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1 Introduction

Fourier analysis is the standard method for analysing the stability of discreti-
sations of an initial value p.d.e. on a regular structured grid. For each point in
the computational grid, a linear model problem is constructed on an infinite grid
with uniform grid spacing and coefficients matching those of the chosen point.
This model problem has Fourier eigenmodes whose stability is relatively easily
analysed. If they are stable at all points in the grid, and the discretisation of
the boundary conditions is also stable (which can be analysed using Godunov-
Ryabenkii [3] or GKS [4] stability theory) then for most applications the overall
discretisation is stable, in the sense of Lax [9]. The Lax Equivalence theorem
then applies, that if the discretisation is consistent (for a dense subset of suf-
ficiently smooth initial conditions) then the discrete solution will approach the
analytic solution for all initial conditions as the grid spacing and timestep are
reduced to zero.

However, engineering applications of CFD are increasingly using finite vol-
ume and finite element methods based on unstructured grids. For these, Fourier
stability analysis is not applicable, and one must instead consider the full dis-
crete matrix that arises from the combined spatial and temporal discretisation
of the p.d.e. and associated boundary conditions. This paper addresses theoret-
ical aspects of this analysis. Reference [2] gives an example of its application to
the stability of a Galerkin discretisation of the Navier-Stokes equations on an
unstructured tetrahedral grid.

We consider a particular class of discretisations of the initial value p.d.e.

ou
E = Q(u)a (1'1)

where () is a time-invariant linear differential operator which in three dimensions
would be of the form
ob o7 o
u) = a; ik, Y, 2) —=—=ulx,y, 2). 1.2
The first stage in discretising this p.d.e. is to perform a spatial approximation
to produce the semi-discrete system of coupled o.d.e.’s,

W — Qun). (13)

Here uy(t) is to approximate the value of u(z, t) at a set of discrete points and @,
is the time-invariant matrix which approximates Q(u). h represents the spatial
grid resolution and we will consider a family of such discretisations for a sequence
of values of h tending to zero. Note that as h — 0, the dimension of @) will
increase without bound. It is this feature which makes it difficult to derive
stability bounds for the whole family of discretisations.



The second stage in the discretisation is to approximate the semi-discrete
equations using an explicit one-step Runge-Kutta method with timestep k, to
give

Uhn+1 = @(th) Uh,n, (1-4)
where wuy,, represents uy(t) at time ¢t = nk, and ¢(z) is a polynomial function of
degree p,

p
p(2) = a2, a=a;=1, a,#0. (1.5)
§=0

In the family of fully-discrete discretisations, we assume an implicit relation-
ship between h and k, such that £ — 0 as h — 0. Given the association between
h and k, it is convenient to change notation, replacing uy, @, by ug, Q.

Central to any stability analysis is the stability region associated with ¢(z2),
defined as

S ={z:lp(z) < 1. (1.6)

The aim of this paper is to investigate the conditions required for stability
and convergence of the fully discrete approximation. The objective in the sta-
bility analysis is to construct an upper bound for the growth of the solution for
arbitrary initial conditions. Following the terminology of Spijker et al [5,6,12],
a discretisation of an initial value problem (not necessarily arising from the spa-
tial discretisation of a p.d.e.) is defined to be strongly stable if there a positive
constant v such that

|un| < vlugl, Vn >0, (1.7)

and it is defined to be algebraically stable if there are positive constants 7, ¢ such
that

[un| < ynfugl, Vn > 0. (1.8)
There has been considerable research on the conditions under which the discreti-
sation of a system of o.d.e.’s, or a family of such systems, is stable in either of the
above senses. Spijker et al have shown the important role of the numerical range
T(kQy) of the matrix kQy [5,6,12]. They prove that there are many equivalent
characterisations of the numerical range for arbitrary norms, but the definition
which is most useful in proving stability is the following based on the resolvent:

Definition 1.1 The numerical range T7(A) of the square matriz A is the smallest
closed convez set V- C C such that

|zT = )7 < d(z V)", va g v
where

When using the L, norm, this can be proved to be equivalent to the classical
numerical range defined as

T(A) = {z" Az : 2"z = 1}.



Previous papers by Spijker et al [5,6,12], Reddy and Trefethen [8] and Lu-
bich and Nevanlinna [7] have proved algebraic stability with ¢g=1 when 7(kQy) C
S,VEk, and with improved exponents ¢ < 1 under various additional conditions.
In particular, strong stability (¢=0) can be proved under more restrictive condi-
tions. The stability results in Section 2 of the present paper add to this literature
by proving new sufficient conditions for both algebraic stability (with 0<¢g<1)
and strong stability.

In convergence analysis for a finite time interval, 0 <t <1, the question is
whether the discrete solution uy, approaches the analytic solution u(z,t) uni-
formly as £ — 0. The main result of Section 3 is that sufficient conditions for
convergence are that 7(kQy) C S, Vk and the full discretisation has a truncation
error which decays faster than |logk|™! as k—0 and satisfies a Lipschitz condi-
tion. Under additional conditions it is shown that the logarithmic term can be
omitted. Section 3 concludes with a discussion of the relationship of these results
to the Lax Equivalence Theorem [9)].

2 Stability

The stability estimates are all based on the use of the Cauchy integral formula,

F(4) = % /F F) (T — A)dz (2.1)

where f(z) is an analytic function and the contour I' encloses the spectrum of
the square matrix A. In the context of the p.d.e. discretisation discussed in the
Introduction, the matrix A corresponds to k() for some particular k.

Lemma 2.1 For a given p(z) and associated stability region, S, there ezists a
real constant a, such that ¥n,

" (2)| < a, VzeT,,

where Ty, is defined as
r, = {z 1d(z,8) = n_l}

or equivalently as the boundary of Sy, defined as
S, = {z :d(z,5) < n_l}.

Proof |p(z)|=1 on the boundary of the stability region, 9S and ¢'(z) is bounded in
{#z :d(z,S) <1}, so there exists a positive constant b such that

lp(2)| <exp(bd(z,S)), Vz:d(z,5) <1

The result then follows directly, setting @ = e’. O



Theorem 2.2 For a given ¢(z), there exists a constant M such that if T(A) C S
then [|¢"(A)|| < Mn

Remark: This result is due to Lenferink and Spijker [6] and Reddy and Tre-
fethen [8]; a closely related result has been proved by Lubich and Nevanlinna [7].
The theorem is included here for completeness and to introduce the method of
proof used in the subsequent new results.

Proof Using the Cauchy integral formula,
P(A) = o= | () (] — A) Nz
2ri Jr,
For z € Ty, |¢"(2)| < a by the previous lemma, and | (21 — A)~!|| < n because of the
resolvent condition in the definition of the numerical range. Therefore,

Pan

o (A < 5= [ e T = )zl < 2

where P is the length of the contour I';. O

Since the boundary of the stability region, 95, has finite curvature at z =0,
in a neighbourhood of z=0 it can be described by z =x5(y). The next results
consider matrices A for which 7(A) C V with V' being a closed convex set
satisfying the following conditions:

) Vc int(S) U {0}

ii) there are positive real constants ¢,e and r > 0 such that for |z| < ¢, OV
can be described by 2=y (y), where ¢|y|""" < z5(y) — 21 (y) < 2¢ |y,
dl‘v

Y
Given such a set V', we define associated sets V,, by

Vn:{z:d(z,V)gn’l}, n>0

and < 1.

Since V' is convex, V,, is also convex and therefore has a rectifiable boundary 0V,
[10]. Furthermore, from condition ii) above, it follows that n=' € 9V,, and that
in the neighbourhood of n~! the boundary can be represented parametrically as

(zv(y) +n teos(0(y)), y+n 'sin(0(y)))

where (zy(y),y) are the coordinates of the nearest point on 0V and 6(y) is the
angle of the outward normal to OV (and the corresponding point on 9V},) given
by ;
Ty
Figure 1 illustrates the set V5 for the case in which V is a half-disk and S
is the stability region of the four stage Runge-Kutta method commonly used in
CFED computations.
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Figure 1: The stability region S for the 4-stage Runge-Kutta method, a half-disk
V' and the set V5 = {z 1d(z,V) < %}



Lemma 2.3 For a given p(z) and V satisfying the above conditions, there exist
strictly positive real constants §,a,b and a positive integer ny such that ¥n > ny,

1

ae 2™ vy e T =T, ND;

n

2 =T,ND§

r
" (2)] < {
F’I’L

e bn, Vz €

where Ty, is now defined to be the boundary of V,,, and the closed disc Dy and its
closed complement D§ are defined as

Ds={z:]2] <d}, D§j={z:]z] >6}.
Proof ¢'(z)=1 at z=0 so we can choose §,ng such that for |y| < § <e

ol < eQI(x—ms(y)), zs(y) <z <
Pl > o3 (zs(y)) zv(y) <z <zg(y).

)

These two inequalities can be combined to give the result that for z € 1“53), n>ny,

"] < e3ern(T-75(y) <« oo gnclyl"t!

z—15(y) = (z—av(y) — (3s(y)—zv(y)) < 20" —cy["t".

To prove the result for z € 1“53), note that since (VND§) C int(S), it is possible to
choose ny >ng such that (V,,,ND§) C int(S). The constant b can then be defined by

e = sup |p(z)] <1.

Vo, NDS

|

Theorem 2.4 For a given ¢(z) and V' satisfying the same conditions as in
Lemma 2.3, there exists a constant M such that if T(A) C V then

n _ 1
" (A< Mn?,  ¢g=1- 7.

Remark: an alternative proof of this theorem has recently appeared in a paper
by Spijker and Straetemans [11]. It is also related to Theorem 3.3 of Lubich and
Nevanlinna [7].

Proof We start with the standard Cauchy integral formula,

o"(A) = = [ "(2)(eI - A)\dz

- 27 Jp,

where T'), is as defined in the last lemma. For all z € T,

H(z[ — A)71H <n.



Using the last lemma, for z € r? lo™(2)] < e~ and so

P

< bn —

/F(Z) |H (21 — A)~ H |dz| < Pne ™" < 5
For z € Fg), o™ (2)] < ae_%"dy‘rﬂ, and |dz| < v/2|dy| since

/F(l) |H (2 — A)~ H |dz| < \/ian/

|

d
ﬂ‘ < 1. Hence,
dy

_1 r41 1_L o0 _1 r41
e an‘y| dy = \/ian r+1 / e 2c|w\ dw
—0o0

o0

The final results of this section obtain even stronger stability by placing an
additional restriction on ¢(z).

Lemma 2.5 For a given p(z) and V' satisfying the same conditions as in Lemma
2.8, with the added condition that p(z) = e* + O(2**") with s > r, there exist
strictly positive real constants §,a,b and a positive integer ny such that ¥n > ny,

ae s W™ vy e T =T, N D;
e=bn, V2 eT? =T,NnD§

n

max {|¢0"], "]} < {

where again T',, = OV,.

Proof Since s > r, the degree of tangency between V and the imaginary axis at z=0
is the same as the degree of tangency between V and S. Furthermore, V' C C~ because
of the convexity of V' and the fact that V' C S and 0 is tangent to the imaginary axis
at z = 0. The remainder of the proof is similar to that of Lemma 2.3. O

Theorem 2.6 For a given ¢(z) and V' satisfying the same conditions as in
Lemma 2.5, there exists a constant M such that if T(A) C V then

le™(A)|| < M nf, g = max(0,2 — fi—?)

First remark: an important feature of this theorem is that it proves that s >
2r is a sufficient condition for strong stability, so this theorem adds new classes of
discretisation to those in the literature which have previously been proved to be
strongly stable. In particular, first order ‘upwind’ discretisations of hyperbolic
p.d.e.’s are often of a form for which »=1. This theorem therefore gives s > 2 as
a sufficient condition for strong stability for such discretisations; this condition
is often satisfied by the methods in common use in CFD computations.

Second remark: Brenner and Thomée [1] have proved a similar result with
the improved bound ¢ = max(0, §(1 — £4)) for A-stable implicit methods for
which the stability region S includes the entire left half-plane. Another related
result, due to Kraaijevanger et al [5], proves strong stability in the maximum
norm when 7(A) is defined using the maximum norm and V' is a disk of the form

{z:]2+p| < p}.



Proof
" (Al < ll¢"(A)—exp(nA)|| + |lexp(nA)] .

Given the equivalent definitions of the range of values proved by Spijker in Theorem
5.1 [12], in particular applying condition (iii) with ( =n,&=0,0 =0, it follows that
llexp(nA)|| <1 because 7(A) CV Cc C.

To bound ||¢™(A)—exp(nA)|| we start with the Cauchy integral formula,

1

27

(" (A) — exp(nd)) = / (¢"(2) = exp(nz)) (2] — A)~"dz.

and again separate the contributions from the two segments, 1“53) and 1“53).
For z € 1“53), using the last lemma, |¢"(2) — exp(nz)| < 2e7" and so

/1“53) l™(2) — exp(nz)| H (21 — A)~ H dz| < 9Pne—t" < %

(1)

The contour I'y,’ is now itself broken into three pieces,

rio = {zer®:jy>n"m1},
P = {zerM:n' <yl <n m1},
00 = {zer:pyl<n'},

with ¢ being a constant chosen such that s > t> T
For z € T , @™ (2) — exp(nz)| < 2ae 2

grelyl™ ' and so

1
n_ T

6" (2) —exp(n2)] | (= = A) | |dz| < 4v2an [ e 3mr ™
F(la)go exp(nz z z an e y

Since

o o
_1 r+1 1——L _ 1 .+l
n/_ L, e Z ey dy:n r+1/ L1 € 3 CW dw’
n n

t+1 r+1  t+1

la)

and this tends to zero as n — oo, the contribution from I‘gl
(1b)
For z e T}, 7,

is bounded.

e Pp(z) =14+ 0(#*T) = e ™"(2) =1+ 0(nz*"),

with the choice of constant ¢ ensuring that nz +1 remains bounded for all n. In
addition, |z| < v2]|y| and exp(nz) < ae~ 3™V Hence, there exists a constant g
such that

Sy r+1
|¢"(2) — exp(nz)| < ganly|*TemamW™,

Therefore, it follows that

/FE}”) " (2) — exp(nz)| H(z[ — A)*lH |dz|

IN

\/_ 2 0 s+1 7.lncy’”+1
2V2gan y’Tre 2 dy

s+2 [0 _ 1 r+t
= 2vV2gan’ T+1/ w e 29" du.
0



10

Finally, for z € T |z| <v2n7! and so
0" (2) — exp(nz)| < gn’a,

and so
[ 16(2) = exp(n2) | 7 — A) || < 232 gan™"

Summing the upper bounds on the magnitudes of each of the contributions to the
Cauchy integral completes the proof. O

3 Convergence

To prove convergence for the full discretisation of the p.d.e. presented in the
Introduction, under fairly weak sufficient conditions, requires a new form of sta-
bility result.

Theorem 3.1 Provided the roots of o(z)=1 are simple, there exists a constant
M depending solely on p(z) such that if

ﬁf@%A

J=0

T(A) C S then < Mnlogn

Proof Using the Cauchy integral formula with I';, = 0.5,

S /Z Iy tdz = L[ Py
= T 27 = #(2)(z * 7 omi r, o(z) —1 ? =

Using Lemma, 2.1, for z € T,

‘@%@—1‘ atl
p(z) =17 [p(z) — 1

Since ¢'(0)=1, it is possible to find € >0 such that for all z € D,,

|o(2) = 1] > 52|
and for all n, and all z € I';, N Dy,
dr|
dy| —
and hence )
z| > max ,—— e > 12 2,
o1 > e { Iy = > §vi
Therefore,

/r AD ‘90(:(’2) _11 ‘ H(ZI N A)ﬂH |dz| < 4\/_(a+1) dy < 8v2(a+1)n(e+logn),

(2) = e Vy?
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since

€ dy ne dw € ne dw
—— = 7</dw+/—:6+lon.
/ N b vt < . w ©
Similar neighbourhoods can be constructed around each of the other p—1 distinct
roots of p(z) =1 on 95, resulting in similar O(n logn) bounds on the contribution to
the Cauchy integral. The contribution from the remainder of I';, is only O(n) since
|o(z) — 1] is bounded away from zero and so the integrand is O(n). O

For the family of discretisations described in the Introduction, the solution
error e, = u(xg, nk) — uy,, satisfies the difference equation

Cknt+l = Qo(ka) €k,n + ka,na (31)

with T}, being the truncation error and with the initial error ey being zero.
Given these definitions we now prove the following theorem.

Theorem 3.2 If the roots of p(z)=1 are simple, and
i) T(kQg) C S, VEk

iii) o ax |Tem — Trym—1] = 0 <7log(k1)>

then ep, — 0 ask — 0, nk — 1, for 0 <t <1.

Proof Defining

n

Bk,n = Z @m(ka)

m=0

then

n—1 n—1
€kn = k Z @nilim(ka)Tk,m =k (Bk,n—lTk,O + Z Bk,n—l—m(Tk,m - Tk,m—l))

m=0 m=1
and so
n—1
|ek,n| < k (HBk,n—ln |Tk,0| + Z HBk,n—l—mH |Tk:,m - Tk,m—1|>
m=1
Applying Theorem 3.1 and the conditions on the truncation error completes the proof.
O

To weaken the consistency conditions sufficient for convergence, it is necessary
to tighten the stability result. We first define the function,

s(n,z) = Gror (3.2)
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with the obvious properties that it is analytic, g—fl =exp(nz), s(0,z)= 0 and when
2#0, s(n,z)=z"'(exp(nz) — 1).
Similarly, for a square matrix A we define

for which 2% =exp(nA) and s(0, A)= 0.

Lemma 3.3 For a given p(z) and V' satisfying the same conditions as in Lemma
2.3, with the added conditions that ©(z) = ¢*+0(2" ) and the degree of tangency
between V' and the imaginary azxis at 2 =0 is also r, there exist strictly positive
real constants 0,a,b and a positive integer ny such that Vn > nq,

ae~ 3™ v, eTW =T AD
max {| "], [e"*|} < ’ oo
e Vz e =T,ND§

where again T, = OV,.
Proof The proof is again similar to that in Lemma 2.3. O

Theorem 3.4 For a given ¢(z) and V satisfying the same conditions as in
Lemma 3.3 there exists a constant M such that if T(A) C V then

Y (A < Mn

J=0

Remark: Using Lemma 2.5 it is straightforward to prove the same result when
0(z) = e* + O(2**!) with s > r.
Proof

n—1

> ¢

3=0
As in Theorem 2.6, ||exp(nA )|| <1 and so

—s(n, A)|| + ||s(n, A)|| .

d d
— Al < {|— A <1
4 Istn )| < £ostn, )| <

Since s(n, A)=0 when n=0, it follows that for arbitrary positive n, ||s(n, A)|| < n.
To bound the other term we use the Cauchy integral formula with T, = 9V},,

n—1

> ¢ (4) = s(n, 4) = o / (; o )) (21 = A)7"dz,

§=0
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and again separate the contributions from the two segments, 1“53) and 1“53).
For z € 1“53), using the last lemma,

n—1 ) n—1 1
Y| <D e b]<1 b
j=0 j=0 — ¢
and
stn,2) =| = < 3
s(n,z)| = -
’ z )
and hence

/r53>

For z € Fg), we first note that z##0 and ¢(2)#0 and so

|21~ 4)7"] a2 < Pn <1%e_b 4 %)

n—1
Y #'(z) = s(n, z)
=0

S PRl ol fe - (e -1-a)( ()~ 1)
j;ogoj() (n,2) = p(z) —1 z z z(p(z)—1)

The second term is uniformly bounded Vn, z € 1“5}’ and so

/ (p(z)—1—=2)(¢"
riV

2p(z)—1
for some constant d.

The corresponding integral for the first term has to be broken into three pieces, as
in the proof of Theorem 2.6,

(la)

gz) —b ‘ |1 = )7 1d2) < dn

IS {ZEF%” |y|>n”+1}
D9 = {zer®in <y <nrh)
ritd = {zer®:lyl<n7'}
ForzEF%la),
‘Wn(z)_em 2ae 3l
z - |yl
and so
n _nz 00 —Lneyr+1
Lo [ o1 = ) hael < avBan [©, Sy
1—‘glla,) V4 n_THI Y
ooe_%cwr+1
= 4\/§an/ —— dw.
1 w

For z € 1“5}”’, following a similar argument to that in the proof of Theorem 2.6,

there exists a constant g such that
‘90"(2) —e
z

_1 r+1
< ganly|"e 2" W < ganyl",
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and so

/1;51117)
(1c)

Similarly, for z € T'y, 7/,

n T+

1
n _ ANz 1 1
M y'dy = 2\/§gan/ w" dw.
0

z

‘(ZI—A)_lH |dz| < 2\/§gan2/0

r

‘7 < gan'™",

and so
" (z) — e
z

‘(z[ - A)*IH |dz| < 2v2gan'™".

‘/FSLIC)

Summing the upper bounds on the magnitudes of each of the contributions to the
Cauchy integral completes the proof. O

Theorem 3.5 For a given ¢(z) and V' satisfying the same conditions as in
Lemma 3.3, if

i) T(kQg) CV, Vk
i) Tro — 0 as k — 0

iii) o ax |Tem — Trom—1] = o(k)

then ep, — 0 as k — 0, nk — 1, for 0 <t <1.

Proof The proof is almost identical to that of Theorem 3.2. O

It is important to place the above results in the context of the Lax Equiva-
lence Theorem [9] which proves that strong stability is a necessary and sufficient
condition for convergence for all initial data, provided that the discretisation is
also consistent for a dense subset of the initial data. In the results in this section,
convergence is only proved for a subset of the initial data for which the discretisa-
tion is consistent. There is no guarantee of convergence for initial data for which
the discretisation is not consistent, or which violates the Lipschitz conditions of
the above theorems. This is the natural consequence of the use of the weaker
algebraic stability rather than strong stability.

For smooth initial data, convergence in theory is sometimes not achieved in
practice because of the explosive growth of rounding errors due to finite precision
computer arithmetic. The simplest example of this phenomenon is a discretisa-
tion of the simple convection p.d.e. on an infinite domain using a uniform grid.
Provided the spatial discretisation and one-step Runge-Kutta time discretisation
are consistent, convergence will be achieved in theory for initial data comprising
a single Fourier mode. However, if the discretisation does not satisfy the Fourier
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stability requirement for all Fourier modes (and so is not strongly stable) then
rounding errors will grow exponentially.

This potential problem, of convergence in theory but not in practice, does
not arise with the results of this section because the sufficient conditions for
convergence for certain initial data are also sufficient conditions for algebraic
stability for all other initial data. Therefore, the potential growth of rounding
errors is limited. Given the increasing use of 64-bit floating point arithmetic,
leading to very small initial rounding errors, it is very unlikely that these will
grow to a noticeable level.

In many applications the initial data of interest will satisfy the consistency
and Lipschitz conditions of the above theorems. Hence, the convergence results of
this section, together with the algebraic stability results of the previous section,
give strong support to the idea that stability based on the range of values of the
discretisation matrix, is a useful definition of stability.

4 Conclusions

This paper has derived new algebraic stability results bounding the growth of
families of matrices of the form ¢™(A), in which ¢(z) is a polynomial arising
from an explicit one-step Runge-Kutta time integration. Bounds on 307 '7(A)
are also derived to determine conditions for the convergence of approximations
of initial value p.d.e.’s based on a spatial discretisation followed by Runge-Kutta
time integration.

These results show that although algebraic stability is a weaker definition of
stability than the strong stability of Lax, it is nevertheless sufficient to ensure
convergence, both in theory and in practice, for a large class of initial conditions.
Accordingly, it is a useful practical definition of stability for many applications.
Furthermore, expanding upon previous results in the literature, strong stability
is proved for certain new classes of discretisations.

The analysis in this paper remains valid when ¢(z) is a rational function
arising from an implicit one-step time integration method. However, direct so-
lution of the implicit equations that arise in three-dimensional applications is
so costly that additional approximations, such as approximate factorisation, are
often used, limiting the applicability of the results for rational ¢(z).
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