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21 IntroductionOne motivation for the analysis in this paper was the observation by Wigton ofinstabilities in Navier-Stokes calculations on structured grids [1]. It appearedthat the instabilities might be connected to large variations in the level of tur-bulent viscosity arising quite properly in certain physical situations. A possiblecause of the instability was thought to be the timestep de�nition which wasbased on Fourier stability theory assuming constant coe�cients. Therefore, anobjective of this analysis was to determine su�cient conditions for the stabilityof discretisations of the Navier-Stokes equations with nonuniform viscosity.The second motivation was the requirement for timestep stability limits forviscous calculations on unstructured grids. Inviscid calculations are now beingperformed almost routinely on unstructured grids for complete aircraft geome-tries (e.g. [2, 3, 4, 5]). Using energy analysis methods, Giles developed su�cientglobal and local timestep stability limits for a Galerkin discretisation of the Eulerequations on a tetrahedral grid with two particular Runge-Kutta time integrationschemes [6]; this has been used on an ad hoc basis for calculations using otheralgorithms including various upwinding and numerical smoothing formulations[3, 5]. Through parallel computing and e�cient multigrid algorithms for unstruc-tured grids [5], there is now the computational power to perform extremely largeNavier-Stokes calculations on unstructured grids, and so there is a need for thesupporting numerical analysis to give accurate global and local timestep stabilitylimits.Fourier stability analysis can only be applied to linear �nite di�erence equa-tions with constant coe�cients on structured grids, and so it is not appropri-ate for this application. There are two other well-documented stability analysismethods which can be used with linear discretisations with variable coe�cientson unstructured grids. One is the energy method [7] which relies on the carefulconstruction of a suitably de�ned `energy' which can be proven to monotonicallydecrease. The di�culty is usually in constructing an appropriate de�nition forthe energy, but when this method can be applied it is very powerful in giving avery strong form of stability. It is used in this paper to prove the stability of theoriginal linearised form of the Navier-Stokes partial di�erential equations, andthe semi-discretised system of coupled o.d.e.'s that is produced by the Galerkinspatial discretisation.The other stability analysis technique involves consideration of the eigen-values of the matrix representing the discretisation of the spatial di�erentialoperator. This leads to su�cient conditions for asymptotic stability, as t!1for unsteady calculations or as n ! 1 for calculations using local timesteps.Unfortunately, there are well-documented examples such as the �rst order up-winding of the convection equation on a �nite 1D domain (e.g. [8, 9, 10]) forwhich this is not a practical stability criterion because it allows an unacceptablylarge transient growth before the eventual exponential decay. The next section



3reviews this theory showing that the problem of large transient growth can arisewhenever the spatial discretisation matrix is non-normal. It then presents re-cent results on algebraic and generalised stability for such applications givingsu�cient conditions for stability. It is these new stability conditions which areused to construct su�cient stability limits for the full Galerkin/Runge-KuttaNavier-Stokes discretisation.The analysis is performed for linear perturbations to a steady 
ow in which all
ow variables are uniform with the exception of the three viscosity coe�cients,�, the shear viscosity, �, the second coe�cient of viscosity, and k, the thermaldi�usivity. This choice of model problem is critical in several ways. Althoughit is the linearisation of the laminar Navier-Stokes equations that is used, theviscosity coe�cients can each be interpreted as the sum of the laminar valueplus a turbulent value arising from some turbulence model. Accordingly, thereis no assumption of any �xed relationship between the three quantities, eitherthe Stokes hypothesis linking � and �, or the assumption of a constant Prandtlnumber linking � and k. The uniformity of the other 
ow variables is essential forkey parts of the analysis. However, a more fundamental aspect of the uniformityis that it gives a physical situation in which 
ow perturbations are naturallydamped, and so the 
ow is stable. Therefore, an instability of the semi-discreteor fully discrete equations can be viewed justi�ably as an incorrect behaviour.The timestep limit which gives the onset of this instability can then be de�nedas the maximum stable timestep. In contrast, if a vortex sheet were taken as thesteady 
ow and then linear perturbations were analysed, it would be determinedthat both the analytic and discrete equations were unstable. Even worse, thetimescale of the most unstable discrete mode would be proportional to �x sothat it would be impossible to distinguish between a `numerical instability' andthe natural Helmholtz instability of the vortex sheet. It would not therefore bepossible to use this alternative model problem to make any deductions aboutstable timestep limits.After the following section reviewing numerical stability theory, there areseparate sections for the analysis of the di�erential, semi-discrete and fully dis-crete Navier-Stokes equations. To focus attention on the important features ofthe stability analysis, many of the supporting details are presented in the threeappendices.2 Review of stability theory for Runge-KuttamethodsDiscretisation of the scalar o.d.e. dudt = �u; (2.1)



4using an explicit Runge-Kutta method with timestep k yields a di�erence equa-tion of the form u(n+1) = L(�k) u(n) (2.2)where L(z) is a polynomial function of degree pL(z) = pXm=0 amzm; (2.3)with a0 = a1 = 1; ap 6= 0. Discrete solutions of this di�erence equation on a�nite time interval 0� t� t0 will converge to the analytic solution as k! 0. Inaddition, the discretisation is said to be absolutely stable for a particular value ofk if it does not allow exponentially growing solutions as t!1; this is satis�edprovided �k lies within the stability region S in the complex plane de�ned byS = fz : jL(z)j�1g : (2.4)Examples of stability regions for di�erent polynomials are given in Appendix A.Suppose now that a real square matrix C has a complete set of eigenvectorsand can thus be diagonalised, C = T�T�1; (2.5)with � being the diagonal matrix of eigenvalues of C, and the columns of Tbeing the associated eigenvectors. The Runge-Kutta discretisation of the coupledsystem of o.d.e.'s, dUdt = CU; (2.6)can be written as U (n+1) = L(kC)U (n) = T L(k�)T�1 U (n); (2.7)since Cm = �T�T�1�m = T�mT�1: (2.8)Hence U (n) = T (L(k�))n T�1 U (0): (2.9)The necessary and su�cient condition for absolute stability as n!1, re-quiring that there are no discrete solutions which grow exponentially with n, istherefore that jL(k�)j � 1, or equivalently k� lies in S, for all eigenvalues � ofC. If this condition is satis�ed, then using L2 vector and matrix norms it followsthat kU (n)k � kTk kL(k�)kn kT�1k kU (0)k � �(T ) kU (0)k; (2.10)where �(T ) is the condition number of the eigenvector matrix T .



5If the matrix C is normal, meaning that it has an orthogonal set of eigen-vectors, then the eigenvectors can be normalised so that �(T )=1. In this case,kU (n)k is a non-increasing function of n and kU (n)k2 represents a non-increasing`energy' which could be used in an energy stability analysis.If C is not normal, then the growth in kU (n)k is bounded by the conditionnumber of the eigenvector matrix, �(T ). Unfortunately, this can be very largeindeed, allowing a very large transient growth in the solution even when foreach eigenvalue k� lies strictly inside the stability region S and so kU (n)k musteventually decay exponentially. This problem can be particularly acute when thematrix C comes from the spatial discretisation of a p.d.e. in which case there isthen a family of discretisations arising from a sequence of computational grids ofdecreasing mesh spacing h. It is possible in such circumstances for the sequenceof condition numbers �(T ) to grow exponentially, with an exponent inverselyproportional to the mesh spacing [8]. There are two practical consequences of thisexponential growth. In applications concerned with the behaviour of the solutionas t!1, it produces an unacceptably large ampli�cation of machine roundingerrors in linear computations and complete failure of the discrete computation innonlinear cases. In applications concerned with a �nite time interval, 0� t� t0, itprevents convergence of the discrete solution to the analytic solution as h; k!0except in certain exceptional situations using spectral spatial discretisations.The stability of discretisations of systems of o.d.e.'s with non-normal matriceshas been a major research topic in the numerical analysis community in recentyears [8, 9, 11, 12, 13, 14, 15]; A recent review article by van Dorsselaer et al [10]provides an excellent overview of these and many other references. The applica-tion is often to families of non-normal matrices arising from spatial discretisationsof p.d.e.'s. Ideally, one would hope to prove strong stability,kU (n)k � 
 kU (0)k; (2.11)with 
 being a constant which is not only independent of n but is also a uniformbound applying to all matrices in the family of spatial discretisations for di�erentmesh spacings h but with the timestep k being a function of h. One reason whystrong stability is very desirable is that the Lax Equivalence Theorem proves thatit is a necessary and su�cient condition for convergence of discrete solutions tothe analytic solution on a �nite time interval for all possible initial data, providedthat the discretisation of the p.d.e. is consistent for su�ciently smooth initial data[7]. At present, the conditions under which strong stability can be proved aretoo restrictive to be useful in practical computations. Instead, attention hasfocussed on weaker de�nitions of stability which are more easily achieved andare still useful for practical computations. The one that is used in this paper isalgebraic stability [8, 11, 12] which allows a linear growth in the transient solutionof the form kU (n)k � 
 n kU (0)k; (2.12)



6where 
 is again a uniform constant. A su�cient condition for algebraic stabilityis that �(kC) � S; (2.13)where the numerical range �(kC) is a subset of the complex domain de�ned by�(kC) = �k W �CWW �W : W 6=0� (2.14)where W can be any non-zero complex vector of the required dimension andW � is its Hermitian, the complex conjugate transpose. The proof of su�ciencyis given by Lenferink and Spijker [12]. It proceeds in two parts, �rst showingthat a certain resolvent condition is su�cient for algebraic stability, and thenshowing that this resolvent condition is satis�ed if the numerical range lies insideS. Reddy and Trefethen [8] prove that the resolvent condition is necessary aswell as su�cient for algebraic stability.In related research, Kreiss and Wu [9] have de�ned generalised stability whichis based on exponentially weighted integrals over time for a inhomogeneous dif-ference equation with homogeneous initial conditions. A similar restriction onthe numerical range provides a su�cient condition for generalised stability, how-ever the theory at present applies only to discretisations of hyperbolic p.d.e.'sand so does not apply to the Navier-Stokes equations considered in this paper.By consideringW to be an eigenvector ofC, it can be seen that k� 2 �(kC) foreach eigenvalue of C and so the requirement that �(kC)�S is a tighter restrictionon the maximum allowable timestep than asymptotic stability. In comparisonto strong stability, algebraic stability allows greater growth in transients whenconsidering the solution behaviour as t!1. On the �nite time interval, it canbe shown that under some very mild technical conditions they are su�cient forconvergence of discrete solutions to the analytic solution as h; k!0 provided theinitial data is smooth and the discretisation is consistent. It thus appears thatthis stability de�nition is a useful tool in analysing numerical discretisations, butadditional research is still required.In the Navier-Stokes application in this paper we will need to consider a slightgeneralisation to a system of o.d.e.'s of the formMdUdt = CU; (2.15)in which M is a real symmetric positive-de�nite matrix. The `energy' is de�nedas U�MU which suggests the de�nition of new variables,W = M1=2U; (2.16)so that kWk2 = U�MU . IfM is diagonal thenM1=2 is the diagonal matrix whoseelements are the positive square root of the corresponding elements of M . If Mis not diagonal then M1=2 is equal to T�1�1=2T where � is the diagonal matrix of



7eigenvalues ofM and T is the corresponding matrix of orthonormal eigenvectors.T�1=T � and hence both M1=2 and M�1=2 are symmetric and positive de�nite.Under the change of variables, the system of o.d.e.'s becomesdWdt = M�1=2CM�1=2W; (2.17)which is algebraically stable provided �(kM�1=2CM�1=2) � S. If C is eithersymmetric or anti-symmetric then so too is M�1=2CM�1=2 because of the sym-metry of M�1=2. Therefore, as discussed earlier the condition that the numericalrange lies inside S also ensures that the energy, kWk2 = U�MU , will be non-increasing.3 Analytic equationsThe starting point for the analysis is the nonlinear Navier-Stokes equations,@U@t + @Fx@x + @Fy@y + @Fz@z = 0: (3.1)U is the vector of conservation variables (�; �u; �v; �w; �E)T and the 
ux termsare all de�ned in Appendix B together with the equation of state for an idealgas and the de�nitions of the stress tensor and the viscous heat 
ux vector. Theequations are to be solved on a unit cubic domain 
 with periodic boundaryconditions. The choice of periodic b.c.'s avoids the complication of analysing thein
uence of di�erent analytic and discrete boundary conditions [16, 17].The �rst step is to linearise the Navier-Stokes equations by considering per-turbations to a steady 
ow which is uniform apart from spatial variations inthe viscosity parameters �; �; k. Perturbations to the conserved variables arethen related to the symmetrising variables of Gustafsson and Sundstrom [16]and Abarbanel and Gottlieb [18], by the equationeU = S W: (3.2)The uniform transformation matrix S is given in Appendix B. Together, thelinearisation and the change of variables yields an equation of the form@W@t +Ax@W@x +Ay @W@y +Az @W@z = @@x Dxx@W@x +Dxy @W@y +Dxz @W@z !+ @@y Dyx@W@x +Dyy @W@y +Dyz @W@z !+ @@z Dzx@W@x +Dzy @W@y +Dzz @W@z ! ;(3.3)



8in which the matrices Ax; Ay; Az and the combined dissipation matrix0BBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCAare all symmetric. The matrices are listed in detail in Appendix B and it is alsoproved that the combined dissipation matrix is positive semi{de�nite providedthat �� 0, 2�+3�� 0 and k � 0. These three conditions are satis�ed by thelaminar viscosity coe�cients; it will be assumed that they are also satis�ed bythe coe�cients de�ned by the turbulence modelling.The perturbation `energy' is de�ned asE = Z
 12W �W dV; (3.4)where W � again denotes the Hermitian of W , and its rate of change isdEdt = Z
 12  W �@W@t + @W@t �W! dV = Z
 12  W �@W@t +  W �@W@t !�! dV: (3.5)Using the fact that Ax is real and symmetric, and then integrating by partsusing the periodic boundary conditions,Z
  W �Ax@W@x !� dV = Z
 @W@x �AxW dV = � Z
W �Ax@W@x dV=) Z
W �Ax@W@x +  W �Ax@W@x !� dV = 0: (3.6)Similarly, Z
W �Ay @W@y +  W �Ay @W@y !� dV = 0;Z
W �Az @W@z +  W �Az @W@z !� dV = 0: (3.7)Integrating the di�usion terms by parts and noting that26640BB@ @W@x@W@y@W@z 1CCA�0BB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCA0BB@ @W@x@W@y@W@z 1CCA3775� = 0BB@ @W@x@W@y@W@z 1CCA�0BB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCA0BB@ @W@x@W@y@W@z 1CCA(3.8)



9since the combined dissipation matrix is real and symmetric, yields the �nalresult, dEdt = � Z
0BBB@ @W@x@W@y@W@z 1CCCA�0BBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCA0BBB@ @W@x@W@y@W@z 1CCCA dV: (3.9)Since the combined dissipation matrix is positive semi{de�nite, the perturbation`energy' is non-increasing thereby proving stability in the energy norm.4 Semi{discrete equationsUsing an unstructured grid of tetrahedral cells with W de�ned by linear interpo-lation between nodal values, the standard Galerkin spatial discretisation of thetransformed p.d.e. is MGdWdt + AW = �DW; (4.1)where mGij = Z
NiNj I dVaij = Z
Ni  Ax@Nj@x + Ay @Nj@y + Az @Nj@z ! dVdij = Z
  Dxx@Ni@x @Nj@x +Dxy @Ni@x @Nj@y +Dxz @Ni@x @Nj@z (4.2)+Dyx@Ni@y @Nj@x +Dyy @Ni@y @Nj@y +Dyz @Ni@y @Nj@z+Dzx@Ni@z @Nj@x +Dzy @Ni@z @Nj@y +Dzz @Ni@z @Nj@z ! dV:The vector W of discrete nodal variables has 5-component subvectors wi at eachnode i. For a particular pair of nodes i; j, mGij , aij and dij denote the corre-sponding 5� 5 submatrices of the matrices MG, A and D, respectively. Ni is thepiecewise linear function which is equal to unity at node i and zero at all othernodes, and the viscosity parameters �, � and k within the dissipation matricesare de�ned to be constant on each tetrahedron.An important point to note is that exactly the same semi-discrete equationwould be obtained if one performed a Galerkin discretisation of the nonlinearNavier-Stokes equations expressed using the original conservative variables U ,and then linearised the equations and transformed the variables to the sym-metric variables W . Therefore, the stability analysis to be performed using thesymmetric variables applies equally to actual computations performed using con-servative variables.



10 A standard modi�cation is to `mass-lump' the matrix MG, turning it into adiagonal matrix M withmii =Xj mGij = Z
Ni I dV = Vi I; (4.3)where Vi is the volume associated with node i, de�ned as one quarter of the sumof the volumes of the surrounding tetrahedra.Another standard modi�cation when interested in accelerating convergenceto a steady-state solution, is to precondition the `mass-lumped' matrix so thatmii = Vi�ti I: (4.4)The objective of this preconditioning is to use local timesteps, �ti, which arelarger in large computational cells than in small ones, so that fewer iterationsof the fully-discrete equations will be needed to converge to the steady-statesolution to within some speci�ed tolerance.The matrix A is antisymmetric since, integrating by parts,aij = � Z  Ax@Ni@x Nj + Ay @Ni@y Nj + Az @Ni@z Nj! dV= � Z Nj  ATx @Ni@x + ATy @Ni@y + ATz @Ni@z ! dV= �(aji)T : (4.5)The matrix D is clearly symmetric. Furthermore, for any vector W ,W �DW = Z
0BB@ @W@x@W@y@W@z 1CCA�0BB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCA0BB@ @W@x@W@y@W@z 1CCA dV; (4.6)where @W@x = Xi @Ni@x wi@W@y = Xi @Ni@y wi (4.7)@W@z = Xi @Ni@z wi:Since the combined dissipation matrix is positive semi-de�nite, it follows there-fore that D is also positive semi-de�nite.



11De�ning the `energy' for arbitrary complex W as either E = 12W �MGW orE= 12W �MW , depending whether or not mass-lumping is used,dEdt = �12 (W �(A+D)W +W �(A+D)�W )= �12 (W �(A+D)W +W �(�A+D)W )= �W �DW � 0 (4.8)and so the energy is non-increasing. Since both MG and M are symmetric andpositive de�nite this in turn implies stability for the semi-discrete equations.Note that other discretisations of the Navier-Stokes equations will result inequations of the form, MdUdt = CU; (4.9)whereM is a symmetric positive de�nite `mass' matrix and C can be decomposedinto its symmetric and anti{symmetric components,C = �(A+D); A = �12(C�CT ); D = �12(C+CT ): (4.10)Although A is primarily due to the convective discretisation, in general itmay also contain some terms due to the viscous discretisation. Similarly, Dis primarily due to the viscous discretisation but may also contain some termsdue to the numerical smoothing associated with the convective discretisation. Dmust still be positive semi{de�nite to ensure stability.5 Fully discrete equationsUsing Runge-Kutta time integration the fully discrete equations using one of thetwo diagonal mass matrices areW (n+1) = L(kM�1C)W (n) (5.1)where L(z) is the Runge-Kutta polynomial with stability region S as de�ned inSection 2 and C=�(A+D). As explained in Section 2, su�cient conditions foralgebraic and generalised stability are that�(kM�1=2CM�1=2) � S (5.2)where �(kM�1=2CM�1=2) = (�k W �M�1=2CM�1=2WW �W :W 6= 0) : (5.3)For unsteady calculations with the diagonal mass-lumped matrix, the aimis simply to �nd the largest k such that the constraint, Eq. (5.2), is satis�ed.



12For steady-state calculations using the pre-conditioned mass matrix, one usesa pseudo-timestep k= 1 and then the objective is to de�ne the local timesteps�ti to be as large as possible, again subject to the su�cient stability constraint,Eq. (5.2).The di�culty is that direct evaluation of �(kM�1=2CM�1=2) is not possi-ble. Instead, a bounding set is constructed to enclose the numerical range andsu�cient conditions are determined for this bounding set to lie inside S.There are two choices of bounding set which are relatively easily constructed,a half-disk and a rectangle. The construction of the bounding half-disk startswith the observation that, when using L2 norms,�����W �M�1=2CM�1=2WW �W ����� � kM�1=2CM�1=2k: (5.4)Let the variable r be de�ned byr = maxi 8<:m�1i max8<:Xj kcijk;Xj kcjik9=;9=; (5.5)where mi = 8>><>>: Vi; mass-lumped matrixVi�ti ; preconditioned mass-lumped matrix (5.6)Considering an arbitrary vector V , with subvector vi at each node i,kM�1=2CM�1=2V k2 = Xi m�1i ������Xj cij(m�1=2j vj)������2� Xi;j;km�1i kcijkm�1=2j kvjkkcikkm�1=2k kvkk� Xi;j;km�1i m�1j kvjk2kcijkkcikk� rXi;j m�1j kvjk2kcijk� r2kV k2;=) kM�1=2CM�1=2k � r: (5.7)The third line in the above derivation uses the inequalitym�1=2j kvjk m�1=2k kvkk � 12 �m�1j kvjk2 +m�1k kvkk2� ; (5.8)followed by an interchange of subscripts to replace m�1k kvkk2 by m�1j kvjk2 giventhat kcijkkcikk is symmetric in j and k.



13Also, for an arbitrary vector W ,W �CW + (W �CW )� = W �(C+C�)W = �2W �DW � 0 (5.9)and so the real component of W �CW must be zero or negative. Combined withthe previous bound, this means that �(kM�1=2CM�1=2) must therefore lie in thehalf-disk fz=x+iy : x�0; jzj�krg :For unsteady calculations, the necessary and su�cient condition for the half-disk to lie inside S, and thus a su�cient condition for algebraic and generalisedstability is kr � rc; (5.10)where rc is the radius of the half-disk inscribing S, as de�ned and illustrated inAppendix A.For preconditioned steady-state calculations with local timesteps, k=1 andso the largest value for r for which the half-disk lies inside S is rc. For each nodei, �ti is then maximised subject to the de�nition of r by�ti = rcVimax8<:Xj kcijk;Xj kcjik9=; : (5.11)These stability limits require knowledge of kcijk. Appendix C evaluates kaijkexactly, using the fact that it is a symmetric matrix. Since aji=�aTij =�aij, itfollows that kajik= kaijk. Appendix C also constructs a tight upper bound forkdijk and kdjik. From these, an upper bound for kcijk is obtained. Replacingkcijk by this upper bound in the above stability limits gives a new slightly morerestrictive su�cient stability condition which can be easily evaluated.The rectangular bounding set is obtained by considering separately the nu-merical ranges of D and A. Since D is symmetric and positive semide�nite, thequantityx = �W �M�1=2DM�1=2WW �W is real and negative with �xd�x�0 and xd de�nedby xd = maxi 8<:m�1i max8<:Xj kdijk;Xj kdjik9=;9=; : (5.12)Similarly, since A is anti-symmetric, y = i W �M�1=2AM�1=2WW �W is real andjyj�ya with ya de�ned byya = maxi 8<:m�1i max8<:Xj kaijk;Xj kajik9=;9=; = maxi 8<:m�1i Xj kaijk9=; : (5.13)



14 Thus the numerical range �(kM�1=2CM�1=2) must lie inside the rectangleR = fx+iy : �kxd�x�0; jyj�kyag : (5.14)For unsteady calculations, a su�cient stability limit is obtained by requiringthat R�S. If the boundary of S can be represented by z= r exp(i�) with r(�)being a single-valued function for �2 � � � 3�2 then this can written askqx2d + y2a � r(�); tan(�) = �yaxd : (5.15)For preconditioned steady-state calculations, we again let k = 1 and can thenchoose any rectangle R which inscribes S. Appendix A shows the particularexample of a half-square for which xd = ya. The maximum local timestep �tisubject to the de�nitions of both xD and yA is then�ti = min8>>><>>>: xdVimaxfXj kdijk;Xj kdjikg ; yaViXj kaijk9>>>=>>>; : (5.16)The �nal form of the stability limit is again obtained by using the results ofAppendix C to evaluate kaijk and place an upper bound on kdijk and kdjik.It is di�cult to predict a priori which bounding set will give the least restric-tive su�cient stability conditions. It depends in part on the particular Runge-Kutta method which is used. Appendix A shows that for some methods theinscribing half-disk almost contains the inscribing half-square and other rectan-gles lying inside S; in this case the half-disk su�cient stability conditions willprobably be less restrictive. With other methods, the half-square almost con-tains the inscribing half-disk and for these the half-square stability conditionswill probably be less restrictive.6 Numerical experimentsA number of numerical experiments have been performed to test how close thepredicted su�cient stability limits are to the necessary stability limits.The calculations use a tetrahedral grid created from a uniform 10� 10� 10Cartesian grid by cutting each hexahedron into six tetrahedra. As indicatedin Table 1, cases 1 and 3 use a grid based on a Cartesian grid with the samespacing in each direction, whereas for cases 2 and 4, the spacing in the y-directionis decreased by the speci�ed amount. Periodic boundary conditions are used onall sides of the grid.In all of the computations the mean 
ow is aligned with the x-axis and theMach number is 0.5. Cases 1 and 2 are inviscid, while for cases 3 and 4 the cellReynolds number Re�y � �u�y� is 1.0, the Prandtl number is 0.9 and �=�23�.



15
Table 1: Parameters for four numerical test casesGrid stretching ratio Cell Reynolds numberCase 1 1:1 1Case 2 10:1 1Case 3 1:1 1.0Case 4 100:1 1.0

0 100 200 300 4001100
104

Iteration
kWk2 r=2:75� 4:25r=4:5r=4:75 Case 1

0 100 200 300 4001100
104

Iteration
kWk2 r=2:75� 3:25r=3:5r=3:75 Case 2

0 100 200 300 4000:011
100104

Iteration
kWk2 r=2:75� 5:75r=6:0 Case 3

0 100 200 300 4001100
104

Iteration
kWk2 r=2:75� 3:75r=4:0 Case 4

Figure 1: Evolution of energy in four test cases



16 The four-stage Runge-Kutta method described in Appendix A is used for thetime-marching. The time-step is taken to be�ti = rViXj kcijkbound ; (6.1)where kcijkbound denotes the upper bound for kcijk derived in Appendix C. Foreach case, calculations were performed for a range of values of r starting withr=2:75 and increasing in increments of 0:25. The initial conditions for the linearperturbation variables corresponded to a perturbation in pressure and densityat one corner of the grid, and an equal but opposite perturbation in the centre.Figure 1 shows the evolution of the energy for the four cases, using a log scalefor the energy.Case 1 is the inviscid case on an unstretched grid. The theory for the rect-angular bounding set predicts stability for r < ra and in this case ra � 2:828.The results, however, show the actual stability boundary is at r�4:4. Thus, thetheory underpredicts the stability boundary by approximately 35%.Case 2 is the inviscid case on a grid with a 10:1 stretching ratio. The theoryagain predicts stability for r<ra. The results show the actual stability boundaryto be at r�3:4 so the su�cient stability theory now underpredicts the stabilityboundary by only 15%.Both of these results are consistent with previous results by the author usingenergy analysis for two speci�c Runge-Kutta methods [6]. In that earlier work,the su�cient stability limit derived by energy analysis was compared to thenecessary and su�cient Fourier stability limit for a uniformmesh. At worst, whenthe Mach number was zero and the grid spacing the same in each direction, thetimestep limit from the energy analysis was 40% less than that from the Fourieranalysis. At best, at high Mach numbers or on stretched grids, the two timesteplimits were almost equal.Note also that when the timestep is stable the results show a monotonicdecrease in the energy. This is as predicted by the theory since in these twocases there is only the A matrix, and it is normal.In case 3, the inviscid and viscous terms are equally important because of theunit cell Reynolds number. With the unstretched grid, this case is representativeof turbulent 
ow calculations in combustors and wakes with very high levels ofturbulent viscosity. The theory for the half-disk bounding set predicts stabilityfor r < rc, and for this Runge-Kutta method rc � 2:616. The results show theactual stability boundary is at r� 5:8 so the theory underpredicts the stabilityboundary by 55%.Case 4 is similar to case 3, but with a grid with a 100:1 stretching ratiorepresentative of a boundary layer grid. In this case the actual stability boundaryis at r�3:9, and so the amount by which the theory underpredicts the stabilityboundary is reduced to 33%.



17It is interesting that in these last two cases there is again a monotonic decreasein the energy when the timestep is stable. This is not predicted by the theory.It may be due to the particular choice of initial conditions, but attempts to �nddi�erent initial conditions giving a transient energy growth were unsuccessful.7 ConclusionsThis paper has analysed the stability of one class of discretisations of the Navier-Stokes equations on a tetrahedral grid. The su�cient stability limits for bothglobal and local timesteps are based on recent advances in numerical analysis.Numerical results demonstrate that in the worst case the su�cient stability limitcan be less than half the necessary stability limit, but when the grid is highlystretched or the viscous terms are negligible the su�cient limit is much closer tothe necessary limit.Future research will consider the application of this method of stability anal-ysis to other discretisations of the Euler and Navier-Stokes equations. Upwindapproximations of the inviscid 
uxes would be a particularly interesting topicfor study. As indicated at the end of Section 4, this would change the de�nitionof the dissipation matrix D, but the overall approach to the stability analysiswould remain valid. It may also be possible to investigate the stability of di�er-ent Navier-Stokes boundary condition implementations by incorporating thesewithin the coupled system of o.d.e.'s.AcknowledgementsI wish to thank Larry Wigton for stimulating this research and Eli Turkel, EitanTadmor, Bill Morton, Endr�e S�uli, Nick Trefethen and Satish Reddy for theirhelp with the numerical analysis literature on the stability of systems of o.d.e.'swith non-normal matrices, and for their valuable comments on the paper. The�nancial support of Rolls-Royce plc, DTI and EPSRC is gratefully acknowledged.References[1] L. Wigton. Personal communication, 1994.[2] N.P. Weatherill, O. Hassan, M.J. Marchant, and D.L. Marcum. Adaptiveinviscid 
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ows past installed aero-engines. Comput. Mech., 11:433{451, 1993.
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20 Appendix A Runge-Kutta stability curvesAn example of a Runge-Kutta type of approximation of the o.d.e.dudt = �u; (A.1)is the following two-stage predictor-corrector method,u(1) = un + k� unun+1 = un + k� u(1): (A.2)Combining these two equations givesun+1 = L(k�) un; (A.3)where the Runge-Kutta polynomial function is L(z) = 1 + z + z2. Figure 2a)shows the stability region S within which jLj � 1. It also shows the largesthalf-disk, fz=x+iy : x�0; jzj�rcg ;and the largest half-square,(z=x+iy : � rsp2�x�0; jyj� rsp2) ;which lie inside S. If the boundary of S is de�ned as z = r exp(i�) then rc andrs can be de�ned as rc = min�2��� 3�2 r(�); rs = r( 34�): (A.4)The values of rc and rs are listed to the right of the �gure along with those oftwo other important parameters, ra= r( 12�), which is the length of the positiveimaginary axis segment within S, and rd=r(�), which is the length of the nega-tive real axis segment within S. The importance of all four of these parametersis discussed in the main text in Section 5.Figures 2b) and 2c) show the corresponding curves and data for two otherpopular multistage integration schemes.
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0.5-0.5-1.5 -1.5-0.50.51.5 a) Predictor-correctoru(1) = un + ��t unun+1 = un + ��t u(1)rc = 1:0rs = 1:414ra = 1:0rd = 1:0
1.0-1.0-3.0 -3.0-1.01.03.0 b) Three-stage schemeu(1) = un + 13��t unu(2) = un + 12��t u(1)un+1 = un + ��t u(2)rc = 1:731rs = 2:375ra = 1:731rd = 2:513
1.0-1.0-3.0 -3.0-1.01.03.0 c) Four-stage schemeu(1) = un + 14��t unu(2) = un + 13��t u(1)u(3) = un + 12��t u(2)un+1 = un + ��t u(3)rc = 2:616rs = 2:704ra = 2:828rd = 2:785Figure 2: Stability boundary and inscribing half-disk and half-square for threeRunge-Kutta methods



22 Appendix B vectors, matrices and positivityStarting with the conservative form of the Navier-Stokes equations, the statevector and 
ux vectors areU = 0BBBBBB@ ��u�v�w�E
1CCCCCCA ;

Fx = 0BBBBBB@ �u�u2 + p � �xx�uv � �yx�uw � �zx�u(E + p�) � u�xx � v�yw � w�zx + qx
1CCCCCCA

Fy = 0BBBBBB@ �v�uv � �xy�v2 + p � �yy�vw � �zy�v(E + p�) � u�xy � v�yy � w�zy + qy
1CCCCCCA

Fz = 0BBBBBB@ �w�uw � �xz�vw � �yz�w2 + p � �zz�w(E + p�) � u�xz � v�yz � w�zz + qz
1CCCCCCA : (B.1)�; u; v; w; p; E are the density, three Cartesian velocity components, pressure andtotal internal energy, respectively. To complete the system of equations requiresan equation of state for an ideal gas,p = �RT = (
�1) � (E � 12(u2+v2+w2)); (B.2)in which R; T; 
 are the gas constant, temperature and uniform speci�c heatratio, respectively, as well as equations de�ning the heat 
uxes,qx = �k@T@x ; qy = �k@T@y ; qz = �k@T@z ; (B.3)



23and the viscous stress terms,�xx = 2�@u@x + � @u@x + @v@y + @w@z ! ; �xy = �yx = � @u@y + @v@x! ;�yy = 2�@v@y + � @u@x + @v@y + @w@z ! ; �xz = �zx = � @u@z + @w@x ! ;�zz = 2�@w@z + � @u@x + @v@y + @w@z ! ; �yz = �zy = � @v@z + @w@y ! : (B.4)The transformation between the conservative variables and the symmetrisingvariables of Gustafsson and Sundstrom [16] and Abarbanel and Gottlieb [18],( 1p
 c� e�; eu; ev; ew; 1p
(
�1) cT eT )T , is accomplished by the matrixS = 0BBBBBB@ p
 �c 0 0 0 0p
 �uc � 0 0 0p
 �vc 0 � 0 0p
 �wc 0 0 � 0p
 �Ec �u �v �w q 

�1 pc
1CCCCCCA : (B.5)The linearised, transformed equations are@W@t + Ax@W@x + Ay @W@y + Az @W@z = @@x Dxx@W@x +Dxy@W@y +Dxz @W@z !+ @@y Dyx@W@x +Dyy @W@y +Dyz @W@z !+ @@z Dzx@W@x +Dzy@W@y +Dzz @W@z !(B.6)where Ax = 0BBBBBBBBB@

u 1p
 c 0 0 01p
 c u 0 0 q
�1
 c0 0 u 0 00 0 0 u 00 q
�1
 c 0 0 u
1CCCCCCCCCA ;

Ay = 0BBBBBBBBB@
v 0 1p
 c 0 00 v 0 0 01p
 c 0 v 0 q
�1
 c0 0 0 v 00 0 q
�1
 c 0 v

1CCCCCCCCCA ;



24
Az = 0BBBBBBBBB@

w 0 0 1p
 c 00 w 0 0 00 0 w 0 01p
 c 0 0 w q
�1
 c0 0 0 q
�1
 c w
1CCCCCCCCCA ; (B.7)

andDxx = 0BBBBBBBB@ 0 0 0 0 00 2�+�� 0 0 00 0 �� 0 00 0 0 �� 00 0 0 0 
�Pr �
1CCCCCCCCA ; Dxy = DTyx = 0BBBBBBBB@ 0 0 0 0 00 0 �� 0 00 �� 0 0 00 0 0 0 00 0 0 0 0

1CCCCCCCCA ;
Dyy = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 2�+�� 0 00 0 0 �� 00 0 0 0 
�Pr �

1CCCCCCCCA ; Dxz = DTzx = 0BBBBBBBB@ 0 0 0 0 00 0 0 �� 00 0 0 0 00 �� 0 0 00 0 0 0 0
1CCCCCCCCA ;

Dzz = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 �� 0 00 0 0 2�+�� 00 0 0 0 
�Pr �
1CCCCCCCCA ; Dyz = DTzy = 0BBBBBBBB@ 0 0 0 0 00 0 0 0 00 0 0 �� 00 0 �� 0 00 0 0 0 0

1CCCCCCCCA :(B.8)The Prandtl number is de�ned asPr = �cpk = 
�R(
�1)k ; (B.9)but is not assumed to be uniform since � and k in general represent combinationsof laminar and turbulent viscosities, each with their own Prandtl number.An important feature of the transformed equations is that the combined dis-sipation matrix, 0BBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCA



25is both symmetric and positive semi-de�nite. The symmetry is clear from theabove de�nitions of the component matrices, and the positivity comes from not-ing thatxT 0B@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CAx = �� (x3+x7)2 + �� (x4+x12)2 + �� (x9+x13)2+ 1� 0B@ x2x8x141CAT 0B@ 2�+� � �� 2�+� �� � 2�+� 1CA0B@ x2x8x141CA+ 
�Pr�(x25 + x210 + x215): (B.10)The eigenvalues of 0B@ 2�+� � �� 2�+� �� � 2�+� 1CAare 2�; 2�; 2�+3� and hence the combined dissipation matrix is positive semi-de�nite provided ��0; 2�+3��0 and k�0.



26 Appendix C L2 norms of component matricesDe�ning Z
NirNj dV = S ~n; (C.1)then aij = S (nxAx + nyAy + nzAz)
= S 0BBBBBBBBB@

~u:~n 1p
 cnx 1p
 cny 1p
 cnz 01p
 cnx ~u:~n 0 0 q
�1
 cnx1p
 cny 0 ~u:~n 0 q
�1
 cny1p
 cnz 0 0 ~u:~n q
�1
 cnz0 q
�1
 cnx q
�1
 cny q
�1
 cnz ~u:~n
1CCCCCCCCCA : (C.2)

Three of the eigenvalues of S�1aij are equal to ~u:~n and the other two are ~u:~n� c,and so kaijk = S (j~u:~nj+ c); (C.3)since the L2 norm of a symmetric matrix is the magnitude of the largest eigen-value.The quantity S~n can be interpreted geometrically. First note that rNj isnon-zero only on tetrahedra surrounding node j, and that on such a tetrahedron,labelled �, rNj = 13V � ~S�j (C.4)where ~S�j is the inward-pointing area vector of the face of � opposite node j,and V � is the volume of the tetrahedron. Summing over all tetrahedra for whichboth i and j are corner nodes, givesS ~n = 112X� ~S�j (C.5)De�ne d�ij to be the contribution to dij from the integration over tetrahedron�. Therefore, dij =X� d�ij =) kdijk �X� kd�ijk (C.6)where again the summation is over tetrahedra common to both i and j. On



27tetrahedron �; rNi and rNj are both uniform and so
d�ij = V �

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 00 �+�� @Ni@x @Nj@x �� @Ni@x @Nj@y �� @Ni@x @Nj@z 0+��rNi �rNj +�� @Ni@y @Nj@x +�� @Ni@z @Nj@x0 �� @Ni@y @Nj@x �+�� @Ni@y @Nj@y �� @Ni@y @Nj@z 0+�� @Ni@x @Nj@y +��rNi �rNj +�� @Ni@z @Nj@y0 �� @Ni@z @Nj@x �� @Ni@z @Nj@y �+�� @Ni@z @Nj@z 0+�� @Ni@x @Nj@z +�� @Ni@y @Nj@z +��rNi �rNj0 0 0 0 
�Pr�rNi �rNj

1CCCCCCCCCCCCCCCCCCCCCCCCCCA(C.7)Hence, kd�ijk � V � max(2�+�� jrNij jrNjj; 
�Pr� jrNi �rNjj) (C.8)which can be re-expressed using the values for rNi and rNj askd�ijk � 19V � max(2�+�� j~S�i j j~S�j j; 
�Pr� j~S�i � ~S�j j) ; (C.9)where ~S�i and ~S�j are as de�ned previously. Note that the upper bound on theright-hand-side of Eq. (C.9) is unchanged if i and j are interchanged, and so itis also an upper bound for kd�jik. Hence,maxfkdijk; kdjikg �X� 19V � max(2�+�� j~S�i j j~S�j j; 
�Pr� j~S�i � ~S�j j) : (C.10)The exact value for kaijk and the upper bounds for kdijk; kdjik can then becombined by the triangle inequality,kcijk = kaij + dijk � kaijk+ kdijk; (C.11)to get upper bounds for kcijk and kcjik for use in the su�cient stability limitsderived in Section 5 in the main text.


