
ISABE-2001-1055Adjoint Methods for Turboma
hinery DesignM. S. Campobasso �M. C. Duta yM. B. Giles zOxford University Computing LaboratoryOxford, OX1 3QD, U.K.Abstra
tThis paper dis
usses the use of both steady andunsteady dis
rete adjoint methods for the designof turboma
hinery blades. Steady adjoint methodsgive the linear sensitivity of steady-state quantitiessu
h as the mass 
ow and the average exit 
owangle to arbitrary 
hanges in the geometry of theblades. This linear sensitivity information 
an thenbe used as part of a nonlinear optimisation pro
e-dure. The unsteady adjoint method is based on asingle frequen
y of unsteadiness and gives the gen-eralised for
e for a parti
ular stru
tural mode ofvibration due to arbitrary in
oming wakes. This
an be used to tailor the radial variation in the in-
oming wakes to greatly redu
e the level of for
edvibration they indu
e.The paper presents an overview of the dis
reteadjoint approa
h (whi
h follows the work of Elliottand Anderson for external aerodynami
 appli
a-tions), explaining why it gives exa
tly the sameresults as linear perturbation methods, but at agreatly redu
ed 
omputational 
ost. The key is-sues in the numeri
al implementation of the adjointmethods are dis
ussed for both the Euler and theReynolds-averaged Navier-Stokes equations. The
orre
tness of the implementation is validated by
omparison to both nonlinear and linear perturba-tion 
al
ulations.Introdu
tionModern turboma
hinery has to meet exa
tingstandards of eÆ
ien
y resulting in low weight andhighly loaded engine 
omponents. For this rea-son, te
hniques for the optimisation of the designof fans, 
ompressors and turbines are be
omingin
reasingly popular in the turboma
hinery indus-try. Multidis
iplinary design systems allow the de-signer to modify blade and end wall geometries inorder to optimise the steady aerodynami
 perfor-man
e,15 possibly ful�lling pres
ribed me
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onstraints. For example the minimum 
ross se
-tion of the blade 
annot be redu
ed below a mini-mum threshold to prevent the steady working stressfrom ex
eeding the material strength.However, even if the redesigned blade ful�ls thesteady stress requirements, the redu
ed sti�nessmay lead to 
riti
al unsteady stresses due to the in-herent unsteadiness of turboma
hinery 
ows. Therelative motion of adja
ent rotors and stators trans-forms spatial variations of the 
ow variables likethe stati
 pressure into periodi
ally time-varyingfor
es a
ting on the blades. The 
onsequent vibra-tion may result in the phenomenon of High Cy
leFatigue (HCF), whi
h may shorten the life of theblades below the target life of the engine. This ex-plains the growing importan
e of unsteady designmethods. By this expression, one means designing
omponents whi
h 
an better withstand unsteadyaeroelasti
 loads, like those due to for
ed response.Several fun
tionals 
an be 
hosen for the optimi-sation of the steady design. One obvious 
hoi
ewould be the stage eÆ
ien
y, whi
h in turn islinked to the exit loss. However, the se
ondary ki-neti
 energy is often preferred, being less a�e
tedthan the loss by possible ina

ura
ies asso
iatedwith the turbulen
e models. Other obje
t fun
-tions in
lude the mass 
ow and the exit angle.The formulation of the unsteady design problemis less trivial. Over the past two de
ades, a numberof methods have emerged to 
arry out the analy-sis of turboma
hinery aeroelasti
ity, varying fromun
oupled linearised potential 
ow solvers8, 17 tofully-
oupled nonlinear three-dimensional unsteadyvis
ous methods.12Within this range, the un
ou-pled linear harmoni
 Euler and Navier-Stokes (NS)methods have proved to be a su

essful 
ompromisebetween a

ura
y and 
ost and are now widely pre-ferred in industry as a fast, a

urate tool for aeroe-lasti
 predi
tions. Indeed, a growing body of evi-den
e indi
ates that linear vis
ous 
al
ulations areadequate for a surprisingly large range of appli
a-tions.1, 9, 16 For the predi
tion of the level of stru
-tural vibrations, the most important output fromsu
h linear unsteady analyses is a quantity known1 of 7



as the \worksum".2 In the 
ontext of Lagrangianme
hani
s, the worksum 
orresponds to the gen-eralised for
e due to the linear unsteady aerody-nami
s a
ting on a parti
ular stru
tural mode ofvibration and it is therefore the obvious 
hoi
e forthe obje
t fun
tion to be minimised in the unsteadydesign problem.In nonlinear gradient based optimisation, one hasto determine the sensitivities of the obje
t fun
-tion to all the n design parameters at ea
h step ofthe optimisation. One way of a

omplishing this,is to perform n + 1 non-linear NS 
al
ulations atea
h step. The adjoint method is a mathemati
alte
hnique whi
h allows the determination of all n
omponents of the gradient with a single 
ompu-tation, at a 
ost 
omparable with that of a singlesolution of the non-linear NS equations. Thereforethe 
omputational bene�t of the adjoint approa
hin
reases with the number of design parameters n.The adjoint te
hnique for optimal aeronauti
aldesign has been developed by Jameson.10, 11 Theuse of the adjoint method for the optimisation ofthe unsteady turboma
hinery design is a novel te
h-nique being developed at the Oxford UniversityComputing Laboratory.2, 3, 6 In ref. [3℄ the har-moni
 adjoint approa
h is su

essfully applied forthe minimisation of the blade for
ed response byvarying the shape of the in
oming wakes, whi
h ul-timately requires a 3D re-design of the upstreamblade row.This paper summarises the main aspe
ts of thetheory behind the implementation of the HYDRAsuite of non-linear, linear and adjoint NS 
odes,demonstrates how the gradients of steady and un-steady obje
t fun
tions 
an be determined equiva-lently with the linear or adjoint methods and provesthe e�e
tiveness of the adjoint approa
h for turbo-ma
hinery design with two pra
ti
al examples.Nonlinear Flow AnalysisWe begin with the dis
rete nonlinear analysis ofthe time-averaged turbulent 
ow within a singleturboma
hinery blade row in its frame of referen
e(i.e. stationary for a stator, rotating for a rotor).The 
ow is des
ribed by the Reynolds{averaged NSequations 
oupled with the Spalart{Allmaras tur-bulen
e model. Due to rotation, 
entrifugal andCoriolis for
es, sour
e terms appear in the momen-tum equations. The analysis 
omputes the ve
torU of primitive 
ow variables (in
luding the turbu-len
e variables) 
orresponding to a 
omputationalgrid with nodal 
oordinates X, on whi
h the non-linear 
ow equations 
an be expressed asN(U;X) = 0: (1)The ve
tor N represents the spatially dis
retisedresiduals, a nonlinear fun
tion of the dis
rete 
ow

variables and, due to the dis
retisation, also a fun
-tion of the grid node 
oordinates. Be
ause thegoverning equations are approximated on an un-stru
tured grid using an edge-based algorithm,13, 14the residual ve
torN is a sum of 
ontributions fromall of the edges of the grid, with ea
h edge 
on-tributing only to the residuals 
orresponding to thetwo nodes at either end.For turboma
hinery, the boundary 
onditions areof three types; in
ow/out
ow, periodi
 and invis-
id/vis
ous wall. The in
ow and out
ow bound-aries are handled through 
uxes whi
h in
orpo-rate the appropriate far-�eld information. Thusthese boundary 
onditions be
ome part of the resid-ual ve
tor N. Periodi
ity is treated very simplythrough the use of mat
hing pairs of periodi
 nodes,one on the lower and one on the upper periodi
boundary, at whi
h the 
ow is de�ned to be identi-
al apart from the appropriate rotation of the velo
-ity ve
tors to a

ount for the annular nature of theturboma
hinery 
ow domain. By 
ombining 
uxresiduals at the two periodi
 nodes in an appropri-ate manner to maintain periodi
ity, this boundary
ondition again just requires minor 
hanges to thede�nition of the 
ux residual ve
tor N. Furtherdetails are given in referen
es.2, 13It is the wall boundary 
ondition whi
h requires amore substantial 
hange in the form of the dis
reteequations. For vis
ous 
ows, a no-slip boundary
ondition is applied by dis
arding the momentumresiduals and repla
ing these equations by the spe
-i�
ation of zero velo
ity at the boundary nodes. Forinvis
id 
ows, the formulation of the 
ux residu-als for boundary nodes is based on zero mass 
uxthrough the boundary fa
e, but in addition 
owtangen
y is enfor
ed by setting the normal 
ompo-nent of the surfa
e velo
ity to zero, disregarding thenormal 
omponent of the momentum residuals.These strong wall boundary 
onditions, in whi
hone or more 
omponents of the momentum residu-als are dis
arded and repla
ed by the spe
i�
ationof 
orresponding velo
ity 
omponents, 
an be ex-pressed as (I�B) N(U;X) = 0; (2)B U = 0: (3)Here B is a proje
tion matrix whi
h extra
tsthe momentum/velo
ity 
omponents at the wallboundaries.These equations are solved using a �ve-stageRunge-Kutta s
heme, with a Ja
obi pre
onditionerand multigrid to a

elerate 
onvergen
e.13, 14Linear AnalysisBoth the 
hanges of geometri
 design parameterssu
h as blade stagger angle, thi
kness and 
amber2 of 7



and the 
ow �eld unsteadiness su
h as the periodi-
ally time-varying for
es asso
iated to the in
omingwakes 
an be treated as small perturbations. In thesteady 
ase, in fa
t, one wants to use small pertur-bations to get an a

urate estimate of the gradient.The unsteady perturbation is also small be
ausethe level of unsteadiness in turboma
hines is low.In both problems, the small size of the perturba-tions justi�es the linear analysis of the 
ow �eld.In the steady design problem, the perturbed 
ow�eld 
an be assumed to be a superposition of theunperturbed nonlinear 
ow �eld U and a small lin-ear perturbation u:U = U+ u (4)The periodi
 boundary 
onditions are the same asin the non-linear equations.In the unsteady 
ow 
ase, the time-periodi
ity ofthe unsteadiness makes possible an harmoni
 de-
omposition of the 
ow �eld. The unsteady for
es
an be linearly de
omposed into a sum of indepen-dent harmoni
 
omponents. Thus, when 
onsid-ering a single harmoni
 
omponent, the unsteady
ow �eld U(t) 
an be assumed to be a superpo-sition of the steady nonlinear 
ow �eld U and thereal part of a small harmoni
 perturbation of knownfrequen
y ! and unknown 
omplex amplitude u:U(t) = U+Rfexp (i!t) ug: (5)The periodi
 boundary 
onditions for the 
omplexamplitude u are more 
ompli
ated than in thesteady 
ase, due to the spe
i�
ation of an inter-blade phase angle (IBPA). This is a 
omplex phaseshift exp(i') between the lower and upper peri-odi
 boundaries. In the for
ed response problem,it arises when the wakes and blades have di�er-ent pit
hes and therefore there is a di�eren
e inthe times at whi
h neighbouring wakes strike neigh-bouring bladesThe linearisation of both of the dis
rete steadyequations (2) and (3) and their unsteady 
ounter-parts leads to the linear system(I�B) (Lu� s) = 0; (6)B u = b: (7)The governing equations for the linear perturba-tions are formally identi
al in the steady and un-steady 
ase and L is a 
ombination of the lineari-sation matrix �N=�U giving the sensitivity of thedis
rete nonlinear residualN to 
ow perturbations.In the steady 
ase, however, the equations are de-�ned in the real domain with zero frequen
y andIBPA, whereas in the unsteady 
ase they are de-�ned in the 
omplex domain and L 
ontains alsoa 
omplex sour
e term due to the harmoni
 un-steadiness. The linear harmoni
 equations 
an be
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Fig. 1: Convergen
e histories of a turbine 
utter
ase in whi
h GMRES is used to stabilise an iter-ation, either from the original initial 
onditions orfrom a restartviewed as the frequen
y domain 
ounterpart of thenon-linear unsteady equations.For vis
ous walls, the wall velo
ity b is zerofor both steady perturbations and for
ed responsedue to in
oming wakes. For invis
id walls, how-ever, b is zero only in the for
ed response problem;the steady geometry perturbation rotates the unitnormal leading to a velo
ity perturbation in thenormal dire
tion.2 The sour
e term s is non-zeroover the whole 
omputational domain for steadyperturbations, as a 
onsequen
e of the grid defor-mation, whereas in the for
ed response analysis, itis zero throughout the 
ow �eld ex
ept at the in
owboundary where the spe
i�
ation of the in
omingwakes enters through the boundary 
uxes.These linear equations are again solved using the�ve-stage Runge-Kutta s
heme together with Ja-
obi pre
onditioning and multigrid. Usually this
onverges without diÆ
ulty, but problems havebeen en
ountered in situations in whi
h the steady
ow 
al
ulation itself failed to 
onverge to a steady-state but instead �nished in a low-level limit 
y
le,often related to some physi
al phenomenon su
h asvortex shedding at a blunt trailing edge. The 
or-responding instability in the linear 
al
ulation hasbeen dealt with by the use of GMRES, with theusual multigrid solver being used as a very e�e
-tive pre
onditioner, as shown in Figure 1.The �nal output of the linear analysis is the vari-ation of the obje
t fun
tion 
orresponding to thepres
ribed perturbation, whi
h in general is a 
om-plex inner produ
t between a 
onstant ve
tor andthe linear solution: w = gHu (where gH denotesthe 
omplex 
onjugate transpose of g). The ele-ments of the ve
tor g are non-zero only at nodeswhere the obje
t fun
tion is de�ned, at the nodeson the outlet plane if the fun
tional is the mass3 of 7




ow and at the nodes on the blade surfa
e if thefun
tional is the worksum.Adjoint AnalysisThe adjoint approa
h is founded on the observa-tion that if Au = f thenw = gHu = gHA�1 f = �(AH )�1g�H f = vH f ;(8)where v is the solution to the adjoint systemAHv = g: (9)This adjoint approa
h to evaluating the obje
tfun
tion w is bene�
ial when there is one g, 
orre-sponding to a single s
alar fun
tional, but severaldi�erent f ve
tors, 
orresponding to di�erent geo-metri
 design parameters in the steady 
ase and todi�erent shapes of the in
oming wakes in the 
ase offor
ed response. In this situation, the usual dire
tapproa
h would require a separate linear 
al
ula-tion for the perturbation of ea
h design parameteror for ea
h shape of the wake, whereas the adjointapproa
h needs just one adjoint 
al
ulation.To express the linear system of equations in therequired form, we add Equations (6) and (7) to give�(I�B)L+B� u = (I�B) s+ b: (10)The 
orresponding adjoint system of equations istherefore �LH(I�B) +B� v = g; (11)sin
e the real matrix B is symmetri
. To implementthe adjoint method, it is 
onvenient to split v intotwo orthogonal 
omponents 1 using the fa
t that Bis idempotent (i.e. B2=B):v = vk+v?; vk = (I�B)v; v? = B v: (12)Multiplying Equation (11) by (I �B) yields theequation (I�B)LH vk = (I�B)g (13)whi
h 
an be solved together with the boundary
ondition B vk = 0; (14)to determine vk. Multiplying Equation (11) by Byields v? = �BLH vk +Bg; (15)1The reason for the 
hoi
e of subs
ript label is that v?is the part of v whi
h is orthogonal to the null-spa
e of thematrix B, whereas vk is the part that lies within the null-spa
e.

so v? 
an be 
al
ulated in a post-pro
essing stepbefore then evaluating the linear fun
tional asw = vH f = vHk s+ vH?b: (16)This equation shows that vk gives the dependen
eof the fun
tional on the distributed sour
e term s,whereas v? gives its dependen
e on the boundaryvelo
ities b.It is not obvious how best to solve the adjointequations. Using the same iterative method as forthe nonlinear and linear equations (ex
ept with thetranspose of the pre
onditioning matrix) was foundto work well for invis
id 
ows, but there were sig-ni�
ant stability problems with vis
ous 
ows. Toover
ome these, Giles analysed the iterative evolu-tion of output fun
tional. He found that the adjoint
ode 
ould be designed to give exa
tly the same it-erative history for the fun
tionals as with the linear
ode, by properly 
onstru
ting an adjoint version ofthe usual Runge-Kutta time-mar
hing pro
edure,and using adjoint restri
tion and prolongation op-erators for the multigrid.5 This guarantees that thestability and the iterative 
onvergen
e rate of theadjoint 
ode will be identi
al to that of the linear
ode, whi
h in turn is equal to the asymptoti
 
on-vergen
e rate of the nonlinear 
ode.
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LINSUB     Fig. 2: Complex 
omponents of the 
at plate pres-sure jump due to wake intera
tionValidationOne diÆ
ulty in the development of an adjoint
ow 
ode is the la
k of test 
ases for validation. Forthe adjoint 
ode, the validation has been performedat two levels. At the lower level, ea
h subroutinehas been 
he
ked for 
onsisten
y with its 
ounter-part in the linear 
ode.6, 7 At the higher level, ithas been 
he
ked that the adjoint and linear 
odesprodu
e the same value for both the steady and un-steady fun
tionals, to within ma
hine a

ura
y, atea
h step of the iterative pro
ess. This exa
t equiv-alen
e is one advantage of the fully dis
rete adjoint4 of 7



−1 −0.5 0 0.5 1
0

10

20

30

40

50

60

TE LE TEPressure Side Suction Side

Li
ne

ar
 P

re
ss

ur
e 

C
oe

ffi
ci

en
t

Measurements
Linear      

Fig. 3: First harmoni
 pressure variation for the11th Standard Con�gurationapproa
h, as opposed to the 
ontinuous adjoint ap-proa
h in whi
h one dis
retises the adjoint partialdi�erential equation.The linear 
ode has itself been validated at a sub-routine level by 
omparison with the subroutinesin the nonlinear 
ode.6, 7 In addition it has been
he
ked using a range of test
ases, starting withsimple model problems su
h as invis
id 
ow over2D 
at plate 
as
ades for whi
h there is an ana-lyti
 solution.18 Figure 2 presents results for theunsteady intera
tion due to in
oming wakes froman upstream blade row. Validation of the vis
ous
apabilities is based on ben
hmark experimentaltest
ases, su
h as the 11th Standard Con�gura-tion.4 Figure 3 shows that the amplitude of thelinear pressure 
oeÆ
ient variation agrees well withthe measurements.Example appli
ationsIn order to illustrate the eÆ
ien
y of the adjointapproa
h, the adjoint algorithm is applied here toa steady and an unsteady example. In the �rst
ase, the linear turbine 
as
ade shown in �gure 5with an exit Ma
h number of about 0:7 is used todetermine the sensitivities of the outlet mass 
owto the rotation of sele
ted blade-to-blade se
tionsaround the Leading Edge (LE), that is to variationsof the stagger angle 
. Positive in
rements �
 leadto higher angles between the blade 
hord and theaxial dire
tion.Figure 4 shows the 
omparison between the non-linear and the linear/adjoint sensitivities of themass 
ow _m for variations of the stagger angle be-tween �5o and 7o. The 
urve of the non-linearsensitivity is made of 26 equally spa
ed points, ea
hreferring to a di�erent blade and the derivative is
omputed with 
entred di�eren
es on intervals of1o. There is a very good agreement in the inter-val between �5o and �3o. For higher in
iden
es,
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Fig. 4: Non-linear versus linear mass 
ow sensitiv-ities for variation of the stagger angle 
 of a 2Dturbine se
tionthe agreement worsens slightly, but the average dif-feren
e remains within about 1%. The non-linearand linear sensitivities resulting from the pertur-bation of the base geometry are given in the �rstrow of table 1. For �
 > 5o, In the 3D 
ase, we
hose to perturb the se
tion at midspan and at20 % blade height and the last two rows of table1 show the sensitivities for these two design pa-rameters. Surprisingly the agreement between thenonlinear and the linear/adjoint sensitivities is bet-ter near the end wall, where one would expe
t morenon-linearities due to 3D vis
ous e�e
ts, than atmidspan, where the 
ow is 
leaner. Further inves-tigation is required on the origin of this di�eren
e.We emphasise, however, that a single 
al
ulation isrequired to determine the two sensitivities with theadjoint approa
h, whereas two non-linear or linear
al
ulations are needed with the �nite-di�eren
eapproa
h.

Fig. 5: 3D linear turbine 
as
ade5 of 7



nonlin. lin/adj2D 0.210026 0.207833D-mds 2.3974E-3 2.5639E-33D-edw 1.8373E-3 1.8336E-3Table 1: Non-linear versus linear mass 
ow sensi-tivities for a rotation of the turbine airfoil of 0:20around the LEThe unsteady appli
ation 
onsists of a high pres-sure turbine rotor subje
t to unsteady aerodynami
for
es 
aused by in
ident wakes from an upstreamrow of blades. This has been previously analysed16and good agreement shown in the for
ed responsepredi
ted by linear un
oupled and nonlinear 
ou-pled methods.The design task is to investigate the dependen
eof the for
ed vibration upon the shape of the in-
oming wakes. In pra
ti
e, it is very diÆ
ult tosigni�
antly redu
e the velo
ity defe
t in the wakes,but by 
hanging the three-dimensional shape of theupstream blades (e.g. by moving the tip se
tionof the blade in the 
ir
umferential dire
tion whilekeeping the hub se
tion �xed, a pro
ess known asre-sta
king) it is possible to alter the time at whi
hthe wake shed by the tip se
tion hits the rotor bladerow, relative to that shed from the hub se
tion.Physi
ally, a wake hitting the blade at the sametime at di�erent radial se
tions will usually pro-du
e the maximum stru
tural response, whereasallowing for time delays there may o

ur a phase
an
ellation between the for
es at di�erent radiallo
ations leading to a redu
ed response.Mathemati
ally, the e�e
t of re-sta
king is 
on-tained in the worksum 
al
ulation. The adjointanalysis 
an be used to determine the worksum val-ues 
orresponding to a set of di�erent in
ow wakeboundary 
onditions in order to identify a minimumresponse. In this example, these boundary 
ondi-tions 
ome from the same baseline 
orresponding tothe 
urrent design of the upstream blades and thedi�eren
e between them is a 
omplex phase shiftwhi
h is de�ned to vary linearly with radius fromzero at the hub to a maximum value at the tip. This
orresponds to a linear re-sta
king, leaning the en-tire blade in the 
ir
umferential dire
tion.Figure 6 shows the magnitude of the worksum
orresponding to the primary torsional mode 
om-puted as a fun
tion of the maximum phase shift dueto re-sta
king. It indi
ates that within the rangebeing 
onsidered, whi
h is thought to be appropri-ate, the greater the magnitude of the phase shift,the greater the degree of phase 
an
ellation betweendi�erent parts of the blade and hen
e the smallerthe worksum.
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Fig. 6: For
ed response magnitude versus maxi-mum re-sta
king phase shift.The results for the full range of phase shifts wereobtained from a single adjoint 
al
ulation. If thestandard linear harmoni
 approa
h were used in-stead, ea
h result would require a separate linear
al
ulation sin
e it 
orresponds to a di�erent setof in
ow boundary 
onditions. As a 
he
k, linear
al
ulations have been performed for a variety ofpoints and they produ
ed identi
al values for theworksum output.Con
lusionsThis paper has presented the appli
ation of theadjoint method for the steady and unsteady de-sign of turboma
hinery blades. The latter one isthought to be the �rst appli
ation of adjoint meth-ods to the linearised analysis of periodi
 unsteady
ows. Appli
ation of the adjoint te
hnique to asteady design problem, 
onsisting in determiningthe gradient of a sele
ted fun
tional to variationsof geometri
 design variables and to an unsteadyone, involving the tailoring of in
oming wakes toredu
e the level of for
ed response blade vibrationshave shown the e�e
tiveness of the approa
h. The
apability of determining the gradient of a s
alarobje
t fun
tion depending on many design param-eters with a single 
al
ulation has a big potentialfor appli
ation to the design pra
ti
e in the turbo-ma
hinery industry.The development of the presented adjoint meth-ods has also involved advan
es in the methodol-ogy for fully-dis
rete adjoint methods. This in-
ludes the treatment of strong wall boundary 
on-ditions for node-based dis
retisations; adjoint itera-tion methods giving exa
tly the same iterative 
on-vergen
e as the 
orresponding linear method; andte
hniques for the validation of the adjoint solver by
he
king its exa
t equivalen
e to the linear solver.The future work in
ludes further validation workon the 
omparison between non-linear and lin-ear/adjoint sensitivities for turboma
hinery steady6 of 7



design and the appli
ation of the harmoni
 adjointmethod to 
utter predi
tion for the design of bladeswith improved 
utter margins.A
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