
ANALYSIS OF THE EFFECT OF MISTUNING ONTURBOMACHINERY AEROELASTICITY
SERGIO CAMPOBASSO AND MICHAEL GILESOxford University Computing LaboratoryOxford OX1 3QD, United KingdomAbstract. This paper looks at the e�ect of alternate and random mis-tuning on 
utter and forced response in turbomachinery. Two levels ofasymptotic analysis are used, and their accuracy is assessed by comparisonwith the exact solution obtained by direct numerical computation. MonteCarlo simulations are used to assess the e�ects of random mistuning. Theresults demonstrate the e�ectiveness of mistuning in improving 
utter sta-bility, and the dependence of the maximum amplitude of forced responseon the mistuning pattern, the ratio of mistuning to coupling, and the modenumber of the excitation.1. IntroductionBlade 
utter and forced response may lead to dangerous mechanical fail-ures if not properly accounted for in the design phase of an engine. Theaeroelastic analysis of bladed rotors is dramatically simpli�ed by the as-sumption of cyclic symmetry, which allows one to investigate this problemby considering a single blade with a suitable periodic boundary condition,rather than the whole bladed disk. However, probabilistic factors like manu-facturing tolerances make questionable the validity of tuned analyses. Thestructurally tuned and mistuned assemblies can behave in a remarkablydi�erent fashion. There is evidence that (a) mistuning improves the 
ut-ter boundary [6, 8], (b) mistuning can either increase or reduce the bladeforced response [6, 3]. The use of perturbation techniques for turbomachin-ery aeroelasticity [1] has proved that both e�ects are in
uenced by the ratiobetween the level of mistuning and the inter-blade coupling, which can beaerodynamic [8], mechanical [10, 11] or both [7]. The particular mistun-ing pattern also plays a signi�cant role [2]. One is interested in mistuningfor (a) accounting for the e�ects of stochastic factors like manufacturingtolerances on the 
utter boundaries [9], (b) assessing the applicability of



2 SERGIO CAMPOBASSO AND MICHAEL GILESselected mistuning patterns as a measure of passive 
utter control and (c)understanding its side-e�ects on the blade forced response.In this paper, the mechanisms through which alternate and randommistuning a�ect the free and forced response are enlightened by means ofasymptotic expansions, matrix perturbation theory, exact numerical solu-tion of the aeroelastic equations and Monte Carlo simulations.2. Model problemTo simplify the analysis, we consider a model problem with N blades eachwith a single degree-of-freedom uj(t); j = 1; 2; :::; N . After a suitable non-dimensionalisation, the equations of motion in the absence of any externalforcing are assumed to be of the form�uj + (1+� �mj) uj = � ( a�1uj�1 + a0uj + a1uj+1+ b�1 _uj�1 + b0 _uj + b1 _uj+1 ) : (1)with the blade indices being modulus N so that u0 � uN and u1 � uN+1.The left-hand side of the equation has the structural inertial and sti�nessterms, with ��mj being the structural mistuning which is assumed to havezero mean and r.m.s. variation ��. The right-hand side has the forces due toaerodynamic coupling, with it being assumed that a blade only experiencesforces due to its motion and its two neighbours, and the unsteadiness is ofa low frequency so the motion is well represented by the displacement andvelocity of each blade.Looking for eigenmodes with uj(t) being the jth element of the vectorexp(st)u gives the equation�(s2+1)I + � (�M�A�sB)�u = 0; (2)in which M is a diagonal matrix, and A and B are tridiagonal circulantmatrices. By de�ning u0=u; u1=su; this can also be written ass� u0u1 � = � 0 I�I � �(�M�A) �B �� u0u1 � :In this form, one can use standard mathematical software such as MATLABto obtain the 2N eigenvalues. When � is small, these come in complexconjugate pairs, with N eigenvalues near i and N counterparts near �i. Ofparticular interest is the pair of eigenvalues with the largest real componentR(s) since these give the component of the general solution which growsfastest in time (if R(s) > 0) or decays to zero most slowly (if R(s) < 0).



MISTUNING IN TURBOMACHINERY AEROELASTICITY 33. First level asymptotic analysisA key feature of aeroelasticity in turbomachinery is that �, a constant repre-senting the order of magnitude of the structural mistuning and aerodynamice�ects, is very small. A representative value of 0.01 will be used for all nu-merical results in this paper. As a result, it is appropriate to use asymptoticanalysis with the N eigenvalues near i having an expansion of the forms = i+ � s(1) +O(�2):Substituting this into Eqn. (2) and neglecting higher order terms yields�s(1)I � 12 i (�M�A�iB)�u = 0: (3)What this equation shows is that s(1), which determines the stability of theaeroelastic system, depends crucially on the value of � which represents therelative level of structural mistuning compared to aeroelastic coupling.For any matrix, the average of its eigenvalues is equal to the average ofits diagonal terms. Hence, the average value of the real part of the eigen-values R(s(1)) is equal to b0=2, which must be negative for stability. Thebest that can be achieved through mistuning is that all of the eigenvalueshave this same negative real part.Another simple observation is that in the absence of any aerodynamiccoupling each blade vibrates at its own natural frequency, so the eigen-values are s(1)j = 12 i �mj ; and the jth element is the only non-zero in thecorresponding eigenvector. It is the o�-diagonal terms in A and B whichintroduce coupling between the blades and cause more than one blade tovibrate in each eigenmode.4. Travelling wave representationWhen analysing periodic systems, it is common to use a Fourier seriesrepresentation in which the displacement of each blade and the structuralmistuning are both expressed as a sum of circumferential Fourier modes,uj = N�1Xk=0 eij�k buk; mj = N�1Xk=0 eij�k bmk; �k = 2�kN :The blade equations can be expressed collectively as u=F û. Inserting thisinto Eqn. (3) and pre-multiplying by F�1 gives the transformed equation�s(1)I � 12 i��cM � bA� i bB�� û = 0; (4)



4 SERGIO CAMPOBASSO AND MICHAEL GILESin which it can be shown [4] that the matrix cM = F�1MF is a circulantmatrix with cMkl = bmk�l, while bA = F�1AF and bB = F�1BF are bothdiagonal matrices, with their diagonal elements beingbAkk = e�i�ka�1 + a0 + ei�ka1 bBkk = e�i�kb�1 + b0 + ei�kb1:Because bA and bB are diagonal matrices, the tuned eigenvalues in theabsence of any structural mistuning are s(1)k =�k where�k = 12 ( bBkk � i bAkk) = 12 �b0 + (b1+b�1) cos �k + (a1�a�1) sin�k�� 12 i �a0 + (a1+a�1) cos �k � (b1�b�1) sin�k� ;and the kth element of the corresponding eigenvector is the only non-zero el-ement, so the eigenmode is a travelling wave in which all blades vibrate withan equal amplitude and inter-blade phase angle �k. It is the o�-diagonalterms in cM which introduce coupling between the Fourier modes.5. Alternate mistuningIn alternate mistuning with an even number of blades, every second blade isidentical. bmN=2 is the only non-zero term in the Fourier representation forthe mistuning, and so the o�-diagonal term cMk k+N=2 causes coupling be-tween the Fourier modes k and k+N=2. Isolating the eigenvalue/eigenvectorequations for these two modes alone, we have0@ s(1) � �k �12 i � bm�12 i � bm s(1) � �k0 1A v̂kv̂k0 ! = 0; (5)where for simplicity in notation we have omitted the subscriptN=2 in bmN=2,and have de�ned k0 � k+N=2. Equating the determinant to zero yieldss(1) = 12 ��k + �k0 �q(�k��k0)2 � �2 bm2� : (6)When � is very small, asymptotic approximation of the square root termyields the approximate rootss(1)k � �k � �2 bm24(�k��k0) ; s(1)k0 � �k0 + �2 bm24(�k��k0) : (7)If R(�k)>R(�k0), so mode k is less stable than mode k0, then these equa-tions show that the e�ect of the mistuning is to improve the stability of
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Re( s )Figure 1. E�ect of alternate mistuning.mode k, while at the same time decreasing the stability of mode k0 by anequal amount.When � is very large, asymptotic analysis yieldss(1) � �12 i � bm+ 12 (�k+�k0)� (�k��k0)24 i � bm : (8)To leading order, the two roots have the same real component, which isequal to 12R (�k+�k0) = 12b0.Figure 1 shows the eigenvalues for increasing levels of mistuning. Thevalues of the aerodynamic constants are N = 20, � = 0:01, a�1 = �0:4443,a0 = �0:3587, a1 = 0:5296, b�1 = �0:0054, b0 = �1:7000, b1 = 1:5688, cor-responding to the �rst bending mode of an LP turbine. The �rst two plotsdemonstrate the stabilising e�ect achieved through the coupling of modesk and k0. As � increases further, the eigenvalues split into two groups, clus-tered around the frequencies of the weaker and sti�er blades, with nearlyconstant aerodynamic damping for all modes, as predicted. The stabilityparameter � = maxR(s)=� = maxR(s(1)) determined from the exact aeroe-lastic eigenvalue problem, Eqn. (2), the �rst level approximation, Eqn. (6),and the second level approximations, Eqns. (7) and (8), is plotted versus� in Fig. 2. The exact curve shows that the system becomes stable whenthe coupling and mistuning are of the same order (� � 1). For � � 6:0 thesystem has nearly achieved its maximum theoretical stability (12b0) and fur-ther increases in mistuning have little e�ect on stability. The exact resultsare well predicted by the �rst level asymptotic analysis, whereas the twosecond level approximations are in good agreement for ��1 and ��1, asappropriate.
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Figure 2. Aeroelastic stability with alternate mistuning. Exact and asymptotic analyses6. Random mistuningWith random mistuning, we can also perform asymptotic analyses when�� 1 or �� 1. This is a second level of asymptotic analysis since we areapplying it to Eqn. (3) (or Eqn. (4), its Fourier transform counterpart)which itself comes from an asymptotic approximation to Eqn. (2) for ��1.When �� 1 we use Eqn. (4) with �cM being regarded as a small per-turbation to the tuned system with eigenvalues �k. Using second orderperturbation theory [4], one obtainss(1)k � �k � �24 Xl 6=k cMklcMlk�k��l : (9)Now, cMklcMlk = j bmk�lj2, and hence,R(s(1)k ) � R(�k)� �2Xl 6=k j bmk�lj24 R(�k)�R(�l)j�k��lj2 :Considering the index k for which R(�k) is greatest, this result shows thatthe e�ect of mistuning is always stabilising for the least stable mode.An interesting situation arises if the tuned eigenvalues �l form a circlein the complex plane and so can be written as �l = �0 + rei�l with �=0corresponding to the least stable mode. In this case,1�k � �l = 1r 1� cos �l + i sin �l(1� cos �l)2 + sin2 �l = 12r �1 + i cot �l2 � :and hence, R(s(1)k ) � R(�k)� �28r Xl 6=k j bmk�lj2:
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Figure 3. E�ect of random mistuning.Since the average level of mistuning is assumed to be zero, Parseval's the-orem [4] states that Xl 6=k j bmk�lj2 = 1N Xj m2j :Thus, the amount by which the mistuning stabilises the least stable modeis independent of the pattern of mistuning in the particular case when theeigenvalues of the perfectly tuned system form a circle in the complex plane.When ��1 we use Eqn. (3) with A+ iB being regarded as a small per-turbation to �M . The unperturbed eigenvalues are 12 i �mj , and applyingsecond order perturbation theory givess(1)j � 12 i �mj + 12 (b0 � ia0) + i2� Xk=j�1 (a�1 + ib�1)(a1 + ib1)mj �mk : (10)Considering only the real part of this, one obtainsR(s(1)j ) � 12 b0 � 12� Xk=j�1 a�1b1 + a1b�1mj �mkThis shows that at very high levels of mistuning the system is stable be-cause of the dominance of the b0 term which is negative in real applications.The physical interpretation of this is that at high levels of mistuning eachblade vibrates on its own at its own natural frequency. The forces it ex-periences are due solely to its own motion, and these self-induced forcesare always stabilising. As the level of mistuning decreases, or equivalently
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Figure 4. Aeroelastic stability with random mistuning; exact and asymptotic analyseswith Monte Carlo simulationsthe aerodynamic terms increase in strength, the aerodynamic forces causethe neighbouring blades to vibrate as well. The additional forces that thisgenerates on the central blade may be stabilising or destabilising.Using the same aerodynamic coe�cients as before, Figure 3 shows thechange in the eigenvalues for a particular random pattern of mistuning.Again the mistuning stabilises the unstable eigenvalues, but there is now aloss of regularity in the eigenvalue clouds during the transition from travel-ling wave to individual blade eigenmodes. To make the results independentof the particular choice of mistuning pattern, a Monte Carlo simulation hasbeen carried out with 1000 di�erent random patterns. Figure 4 has stabil-ity bands for the middle 80%, omitting the results for the best and worst10%. We make the following observations: (a) the e�ect of random mistun-ing is always stabilising, (b) the agreement between exact and �rst levelasymptotic stability is very good (the di�erences cannot be distinguishedin the plot), (c) the second level asymptotic analysis for ��1 is accuratein predicting the stabilising e�ect of low levels of mistuning, (d) the secondlevel asymptotic analysis for � � 1 gives poor results unless the level ofmistuning is unrealistically high.7. Forced responseIn forced response, equation (1) is modi�ed through the addition of a pre-scribed aerodynamic forcing term�uj + (1+� � mj) uj = � ( a�1uj�1 + a0uj + a1uj+1+ b�1 _uj�1 + b0 _uj + b1 _uj+1 ) + � fj(t): (11)



MISTUNING IN TURBOMACHINERY AEROELASTICITY 9The forcing term fj(t) can be decomposed into a sum of components each ofwhich has a particular frequency ! and inter-blade phase angle �. Becauseof linearity, the e�ect of each of these can be superimposed, so from hereonwards we consider a single such component.Writing the forcing terms collectively as � ei!tf , the response of theblades is ei!tu, where u is given by�(�!2+1)I + � (�M �A� i!B)�u = �f : (12)A Fourier series transformation of this equation yields�(�!2+1)I + � (�cM � bA� i! bB)� û = � f̂ ; (13)in which only a single component of f̂ is non-zero, corresponding to theprescribed inter-blade phase angle.If j1�!2j � �, the e�ect of the O(�) terms is negligible, and the approx-imate solution is u � �1�!2 f :On the other hand, if the forcing frequency is close to the natural fre-quency of the blades, so 1�!2 = O(�), then the other O(�) terms be-come signi�cant. In this case it is appropriate to make the substitution! = 1 + �!(1), and then ignoring terms which are O(�2) yields��2!(1)I + �M �A� iB�u = f : (14)and ��2!(1)I + �cM � bA� i bB� û = f̂ : (15)If there is no mistuning then equation (15) can be solved to obtainbuk = f̂k�2!(1) � bAkk � i bBkk = f̂k�2 (!(1) + i�k) :If !(1) is treated as a variable, the peak response isjbukj = jf̂ j�2R(�k) = jf̂ j�(b0 + (b1+b�1) cos �k + (a1�a�1) sin�k) ; (16)when !(1) = I(�k) = �12 �a0 + (a1+a�1) cos �k � (b1�b�1) sin�k� :At the opposite extreme, if the aerodynamic forces are weak, then theo�-diagonal terms in matrices A and B can be ignored, to leading order,and so the approximate solution to Eqn. (14) isuj = fj�2!(1) + �mj � a0 � ib0 ;
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Figure 5. Blade response of alternately mistuned assembly for two engine orders andfor di�erent levels of mistuning. (|: exact, ��: asymptotic)and hence the peak response of blade j, when !(1) = 12 (�mj�a0); isjuj j = jf̂ j�b0 : (17)Figure 5 shows the exact and asymptotic blade response of the tunedand alternately mistuned assembly versus the exciting frequency ! for twoexcitations with inter-blade phase angle �12 = 216o and �2 = 36o, corre-sponding to the most and least damped modes of the tuned rotor, respec-tively. All ordinates are normalised by the maximum peak response of thetuned assembly. We make the following observations: (a) the agreementbetween exact and asymptotic analysis is excellent; (b) the maximum peakresponse of the tuned assembly occurs when the least damped harmonicis excited; (c) with alternate mistuning there are two peaks and a widerfrequency range over which there is a signi�cant response; (d) mistuningincreases the maximum peak response when the most damped travellingwave is excited, but decreases the peak response when the least dampedmode is excited; (e) the response becomes increasingly independent of theinter-blade phase angle of the forcing at high �0s.E�ect (d) is due to the coupling of travelling waves k and k0. If theexcited harmonic k has high damping, the mistuning transfers energy tothe lightly damped harmonic k0 producing a signi�cant response. On theother hand, if the excited harmonic k has low damping, then the mistuningreduces the response by transferring energy to the more heavily dampedharmonic k0. E�ect (e) is in agreement with Eqn. (17).
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Figure 6. Blade response of randomly mistuned assembly for two engine orders and fordi�erent levels of mistuning. (|: blade 7, ��: blade 19, � � �: blade 13, -.-.-: blade 10)Observations (b) ! (e) remain true for the randomly mistuned assem-bly, for which results are presented in Fig. 6 for a particular random mis-tuning pattern. The leftmost plots are the same as those in Fig. (5). Theothers show the response of four selected blades. Each peak corresponds tothe resonance of a particular blade, each of which has a di�erent naturalfrequency. Note that for �=4 the maximum peak response for both engineorders is not that of the weakest blade (blade 7).8. ConclusionsThe theoretical and numerical analyses presented in this paper con�rm thestabilising e�ect of mistuning on blade 
utter, and show that it dependson both the tuned eigenvalues and the ratio of mistuning to aerodynamiccoupling. When the structural mistuning is lower than the aerodynamiccoupling, each mode is best viewed as a combination of travelling waves andmistuning enhances the stability of the least stable mode by transferringenergy to the more stable harmonics in which it is dissipated. When thestructural mistuning is large, each mode is highly localised, correspondingprimarily to the oscillation of a single blade, and to a lesser extent itsneighbours, with the aerodynamic forces providing damping.Alternate mistuning is particularly e�ective in improving 
utter stabil-ity and this suggests its use as a measure for passive 
utter control. Randommistuning is also stabilising, but its e�ectiveness depends on the particularmistuning pattern. Monte Carlo simulation, considering multiple randomperturbations, is e�ective in assessing this.
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