
ed

 (
16

) 
re

nu
m

be
ri

ng
 4

8k
O

ri
gi

na
l 1

6k

A
li
gn

m
en

t r
en

um
be

ri
ng

 1
6k

B
lo

ck
ed

 (
8)

 a
li
gn

m
en

t r
en

um
be

ri
ng

 1
6k

B
lo

ck
ed

 (
16

) 
al

ig
nm

en
t r

en
um

be
ri

ng
 1

6k

B
lo

ck
ed

 (
32

) 
al

ig
nm

en
t r

en
um

be
ri

ng
 1

6k

B
lo

ck
ed

 (
16

) 
re

nu
m

be
ri

ng
 1

6k

C
G

 i
te

ra
ti

o
n
s 

/ 
se

co
n
d

Fig. 23 The effect or renumbering and blocking schemes on
a 1 million row ELLPACK matrix

1 2 3 4
10

0

10
1

10
2

S
p

ee
d

u
p

 o
v

er
 2

−
so

ck
et

 C
P

U
 i

n
 a

ss
em

b
ly

Degree of polynomials

 

 

CSR

ELL

LMA

CSR double

ELL double

LMA double

Fig. 24 Speedup of the GPU in the assembly phase over a
12-core CPU using the CSR format

1 2 3 4
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

S
p

ee
d

u
p

 o
v

er
 2

−
so

ck
et

 C
P

U
 i

n
 s

o
lv

e

Degree of polynomials

 

 

CSR

ELL

LMA

CSR double

ELL double

LMA double

Fig. 25 Speedup of the GPU in the solution phase over a
12-core CPU using the CSR format

LU factorisation, to the most powerful (and most ex-

pensive) multigrid-based preconditioners [2]. Here we

evaluate the performance implications of applying the

Jacobi precoditioner, defined as follows:

Mij =

{
Kij if i = j

0 if i 6= j
(23)

where K is the stiffness matrix, and the Symmetric Suc-

cessive Over-Relaxation (SSOR), defined as:

M = (L+D)D−1(L+D)T , (24)

where L is the strictly lower triangular part of K and

D is the diagonal. The Jacobi preconditioner is trivially

parallel, however the SSOR enforces an ordering dur-

ing the solution of the lower and the upper triangular

systems, thus we use a red-black variant in conjunc-

tion with a full graph colouring algorithm that ensures

that no two nodes that are connected via an edge are

updated at the same time and provides an ordering for

the upper and lower triangular solves [1]. The algorithm

is as follows:

Algorithm 3 Coloured SSOR preconditioning.
Compute z defined by:
(L+D)D−1(L+D)T z = r
Sub-step: solve (L+D)y = r for y:
for colour c = 1...ncolors do

for each row i with colour c in parallel do
yi = (1/Di)(ri −∑
columns j with colour<cK(i, j)yj)

end for
end for
Sub-step: solve D−1(L+D)T z = y for z:
for colour c = ncolors...1 do

for each row i with colour c in parallel do
zi = yi−(1/Di)

∑
columns j with colour>cK(i, j)zj)

end for
end for

The diagonal preconditioning adds very little over-

head to the conjugate gradient iteration; once the diag-

onal values are extracted from the stiffness matrix, it

is a matter of a simple elementwise vector-vector mul-

tiplication, and so it has virtually no impact (less than

10%) on performance when compared to performance

shown in Figures 17 and 19. The coloured SSOR on the

other hand involves several kernel launches, for each

colour, in both the forward and the backward solution

steps. In theory, the amount of useful computations car-

ried out during preconditioning is almost the same as

during a single sparse-matrix vector product. Perfor-

mance figures are shown in Figures 26 and 27. It can

be observed that even for global matrix assembly ap-

proaches, the performance penalty is much higher than

two times, which is due to the coloured execution: no

two degrees of freedom in the same element can have the

same colour, resutling in at least (degree+ 1)4 colours.



Finite Element Algorithms and Data Structures on Graphical Processing Units 19

1 2 3 4
10

0

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 

ELL Jacobi

LMA Jacobi

CSR Jacobi

ELL SSOR

LMA SSOR

CSR SSOR

Fig. 26 Number of CG iterations per second with different
preconditioners and storage formats in single precision

1 2 3 4
10

0

10
1

10
2

C
G

 i
te

ra
ti

o
n

s 
/ 

se
co

n
d

Degree of polynomials

 

 

ELL Jacobi double

LMA Jacobi double

CSR Jacobi double

ELL SSOR double

LMA SSOR double

CSR SSOR double

Fig. 27 Number of CG iterations per second with different
preconditioners and storage formats in double precision

The CSR format is least affected by the coloured ex-

ecution, because multiple threads are assigned to com-

pute the product between any given row of the ma-

trix and the multiplicand vector, which ensures some

level of coalescing in memory accesses. ELLPACK on

the other hand stores data in a transposed layout that

gives good memory access patterns during an ordinary

spMV, however during coloured execution neighboring

rows do not have the same colour thus neighboring

threads processing rows of the same colour are accessing

rows that are far apart, resulting in very poor memory

access patterns due to big strides and low cache line

utilisation. Because of these issues, the performance of

the ELLPACK layout on the SSOR falls rapidly with

the increasing degree of polinomials used. When exe-

cuting SSOR using the LMA layout, threads are still

processing neighboring elements, however there is no

opportunity of data reuse within an element because

c 

c 

c 

c 

f 

f 
f 

f f 

c 

c c 

c 

f 

f 

f 

f f 

c 

c 

f 

f 

f 

f 

Fig. 28 Two examples of multigrid restrictions that main-
tain the element structure: p-multigrid, going from degree 2
polynomials to degree 1, and a geometric multigrid variant.
Nodes marked c exist on both the coarse and fine grid levels,
and nodes marked f only exist on the fine grid level

by definition all its degrees of freedom have a different

colour. Still, LMA’s data layout enables more efficient

memory access patterns, granting it an edge over global

assembly methods in single precision, but the require-

ment for a two-level colouring approach in double pre-

cision in order to avoid race conditions between neigh-

boring elements reduces its performance below that of

CSR.

Even though ELLPACK is very well suited for sim-

ple operations such as the spMV, it does not scale well

to larger degree polynomials. LMA performs well on

simple operations and single precision, but the lack of

support for atomics in double precision and the com-

plexity of the implementation for preconditioners like

SSOR do not make it the obvious best choice. Fur-

thermore LMA restricts the choice of preconditioners:

for example an incomplete LU factorisation with fill-in

cannot be applied, because the layout can not accom-

modate the additional nonzeros. However, a geometric

or p-Multigrid scheme [10] could be a good choice in

combination with a Jacobi smother; the LMA format

has the geometric information readily available and an

element structure can be maintained on the coarser lev-

els with restriction schemes such as shown in Figure 28.

The implementation of such a multigrid preconditioner

is out of scope of this paper and will be addressed by

future research.

12 Conclusions

A comprehensive study of the finite element method

has been presented that investigates the performance of

finite element assembly and solution on the GPU. The

main contributing factors are found to be the balance of

computations and communications, and the layout and

access pattern of memory storing the stiffness values.

We present three approaches to the assembly algorithm

that trade off computations for communications:



20 I. Z. Reguly, M.B.Giles

1. redundant computations,

2. increased thread-local private memory,

3. increased global memory traffic.

We show that on the GPU the very limited amount of

resources per thread and the ratio of bandwidth to off-

chip memory and computational throughput makes the

most computationally intensive alternative often the

best choice. Because of very limited cache size, the third

approach becomes memory bandwidth limited and per-

forms the worst in all cases. Similarly, because of the

limited number of registers and cache size, the increas-

ing local memory requirements of the second approach

become a limiting factor at higher degree polynomials

making it 30% faster for low degree polynomials but up

to four times slower for higher degree ones. The most

computationally intensive approach has the additional

benefit of scaling well to any degree of polynomials,

showing a steady throughput rate.

We have also analysed two main approaches to the

storage and use of stiffness values: the local matrix ap-

proach and the global matrix approach using either the

CSR or the ELLPACK storage format. The implica-

tions of the choice of storage approach are analysed in

detail: performance bottlenecks resulting from memory

access patterns, amount of computations, handling of

race conditions, use of resources and occupancy. The

local matrix assembly is demonstrated to be a viable

alternative to global assembly, providing the best per-

formance in most cases at the expense of more program-

ming effort, thanks to the reduced data transfer require-

ments during the sparse matrix-vector multiplication

phase. A variation of the local matrix approach, the

matrix-free method, which avoids the storage of stiff-

ness data completely by recomputing them on-the-fly

during the iterative solution is shown to become heav-

ily compute-limited at higher order elements.

The most widely used sparse matrix storage format

CSR (compressed sparse row) proves to be a slightly

worse choice than LMA or ELLPACK, being on av-

erage two times slower in the assembly phase due to

suboptimal access patterns. The number of assembled

quadrilateral elements per second outperforms triangu-

lar assembly shown in [6,18] by a factor of up to 10.

The storage schemes are also compared during the iter-

ative solution phase; when using no or diagonal precon-

ditioning ELLPACK and LMA still perform the best,

however with a more complicated SSOR preconditioner

we show ELLPACK’s inability to scale and the advan-

tage of the CSR layout in double precision. LMA some-

what restricts the choice of preconditioners; while it

gives good performance on SSOR and could efficiently

support certain multigrid schemes with a Jacobi pre-

conditioner, it would not be possible to implement more

complicated algorithms, such as ILU. NVIDIA’s CUS-

PARSE library is also evaluated in the spMV phase, its

performance being on average 20-50% lower than our

hand-coded kernels.

Speedups of up to 20 times in the assembly phase

and 7 in the solution phase are shown in Figures 24

and 25 for single precision (6 and 5 respectively in dou-

ble precision), over a fully utilised 12-core Xeon CPU.

Furthermore, several GPU-specific factors are analysed

such as autotuning for optimal occupancy and renum-

bering schemes for better caching.

Acknowledgements This research was supported in part
by the UK Engineering and Physical Sciences Research Coun-
cil through project EP/J010553/1 on ”Algorithms and Soft-
ware for Emerging Architectures”, and in part by the EU
LLP/Erasmus program 10/2010-2011/Erasmus-SMP. The au-
thors would like to acknowledge the help and support of
Csaba Józsa, András Oláh, Barna Garay and Tamás Roska
at PPKE.

References

1. Alefeld, G.: On the convergence of the symmetric sor
method for matrices with red-black ordering. Nu-
merische Mathematik 39(1), 113–117 (1982). DOI
10.1007/BF01399315

2. Axelsson, O.: Iterative Solution Methods. Cambridge
University Press (1996)

3. Bell, N., Garland, M.: Efficient sparse matrix-vector mul-
tiplication on CUDA. NVIDIA Technical Report NVR-
2008-004, NVIDIA Corporation (2008)

4. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse
matrix solvers on the GPU: Conjugate gradients and
multigrid. ACM Transactions on Graphics 22, 917–924
(2003)

5. Cantwell, C., Sherwin, S., Kirby, R., Kelly, P.: From h to
p efficiently: Strategy selection for operator evaluation on
hexahedral and tetrahedral elements. Computers & Flu-
ids 43(1), 23 – 28 (2011). DOI 10.1016/j.compfluid.2010.
08.012. URL http://www.sciencedirect.com/science/

article/pii/S0045793010002057. Symposium on High
Accuracy Flow Simulations. Special Issue Dedicated to
Prof. Michel Deville

6. Cecka, C., Lew, A.J., Darve, E.: Assembly of finite el-
ement methods on graphics processors. International
Journal for Numerical Methods in Engineering 85(5),
640–669 (2011). DOI 10.1002/nme.2989. URL http:

//dx.doi.org/10.1002/nme.2989

7. Christen, M., Schenk, O., Messmer, P., Neufeld, E.,
Burkhart, H.: Accelerating stencil-based computations
by increased temporal locality on modern multi-
and many-core architectures. In: Proceedings of
the First International Workshop on New Frontiers
in High-performance and Hardware-aware Computing
(HipHaC’08), pp. 47–54 (2008)

8. Dally, B.: Power, programmability, and granularity: The
challenges of exascale computing. In: Proceedings of
the 25th IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2011, Anchorage, Alaska,
USA, 16-20 May, p. 878 (2011)



Finite Element Algorithms and Data Structures on Graphical Processing Units 21

9. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter,
J., Oliker, L., Patterson, D., Shalf, J., Yelick, K.: Stencil
computation optimization and auto-tuning on state-of-
the-art multicore architectures. In: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, SC ’08,
pp. 4:1–4:12. IEEE Press, Piscataway, NJ, USA (2008)

10. Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, D.L.: p-
multigrid solution of high-order discontinuous galerkin
discretizations of the compressible navier-stokes equa-
tions. J. Comput. Phys. 207(1), 92–113 (2005). DOI
10.1016/j.jcp.2005.01.005

11. Filipovic, J., Peterlik, I., Fousek, J.: GPU acceleration
of equations assembly in finite elements method pre-
liminary results. SAAHPC : Symposium on Application
Accelerators in HPC (2009)

12. Flaig, C., Arbenz, P.: A scalable memory efficient
multigrid solver for micro-finite element analyses
based on CT images. Parallel Computing 37(12),
846 – 854 (2011). DOI 10.1016/j.parco.2011.08.
001. URL http://www.sciencedirect.com/science/

article/pii/S0167819111001037. 6th International
Workshop on Parallel Matrix Algorithms and Applica-
tions (PMAA’10)

13. Göddeke, D., Strzodka, R., Turek, S.: Accelerating
double precision FEM simulations with GPUs. In:
F. Hülsemann, M. Kowarschik, U. Rüde (eds.) 18th
Symposium Simulationstechnique (ASIM’05), Frontiers
in Simulation, pp. 139–144 (2005)

14. Hwu, W.m.W.: GPU Computing Gems Emerald Edition,
1st edn. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2011)

15. Johnson, C.: Numerical Solution of Partial Differential
Equations by the Finite Element Method. Cambridge
University Press (1987)

16. Komatitsch, D., Göddeke, D., Erlebacher, G., Michéa,
D.: Modeling the propagation of elastic waves using
spectral elements on a cluster of 192 GPUs. Com-
puter Science Research and Development 25(1-2), 75–82
(2010). URL http://www.springerlink.com/index/10.

1007/s00450-010-0109-1
17. Komatitsch, D., Micha, D., Erlebacher, G.: Porting a

high-order finite-element earthquake modeling applica-
tion to NVIDIA graphics cards using CUDA. Jour-
nal of Parallel and Distributed Computing 69(5),
451 – 460 (2009). DOI 10.1016/j.jpdc.2009.01.
006. URL http://www.sciencedirect.com/science/

article/pii/S0743731509000069
18. Markall, G.R., Ham, D.A., Kelly, P.H.: Towards gen-

erating optimised finite element solvers for GPUs from
high-level specifications. Procedia Computer Science
1(1), 1815 – 1823 (2010). DOI 10.1016/j.procs.2010.
04.203. URL http://www.sciencedirect.com/science/

article/pii/S1877050910002048
19. NVIDIA: cuSPARSE library, last accessed Dec 20th

(2012).
http://developer.nvidia.com/cuSPARSE

20. NVIDIA: NVIDIA CUDA C Best Practices Guide, last
accessed Aug 20th (2012).
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_

Practices_Guide.pdf
21. NVIDIA: NVIDIA Tesla C2070 techinical specifications,

last accessed Aug 20th (2012).
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_

C2050_C2070_jul10_lores.pdf
22. NVIDIA: CUBLAS library, last accessed Sept 12th

(2013).
http://developer.nvidia.com/cublas

23. Plaszewski, P., Maciol, P., Banas, K.: Finite element nu-
merical integration on GPUs. In: Proceedings of the
8th international conference on Parallel processing and
applied mathematics: Part I, PPAM’09, pp. 411–420.
Springer-Verlag, Berlin, Heidelberg (2010). URL http:

//dl.acm.org/citation.cfm?id=1882792.1882842

24. Poole, E.L., Ortega, J.M.: Multicolor ICCG Methods for
Vector Computers. SIAM Journal on Numerical Analysis
24(6), 1394–1418 (1987)

25. Reguly, I., Giles, M.: Efficient sparse matrix-vector mul-
tiplication on cache-based GPUs. In: Innovative Par-
allel Computing (InPar), 2012. IEEE (2012). DOI
10.1109/InPar.2012.6339602

26. Spencer, B.: A general auto-tuning framework for soft-
ware performance optimisation (2011). Third Year
Project Report, University of Oxford

27. Vázquez, F., Fernández, J., Garzón, E.: Automatic
tuning of the sparse matrix vector product on
GPUs based on the ELLR-T approach. Paral-
lel Computing (2011). DOI 10.1016/j.parco.2011.08.
003. URL http://www.sciencedirect.com/science/

article/pii/S0167819111001050


