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Abstract. This paper looks at the effect of alternate and random mis-
tuning on flutter and forced response in turbomachinery. Two levels of
asymptotic analysis are used, and their accuracy is assessed by comparison
with the exact solution obtained by direct numerical computation. Monte
Carlo simulations are used to assess the effects of random mistuning. The
results demonstrate the effectiveness of mistuning in improving flutter sta-
bility, and the dependence of the maximum amplitude of forced response
on the mistuning pattern, the ratio of mistuning to coupling, and the mode
number of the excitation.

1. Introduction

Blade flutter and forced response may lead to dangerous mechanical fail-
ures if not properly accounted for in the design phase of an engine. The
aeroelastic analysis of bladed rotors is dramatically simplified by the as-
sumption of cyclic symmetry, which allows one to investigate this problem
by considering a single blade with a suitable periodic boundary condition,
rather than the whole bladed disk. However, probabilistic factors like manu-
facturing tolerances make questionable the validity of tuned analyses. The
structurally tuned and mistuned assemblies can behave in a remarkably
different fashion. There is evidence that (a) mistuning improves the flut-
ter boundary [6, 8], (b) mistuning can either increase or reduce the blade
forced response [6, 3]. The use of perturbation techniques for turbomachin-
ery aeroelasticity [1] has proved that both effects are influenced by the ratio
between the level of mistuning and the inter-blade coupling, which can be
aerodynamic [8], mechanical [10, 11] or both [7]. The particular mistun-
ing pattern also plays a significant role [2]. One is interested in mistuning
for (a) accounting for the effects of stochastic factors like manufacturing
tolerances on the flutter boundaries [9], (b) assessing the applicability of



2 SERGIO CAMPOBASSO AND MICHAEL GILES

selected mistuning patterns as a measure of passive flutter control and (c)
understanding its side-effects on the blade forced response.

In this paper, the mechanisms through which alternate and random
mistuning affect the free and forced response are enlightened by means of
asymptotic expansions, matrix perturbation theory, exact numerical solu-
tion of the aeroelastic equations and Monte Carlo simulations.

2. Model problem

To simplify the analysis, we consider a model problem with N blades each
with a single degree-of-freedom w;(t),7 = 1,2, ..., N. After a suitable non-
dimensionalisation, the equations of motion in the absence of any external
forcing are assumed to be of the form

iij + (1+eom;) uj = e€( a_1uj_1 + aouj + arujp
+ b_l’l.l,j_l + bg’l.l,j + b1’llj+1 ) . (1)

with the blade indices being modulus N so that ug = uxy and 1 = uny1-
The left-hand side of the equation has the structural inertial and stiffness
terms, with eom; being the structural mistuning which is assumed to have
zero mean and r.m.s. variation eo. The right-hand side has the forces due to
aerodynamic coupling, with it being assumed that a blade only experiences
forces due to its motion and its two neighbours, and the unsteadiness is of
a low frequency so the motion is well represented by the displacement and
velocity of each blade.

Looking for eigenmodes with u;(t) being the j* element of the vector
exp(st) u gives the equation

((82+1)I+€(0'M—A—SB))’U,=0, (2)

in which M is a diagonal matrix, and A and B are tridiagonal circulant
matrices. By defining uy=wu, u; =su, this can also be written as

()= (rmor—n ) ()

In this form, one can use standard mathematical software such as MATLAB
to obtain the 2N eigenvalues. When € is small, these come in complex
conjugate pairs, with N eigenvalues near ¢ and N counterparts near —i. Of
particular interest is the pair of eigenvalues with the largest real component
R(s) since these give the component of the general solution which grows
fastest in time (if R(s) > 0) or decays to zero most slowly (if R(s) < 0).
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3. First level asymptotic analysis

A key feature of aeroelasticity in turbomachinery is that €, a constant repre-
senting the order of magnitude of the structural mistuning and aerodynamic
effects, is very small. A representative value of 0.01 will be used for all nu-
merical results in this paper. As a result, it is appropriate to use asymptotic
analysis with the N eigenvalues near ¢ having an expansion of the form

s=i+es) +0().
Substituting this into Eqn. (2) and neglecting higher order terms yields
(sV1=Li(oM—-A~iB))u=0. (3)

What this equation shows is that s(!), which determines the stability of the
aeroelastic system, depends crucially on the value of o which represents the
relative level of structural mistuning compared to aeroelastic coupling.

For any matrix, the average of its eigenvalues is equal to the average of
its diagonal terms. Hence, the average value of the real part of the eigen-
values R(s(")) is equal to by/2, which must be negative for stability. The
best that can be achieved through mistuning is that all of the eigenvalues
have this same negative real part.

Another simple observation is that in the absence of any aerodynamic
coupling each blade vibrates at its own natural frequency, so the eigen-
values are sgl) = %iamj, and the j" element is the only non-zero in the
corresponding eigenvector. It is the off-diagonal terms in A and B which
introduce coupling between the blades and cause more than one blade to
vibrate in each eigenmode.

4. Travelling wave representation

When analysing periodic systems, it is common to use a Fourier series
representation in which the displacement of each blade and the structural
mistuning are both expressed as a sum of circumferential Fourier modes,

N-1 N-1 ork
V3 -~ V3 ~
uj = E PRLE U, mj = E Pk M O = N

The blade equations can be expressed collectively as w= F'i. Inserting this
into Eqn. (3) and pre-multiplying by F~! gives the transformed equation

(sV1—Li(oM—A-iB))a =0, (4)
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in which it can be shown [4] that the matrix M = F~MF is a circulant
matrix with My, = my_;, while A = F~'AF and B = F~'BF are both
diagonal matrices, with their diagonal elements being

gklc = e Pra_ + ag + ePray Bkk = e Brh_ | + by + ePrby.

Because A and B are diagonal matrices, the tuned eigenvalues in the
(1) _

absence of any structural mistuning are s’ =\, where

Me = 3 (B —iAg) = & (bo + (b1+b-1) cos By, + (a1 —a_1) Sinﬁk)

_ %z (ao + (a1 +a_1) cos B, — (b1 —b_1) sinﬁk) ,

and the k' element of the corresponding eigenvector is the only non-zero el-
ement, so the eigenmode is a travelling wave in which all blades vibrate with
an equal amplitude and inter-blade phase angle 8. It is the off-diagonal
terms in M which introduce coupling between the Fourier modes.

5. Alternate mistuning

In alternate mistuning with an even number of blades, every second blade is
identical. myyy is the only non-zero term in the Fourier representation for
the mistuning, and so the off-diagonal term ]\//Tk kN/2 causes coupling be-
tween the Fourier modes k and k+N/2. Isolating the eigenvalue/eigenvector
equations for these two modes alone, we have

8(1)—)\k —%’io"ffl ﬁk
] =0, (5)
—% iom s — Ak Uk
where for simplicity in notation we have omitted the subscript N/2 in /s,
and have defined k' = k4 N/2. Equating the determinant to zero yields

st = % ()\k + A = \/()\k—kk/)Q — 027?L2> . (6)

When ¢ is very small, asymptotic approximation of the square root term
yields the approximate roots

) o’ m? (1) o’

N, ——————— R Ay .
K A ‘ +4(>\k—>\k')

2

(7)

If R(Ax)>R(Mgr), so mode k is less stable than mode k', then these equa-
tions show that the effect of the mistuning is to improve the stability of
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Figure 1. Effect of alternate mistuning.

mode k, while at the same time decreasing the stability of mode &’ by an
equal amount.
When o is very large, asymptotic analysis yields

(Me— A )?

s~ tliom+ L (\+w) £ TP

(8)
To leading order, the two roots have the same real component, which is
equal to %R(Ak—i—)\k/) = %bo.

Figure 1 shows the eigenvalues for increasing levels of mistuning. The
values of the aerodynamic constants are N = 20, ¢ = 0.01, a_1 = —0.4443,
ag = —0.3587, a1 = 0.5296, b_; = —0.0054, by = —1.7000, b; = 1.5688, cor-
responding to the first bending mode of an LP turbine. The first two plots
demonstrate the stabilising effect achieved through the coupling of modes
k and k'. As o increases further, the eigenvalues split into two groups, clus-
tered around the frequencies of the weaker and stiffer blades, with nearly
constant aerodynamic damping for all modes, as predicted. The stability
parameter § = max R(s)/e = max R(s(")) determined from the exact aeroe-
lastic eigenvalue problem, Eqn. (2), the first level approximation, Eqn. (6),
and the second level approximations, Eqns. (7) and (8), is plotted versus
o in Fig. 2. The exact curve shows that the system becomes stable when
the coupling and mistuning are of the same order (o = 1). For o =~ 6.0 the
system has nearly achieved its maximum theoretical stability (%bo) and fur-
ther increases in mistuning have little effect on stability. The exact results
are well predicted by the first level asymptotic analysis, whereas the two
second level approximations are in good agreement for 0 <1 and o>>1, as
appropriate.
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Figure 2. Aeroelastic stability with alternate mistuning. Exact and asymptotic analyses

6. Random mistuning

With random mistuning, we can also perform asymptotic analyses when
01 or o> 1. This is a second level of asymptotic analysis since we are
applying it to Eqn. (3) (or Eqn. (4), its Fourier transform counterpart)
which itself comes from an asymptotic approximation to Eqn. (2) for e< 1.

When o < 1 we use Eqn. (4) with oM being regarded as a small per-
turbation to the tuned system with eigenvalues A;. Using second order
perturbation theory [4], one obtains

2
M oy, — 2N kM
Sk ~ )\k 4 Z )\k—Al . (9)

Now, My, My, = |my_|?, and hence,

k—1]? R(Ag)—R(N\)
4 Ae—=N|2

R(sWM) = R(Ag) — 02 3y [
14k

Considering the index k for which R()\g) is greatest, this result shows that
the effect of mistuning is always stabilising for the least stable mode.

An interesting situation arises if the tuned eigenvalues \; form a circle
in the complex plane and so can be written as A} = \g + ref® with =0
corresponding to the least stable mode. In this case,

1 11— 0; + isin 6, 1 0
_1 cos ) + 1810 ——<1+icot§l>.
r

Ak — Al (1 —cos )2 +sin%6;,  2r
and hence,
(1) o g2
Risp’) = R(A) — o > Il
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Figure 8. Effect of random mistuning.

Since the average level of mistuning is assumed to be zero, Parseval’s the-

orem [4] states that
1
~ 9 2
> ligl” = N > m3.
I£k j
Thus, the amount by which the mistuning stabilises the least stable mode
is independent of the pattern of mistuning in the particular case when the
eigenvalues of the perfectly tuned system form a circle in the complex plane.
When 0> 1 we use Eqn. (3) with A+iB being regarded as a small per-
turbation to oM. The unperturbed eigenvalues are %iamj, and applying
second order perturbation theory gives
s Liom; + 3 (bo —iag) + —

_ b b
{ ; Z (a 1+Z 1)(&1+Z 1)‘ (10)
T =i+l

mj — my

Considering only the real part of this, one obtains

R(sg-l)) ~ Ly - 1 5 a—1bi +ai1b—
20 PR L R LT
This shows that at very high levels of mistuning the system is stable be-
cause of the dominance of the by term which is negative in real applications.
The physical interpretation of this is that at high levels of mistuning each
blade vibrates on its own at its own natural frequency. The forces it ex-
periences are due solely to its own motion, and these self-induced forces

are always stabilising. As the level of mistuning decreases, or equivalently
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Figure 4. Aeroelastic stability with random mistuning; exact and asymptotic analyses
with Monte Carlo simulations

the aerodynamic terms increase in strength, the aerodynamic forces cause
the neighbouring blades to vibrate as well. The additional forces that this
generates on the central blade may be stabilising or destabilising.

Using the same aerodynamic coefficients as before, Figure 3 shows the
change in the eigenvalues for a particular random pattern of mistuning.
Again the mistuning stabilises the unstable eigenvalues, but there is now a
loss of regularity in the eigenvalue clouds during the transition from travel-
ling wave to individual blade eigenmodes. To make the results independent
of the particular choice of mistuning pattern, a Monte Carlo simulation has
been carried out with 1000 different random patterns. Figure 4 has stabil-
ity bands for the middle 80%, omitting the results for the best and worst
10%. We make the following observations: (a) the effect of random mistun-
ing is always stabilising, (b) the agreement between exact and first level
asymptotic stability is very good (the differences cannot be distinguished
in the plot), (c) the second level asymptotic analysis for o < 1 is accurate
in predicting the stabilising effect of low levels of mistuning, (d) the second
level asymptotic analysis for o > 1 gives poor results unless the level of
mistuning is unrealistically high.

7. Forced response

In forced response, equation (1) is modified through the addition of a pre-
scribed aerodynamic forcing term

ﬂj -+ (1+eamj) u; = 6( G_1Uj—1 + aoUj + a1uj1
+b_10j_1 + botr; + b1ty ) + € f(t). (11)
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The forcing term f;(t) can be decomposed into a sum of components each of
which has a particular frequency w and inter-blade phase angle (3. Because
of linearity, the effect of each of these can be superimposed, so from here
onwards we consider a single such component.

Writing the forcing terms collectively as ee™!f, the response of the
blades is e’“*u, where u is given by

((—w2+1)I—|—e(UM—A—in)>u =ecf. (12)
A Fourier series transformation of this equation yields
((—®+ ) +e(oM — A—iwB)) @ = e f, (13)

in which only a single component of f is non-zero, corresponding to the
prescribed inter-blade phase angle.

If |1—w?| > e, the effect of the O(€) terms is negligible, and the approx-
imate solution is

€
uR T T

On the other hand, if the forcing frequency is close to the natural fre-

quency of the blades, so 1 —w? = O(e), then the other O(e) terms be-

come significant. In this case it is appropriate to make the substitution
w =14 ew®, and then ignoring terms which are O(e?) yields

(~20M I+ oM~ A—iB)u=f. (14)
and P R )
(~20M1+0M—A-iB)a=f. (15)

If there is no mistuning then equation (15) can be solved to obtain

A

Gy = fr _ fx _
—2w(D) — A — 1By —2 (w(l) + i>‘k)

If w(M is treated as a variable, the peak response is

—2R(M)  —(bo + (b1+b_1) cos By, + (a1 —a—1) sin By)’

when wM) = T();) = —3 (ao + (a1+a—1)cos B — (b1 —b_1) sinﬁk) .

At the opposite extreme, if the aerodynamic forces are weak, then the
off-diagonal terms in matrices A and B can be ignored, to leading order,
and so the approximate solution to Eqn. (14) is

[

—2w(1) + om; —ag — ibo,

U; =



10 SERGIO CAMPOBASSO AND MICHAEL GILES

[

A 0.5

11 8.7 09 11 13
w

Figure 5. Blade response of alternately mistuned assembly for two engine orders and
for different levels of mistuning. (—: exact, ——: asymptotic)

and hence the peak response of blade j, when wh = % (omj—ayp), is

~

juy) = L (17)
0

Figure 5 shows the exact and asymptotic blade response of the tuned
and alternately mistuned assembly versus the exciting frequency w for two
excitations with inter-blade phase angle ;9 = 216° and (2 = 36°, corre-
sponding to the most and least damped modes of the tuned rotor, respec-
tively. All ordinates are normalised by the maximum peak response of the
tuned assembly. We make the following observations: (a) the agreement
between exact and asymptotic analysis is excellent; (b) the maximum peak
response of the tuned assembly occurs when the least damped harmonic
is excited; (c) with alternate mistuning there are two peaks and a wider
frequency range over which there is a significant response; (d) mistuning
increases the maximum peak response when the most damped travelling
wave is excited, but decreases the peak response when the least damped
mode is excited; (e) the response becomes increasingly independent of the
inter-blade phase angle of the forcing at high o's.

Effect (d) is due to the coupling of travelling waves k and k'. If the
excited harmonic k£ has high damping, the mistuning transfers energy to
the lightly damped harmonic k¥ producing a significant response. On the
other hand, if the excited harmonic k£ has low damping, then the mistuning
reduces the response by transferring energy to the more heavily damped
harmonic k'. Effect (e) is in agreement with Eqn. (17).
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Figure 6. Blade response of randomly mistuned assembly for two engine orders and for
different levels of mistuning. (—: blade 7, ——: blade 19, - --: blade 13, -.-.-: blade 10)

Observations (b) — (e) remain true for the randomly mistuned assem-
bly, for which results are presented in Fig. 6 for a particular random mis-
tuning pattern. The leftmost plots are the same as those in Fig. (5). The
others show the response of four selected blades. Each peak corresponds to
the resonance of a particular blade, each of which has a different natural
frequency. Note that for c =4 the maximum peak response for both engine
orders is not that of the weakest blade (blade 7).

8. Conclusions

The theoretical and numerical analyses presented in this paper confirm the
stabilising effect of mistuning on blade flutter, and show that it depends
on both the tuned eigenvalues and the ratio of mistuning to aerodynamic
coupling. When the structural mistuning is lower than the aerodynamic
coupling, each mode is best viewed as a combination of travelling waves and
mistuning enhances the stability of the least stable mode by transferring
energy to the more stable harmonics in which it is dissipated. When the
structural mistuning is large, each mode is highly localised, corresponding
primarily to the oscillation of a single blade, and to a lesser extent its
neighbours, with the aerodynamic forces providing damping.

Alternate mistuning is particularly effective in improving flutter stabil-
ity and this suggests its use as a measure for passive flutter control. Random
mistuning is also stabilising, but its effectiveness depends on the particular
mistuning pattern. Monte Carlo simulation, considering multiple random
perturbations, is effective in assessing this.
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With regards to forced response, structural mistuning leads to multiple
resonant peaks and a widening of the frequency range over which reso-
nance may occur. The maximum peak response can be either increased
or decreased compared to the tuned case, depending whether the forcing
inter-blade phase angle corresponds to one of the least damped modes or
one of the most damped.

The computational costs of the analyses in this paper are minimal, a few
seconds for each eigenvalue computation, making the approach very suit-
able for design optimisation, or the assessment of random mistuning dur-
ing the design process. In particular, the single asymptotic models and the
Monte Carlo simulations can be straightforwardly extended to 3D aeroelas-
tic analyses and introduced into everyday design practice, as shown in [5].
This is made possible by the fact that turbomachinery blades are usually
designed to keep the structural mode frequencies well separated. Conse-
quently, aeroelasticity analyses can consider a single degree-of-freedom per
blade, corresponding to the structural mode under investigation.
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