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Abstract

This paper discusses the use of both steady and
unsteady discrete adjoint methods for the design
of turbomachinery blades. Steady adjoint methods
give the linear sensitivity of steady-state quantities
such as the mass flow and the average exit flow
angle to arbitrary changes in the geometry of the
blades. This linear sensitivity information can then
be used as part of a nonlinear optimisation proce-
dure. The unsteady adjoint method is based on a
single frequency of unsteadiness and gives the gen-
eralised force for a particular structural mode of
vibration due to arbitrary incoming wakes. This
can be used to tailor the radial variation in the in-
coming wakes to greatly reduce the level of forced
vibration they induce.

The paper presents an overview of the discrete
adjoint approach (which follows the work of Elliott
and Anderson for external aerodynamic applica-
tions), explaining why it gives exactly the same
results as linear perturbation methods, but at a
greatly reduced computational cost. The key is-
sues in the numerical implementation of the adjoint
methods are discussed for both the Euler and the
Reynolds-averaged Navier-Stokes equations. The
correctness of the implementation is validated by
comparison to both nonlinear and linear perturba-
tion calculations.

Introduction

Modern turbomachinery has to meet exacting
standards of efficiency resulting in low weight and
highly loaded engine components. For this rea-
son, techniques for the optimisation of the design
of fans, compressors and turbines are becoming
increasingly popular in the turbomachinery indus-
try. Multidisciplinary design systems allow the de-
signer to modify blade and end wall geometries in
order to optimise the steady aerodynamic perfor-
mance,'® possibly fulfilling prescribed mechanical
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constraints. For example the minimum cross sec-
tion of the blade cannot be reduced below a mini-
mum threshold to prevent the steady working stress
from exceeding the material strength.

However, even if the redesigned blade fulfils the
steady stress requirements, the reduced stiffness
may lead to critical unsteady stresses due to the in-
herent unsteadiness of turbomachinery flows. The
relative motion of adjacent rotors and stators trans-
forms spatial variations of the flow variables like
the static pressure into periodically time-varying
forces acting on the blades. The consequent vibra-
tion may result in the phenomenon of High Cycle
Fatigue (HCF), which may shorten the life of the
blades below the target life of the engine. This ex-
plains the growing importance of unsteady design
methods. By this expression, one means designing
components which can better withstand unsteady
aeroelastic loads, like those due to forced response.

Several functionals can be chosen for the optimi-
sation of the steady design. Omne obvious choice
would be the stage efficiency, which in turn is
linked to the exit loss. However, the secondary ki-
netic energy is often preferred, being less affected
than the loss by possible inaccuracies associated
with the turbulence models. Other object func-
tions include the mass flow and the exit angle.
The formulation of the unsteady design problem
is less trivial. Over the past two decades, a number
of methods have emerged to carry out the analy-
sis of turbomachinery aeroelasticity, varying from
uncoupled linearised potential flow solvers®!7 to
fully-coupled nonlinear three-dimensional unsteady
viscous methods.'?Within this range, the uncou-
pled linear harmonic Euler and Navier-Stokes (NS)
methods have proved to be a successful compromise
between accuracy and cost and are now widely pre-
ferred in industry as a fast, accurate tool for aeroe-
lastic predictions. Indeed, a growing body of evi-
dence indicates that linear viscous calculations are
adequate for a surprisingly large range of applica-
tions.»> %16 For the prediction of the level of struc-
tural vibrations, the most important output from
such linear unsteady analyses is a quantity known



as the “worksum”.? In the context of Lagrangian
mechanics, the worksum corresponds to the gen-
eralised force due to the linear unsteady aerody-
namics acting on a particular structural mode of
vibration and it is therefore the obvious choice for
the object function to be minimised in the unsteady
design problem.

In nonlinear gradient based optimisation, one has
to determine the sensitivities of the object func-
tion to all the n design parameters at each step of
the optimisation. One way of accomplishing this,
is to perform n 4+ 1 non-linear NS calculations at
each step. The adjoint method is a mathematical
technique which allows the determination of all n
components of the gradient with a single compu-
tation, at a cost comparable with that of a single
solution of the non-linear NS equations. Therefore
the computational benefit of the adjoint approach
increases with the number of design parameters n.

The adjoint technique for optimal aeronautical
design has been developed by Jameson.'%'! The
use of the adjoint method for the optimisation of
the unsteady turbomachinery design is a novel tech-
nique being developed at the Oxford University
Computing Laboratory.>*¢ In ref. [3] the har-
monic adjoint approach is successfully applied for
the minimisation of the blade forced response by
varying the shape of the incoming wakes, which ul-
timately requires a 3D re-design of the upstream
blade row.

This paper summarises the main aspects of the
theory behind the implementation of the HY DRA
suite of non-linear, linear and adjoint NS codes,
demonstrates how the gradients of steady and un-
steady object functions can be determined equiva-
lently with the linear or adjoint methods and proves
the effectiveness of the adjoint approach for turbo-
machinery design with two practical examples.

Nonlinear Flow Analysis

We begin with the discrete nonlinear analysis of
the time-averaged turbulent flow within a single
turbomachinery blade row in its frame of reference
(i.e. stationary for a stator, rotating for a rotor).
The flow is described by the Reynolds—averaged NS
equations coupled with the Spalart—Allmaras tur-
bulence model. Due to rotation, centrifugal and
Coriolis forces, source terms appear in the momen-
tum equations. The analysis computes the vector
U of primitive flow variables (including the turbu-
lence variables) corresponding to a computational
grid with nodal coordinates X, on which the non-
linear flow equations can be expressed as

N(U,X) = 0. (1)

The vector N represents the spatially discretised
residuals, a nonlinear function of the discrete flow
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variables and, due to the discretisation, also a func-
tion of the grid node coordinates. Because the
governing equations are approximated on an un-
structured grid using an edge-based algorithm, '3 14
the residual vector N is a sum of contributions from
all of the edges of the grid, with each edge con-
tributing only to the residuals corresponding to the
two nodes at either end.

For turbomachinery, the boundary conditions are
of three types; inflow/outflow, periodic and invis-
cid/viscous wall. The inflow and outflow bound-
aries are handled through fluxes which incorpo-
rate the appropriate far-field information. Thus
these boundary conditions become part of the resid-
ual vector N. Periodicity is treated very simply
through the use of matching pairs of periodic nodes,
one on the lower and one on the upper periodic
boundary, at which the flow is defined to be identi-
cal apart from the appropriate rotation of the veloc-
ity vectors to account for the annular nature of the
turbomachinery flow domain. By combining flux
residuals at the two periodic nodes in an appropri-
ate manner to maintain periodicity, this boundary
condition again just requires minor changes to the
definition of the flux residual vector N. Further
details are given in references.?!?

It is the wall boundary condition which requires a
more substantial change in the form of the discrete
equations. For viscous flows, a no-slip boundary
condition is applied by discarding the momentum
residuals and replacing these equations by the spec-
ification of zero velocity at the boundary nodes. For
inviscid flows, the formulation of the flux residu-
als for boundary nodes is based on zero mass flux
through the boundary face, but in addition flow
tangency is enforced by setting the normal compo-
nent of the surface velocity to zero, disregarding the
normal component of the momentum residuals.

These strong wall boundary conditions, in which
one or more components of the momentum residu-
als are discarded and replaced by the specification
of corresponding velocity components, can be ex-
pressed as

(I-B)N(U,X) = 0; (2)
BU = 0. (3)

Here B is a projection matrix which extracts
the momentum/velocity components at the wall
boundaries.

These equations are solved using a five-stage
Runge-Kutta scheme, with a Jacobi preconditioner
and multigrid to accelerate convergence.!'?:

Linear Analysis

Both the changes of geometric design parameters
such as blade stagger angle, thickness and camber




and the flow field unsteadiness such as the periodi-
cally time-varying forces associated to the incoming
wakes can be treated as small perturbations. In the
steady case, in fact, one wants to use small pertur-
bations to get an accurate estimate of the gradient.
The unsteady perturbation is also small because
the level of unsteadiness in turbomachines is low.
In both problems, the small size of the perturba-
tions justifies the linear analysis of the flow field.

In the steady design problem, the perturbed flow
field can be assumed to be a superposition of the
unperturbed nonlinear flow field U and a small lin-
ear perturbation u:

U=U+u (4)

The periodic boundary conditions are the same as
in the non-linear equations.

In the unsteady flow case, the time-periodicity of
the unsteadiness makes possible an harmonic de-
composition of the flow field. The unsteady forces
can be linearly decomposed into a sum of indepen-
dent harmonic components. Thus, when consid-
ering a single harmonic component, the unsteady
flow field U(¢) can be assumed to be a superpo-
sition of the steady nonlinear flow field U and the
real part of a small harmonic perturbation of known
frequency w and unknown complex amplitude u:

(5)

The periodic boundary conditions for the complex
amplitude u are more complicated than in the
steady case, due to the specification of an inter-
blade phase angle (IBPA). This is a complex phase
shift exp(ip) between the lower and upper peri-
odic boundaries. In the forced response problem,
it arises when the wakes and blades have differ-
ent pitches and therefore there is a difference in
the times at which neighbouring wakes strike neigh-
bouring blades

The linearisation of both of the discrete steady
equations (2) and (3) and their unsteady counter-
parts leads to the linear system

U(t) = U + R{exp (iwt) u}.

(I-B) (Lu—s)
Bu

(6)
(7)

The governing equations for the linear perturba-
tions are formally identical in the steady and un-
steady case and L is a combination of the lineari-
sation matrix OIN/9U giving the sensitivity of the
discrete nonlinear residual N to flow perturbations.
In the steady case, however, the equations are de-
fined in the real domain with zero frequency and
IBPA, whereas in the unsteady case they are de-
fined in the complex domain and L contains also
a complex source term due to the harmonic un-
steadiness. The linear harmonic equations can be

0;
b.
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Fig. 1: Convergence histories of a turbine flutter
case in which GMRES is used to stabilise an iter-
ation, either from the original initial conditions or
from a restart

viewed as the frequency domain counterpart of the
non-linear unsteady equations.

For viscous walls, the wall velocity b is zero
for both steady perturbations and forced response
due to incoming wakes. For inviscid walls, how-
ever, b is zero only in the forced response problem;
the steady geometry perturbation rotates the unit
normal leading to a velocity perturbation in the
normal direction.? The source term s is non-zero
over the whole computational domain for steady
perturbations, as a consequence of the grid defor-
mation, whereas in the forced response analysis, it
is zero throughout the flow field except at the inflow
boundary where the specification of the incoming
wakes enters through the boundary fluxes.

These linear equations are again solved using the
five-stage Runge-Kutta scheme together with Ja-
cobi preconditioning and multigrid. Usually this
converges without difficulty, but problems have
been encountered in situations in which the steady
flow calculation itself failed to converge to a steady-
state but instead finished in a low-level limit cycle,
often related to some physical phenomenon such as
vortex shedding at a blunt trailing edge. The cor-
responding instability in the linear calculation has
been dealt with by the use of GMRES, with the
usual multigrid solver being used as a very effec-
tive preconditioner, as shown in Figure 1.

The final output of the linear analysis is the vari-
ation of the object function corresponding to the
prescribed perturbation, which in general is a com-
plex inner product between a constant vector and
the linear solution: w = gfu (where g denotes
the complex conjugate transpose of g). The ele-
ments of the vector g are non-zero only at nodes
where the object function is defined, at the nodes
on the outlet plane if the functional is the mass



flow and at the nodes on the blade surface if the
functional is the worksum.

Adjoint Analysis
The adjoint approach is founded on the observa-
tion that if Au = f then

H
w=glu=glA 'f= ((AH)_lg) f=vif,
(8)
where v is the solution to the adjoint system

Ally = g. 9)

This adjoint approach to evaluating the object
function w is beneficial when there is one g, corre-
sponding to a single scalar functional, but several
different f vectors, corresponding to different geo-
metric design parameters in the steady case and to
different shapes of the incoming wakes in the case of
forced response. In this situation, the usual direct
approach would require a separate linear calcula-
tion for the perturbation of each design parameter
or for each shape of the wake, whereas the adjoint
approach needs just one adjoint calculation.

To express the linear system of equations in the
required form, we add Equations (6) and (7) to give

((I—B)L+B) u=(-B)s+b. (10

The corresponding adjoint system of equations is
therefore

(LH(I—B) + B) v=g, (11)

since the real matrix B is symmetric. To implement
the adjoint method, it is convenient to split v into
two orthogonal components ! using the fact that B
is idempotent (i.e. B?=B):

v=v|+vy, v ={U-B)v, v.=DBv.(12)
Multiplying Equation (11) by (I — B) yields the
equation

(I-B)L" v, =(I-B)g (13)

which can be solved together with the boundary
condition
B VH = 0, (14)

to determine v|. Multiplying Equation (11) by B
yields
v, = -BL" v + Bg, (15)

IThe reason for the choice of subscript label is that v
is the part of v which is orthogonal to the null-space of the
matrix B, whereas v is the part that lies within the null-
space.
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so v can be calculated in a post-processing step
before then evaluating the linear functional as

w:vazvfs—}—vfb. (16)

This equation shows that v gives the dependence
of the functional on the distributed source term s,
whereas v gives its dependence on the boundary
velocities b.

It is not obvious how best to solve the adjoint
equations. Using the same iterative method as for
the nonlinear and linear equations (except with the
transpose of the preconditioning matrix) was found
to work well for inviscid flows, but there were sig-
nificant stability problems with viscous flows. To
overcome these, Giles analysed the iterative evolu-
tion of output functional. He found that the adjoint
code could be designed to give exactly the same it-
erative history for the functionals as with the linear
code, by properly constructing an adjoint version of
the usual Runge-Kutta time-marching procedure,
and using adjoint restriction and prolongation op-
erators for the multigrid.> This guarantees that the
stability and the iterative convergence rate of the
adjoint code will be identical to that of the linear
code, which in turn is equal to the asymptotic con-
vergence rate of the nonlinear code.
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Fig. 2: Complex components of the flat plate pres-
sure jump due to wake interaction

Validation

One difficulty in the development of an adjoint
flow code is the lack of test cases for validation. For
the adjoint code, the validation has been performed
at two levels. At the lower level, each subroutine
has been checked for consistency with its counter-
part in the linear code.” At the higher level, it
has been checked that the adjoint and linear codes
produce the same value for both the steady and un-
steady functionals, to within machine accuracy, at
each step of the iterative process. This exact equiv-
alence is one advantage of the fully discrete adjoint
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approach, as opposed to the continuous adjoint ap-
proach in which one discretises the adjoint partial
differential equation.

The linear code has itself been validated at a sub-
routine level by comparison with the subroutines
in the nonlinear code.” In addition it has been
checked using a range of testcases, starting with
simple model problems such as inviscid flow over
2D flat plate cascades for which there is an ana-
Iytic solution.!'® Figure 2 presents results for the
unsteady interaction due to incoming wakes from
an upstream blade row. Validation of the viscous
capabilities is based on benchmark experimental
testcases, such as the 11th Standard Configura-
tion.* Figure 3 shows that the amplitude of the
linear pressure coefficient variation agrees well with
the measurements.

Example applications

In order to illustrate the efficiency of the adjoint
approach, the adjoint algorithm is applied here to
a steady and an unsteady example. In the first
case, the linear turbine cascade shown in figure 5
with an exit Mach number of about 0.7 is used to
determine the sensitivities of the outlet mass flow
to the rotation of selected blade-to-blade sections
around the Leading Edge (LE), that is to variations
of the stagger angle . Positive increments A~y lead
to higher angles between the blade chord and the
axial direction.

Figure 4 shows the comparison between the non-
linear and the linear/adjoint sensitivities of the
mass flow 1 for variations of the stagger angle be-
tween —5° and 7°. The curve of the non-linear
sensitivity is made of 26 equally spaced points, each
referring to a different blade and the derivative is
computed with centred differences on intervals of
1°. There is a very good agreement in the inter-
val between —5° and —3°. For higher incidences,
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Fig. 4: Non-linear versus linear mass flow sensitiv-
ities for variation of the stagger angle v of a 2D
turbine section

the agreement worsens slightly, but the average dif-
ference remains within about 1%. The non-linear
and linear sensitivities resulting from the pertur-
bation of the base geometry are given in the first
row of table 1. For Ay > 5° In the 3D case, we
chose to perturb the section at midspan and at
20 % blade height and the last two rows of table
1 show the sensitivities for these two design pa-
rameters. Surprisingly the agreement between the
nonlinear and the linear/adjoint sensitivities is bet-
ter near the end wall, where one would expect more
non-linearities due to 3D viscous effects, than at
midspan, where the flow is cleaner. Further inves-
tigation is required on the origin of this difference.
We emphasise, however, that a single calculation is
required to determine the two sensitivities with the
adjoint approach, whereas two non-linear or linear
calculations are needed with the finite-difference
approach.
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Fig. 5: 3D linear turbine cascade



nonlin. lin/adj
2D 0.210026 0.20783
3D-mds 2.3974E-3  2.5639E-3
3D-edw 1.8373E-3 1.8336E-3

Table 1: Non-linear versus linear mass flow sensi-
tivities for a rotation of the turbine airfoil of 0.2°
around the LE

The unsteady application consists of a high pres-
sure turbine rotor subject to unsteady aerodynamic
forces caused by incident wakes from an upstream
row of blades. This has been previously analysed!®
and good agreement shown in the forced response
predicted by linear uncoupled and nonlinear cou-
pled methods.

The design task is to investigate the dependence
of the forced vibration upon the shape of the in-
coming wakes. In practice, it is very difficult to
significantly reduce the velocity defect in the wakes,
but by changing the three-dimensional shape of the
upstream blades (e.g. by moving the tip section
of the blade in the circumferential direction while
keeping the hub section fixed, a process known as
re-stacking) it is possible to alter the time at which
the wake shed by the tip section hits the rotor blade
row, relative to that shed from the hub section.
Physically, a wake hitting the blade at the same
time at different radial sections will usually pro-
duce the maximum structural response, whereas
allowing for time delays there may occur a phase
cancellation between the forces at different radial
locations leading to a reduced response.

Mathematically, the effect of re-stacking is con-
tained in the worksum calculation. The adjoint
analysis can be used to determine the worksum val-
ues corresponding to a set of different inflow wake
boundary conditions in order to identify a minimum
response. In this example, these boundary condi-
tions come from the same baseline corresponding to
the current design of the upstream blades and the
difference between them is a complex phase shift
which is defined to vary linearly with radius from
zero at the hub to a maximum value at the tip. This
corresponds to a linear re-stacking, leaning the en-
tire blade in the circumferential direction.

Figure 6 shows the magnitude of the worksum
corresponding to the primary torsional mode com-
puted as a function of the maximum phase shift due
to re-stacking. It indicates that within the range
being considered, which is thought to be appropri-
ate, the greater the magnitude of the phase shift,
the greater the degree of phase cancellation between
different parts of the blade and hence the smaller
the worksum.
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Fig. 6: Forced response magnitude versus maxi-

mum re-stacking phase shift.

The results for the full range of phase shifts were
obtained from a single adjoint calculation. If the
standard linear harmonic approach were used in-
stead, each result would require a separate linear
calculation since it corresponds to a different set
of inflow boundary conditions. As a check, linear
calculations have been performed for a variety of
points and they produced identical values for the
worksum output.

Conclusions

This paper has presented the application of the
adjoint method for the steady and unsteady de-
sign of turbomachinery blades. The latter one is
thought to be the first application of adjoint meth-
ods to the linearised analysis of periodic unsteady
flows. Application of the adjoint technique to a
steady design problem, consisting in determining
the gradient of a selected functional to variations
of geometric design variables and to an unsteady
one, involving the tailoring of incoming wakes to
reduce the level of forced response blade vibrations
have shown the effectiveness of the approach. The
capability of determining the gradient of a scalar
object function depending on many design param-
eters with a single calculation has a big potential
for application to the design practice in the turbo-
machinery industry.

The development of the presented adjoint meth-
ods has also involved advances in the methodol-
ogy for fully-discrete adjoint methods. This in-
cludes the treatment of strong wall boundary con-
ditions for node-based discretisations; adjoint itera-
tion methods giving exactly the same iterative con-
vergence as the corresponding linear method; and
techniques for the validation of the adjoint solver by
checking its exact equivalence to the linear solver.

The future work includes further validation work
on the comparison between non-linear and lin-
ear/adjoint sensitivities for turbomachinery steady



design and the application of the harmonic adjoint
method to flutter prediction for the design of blades
with improved flutter margins.
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