
1
Multigrid aircraft computations using the OPlus parallel libraryPaul I. Crumpton and Michael B. Giles a �aOxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UKThis paper presents the OPlus library which is a
exible library for distributed memoryparallel computations on unstructured grids through the straightforward insertion of sim-ple subroutine calls. It is based on an underlying abstraction involving sets, pointers (ormappings) between sets, and operations performed on sets. The key restriction enablingparallelisation is that operations on a particular set can be performed in any order.The set partitioning, computation of halo regions, and the exchange of halo data asrequired is performed automatically by the OPlus library after the user speci�es the setsand pointers. A single source OPlus application code can be compiled for execution oneither a parallel or a sequential machine, greatly easing maintainability of the code.The capabilities of the library are demonstrated by its use within a program for thecalculation of inviscid
ow over a complete aircraft using multigrid on a sequence of inde-pendent tetrahedral grids. Good computational e�ciency is achieved on an 8-processorIBM SP1 and a 4-processor Silicon Graphics Power Challenge.1. INTRODUCTIONAlgorithms for unstructured grids are becoming increasingly popular, especially withinthe CFD community where the geometrical
exibility of unstructured grids enables wholeaircraft to be modelled. The resulting calculations are often huge and so there is a needto fully exploit modern distributed memory parallel computers. Writing an individual,machine-speci�c parallel program can be time consuming, expensive and di�cult to main-tain. Therefore there is a need for tools to simplify the task and generate very e�cientparallel implementations. This paper describes the development of OPlus (Oxford Par-allel library for unstructured solvers), a FORTRAN subroutine library which enables theparallelisation of a large class of applications using unstructured grids, removing the par-allelisation burden from the application programmer as far as possible [1].In the design of the library emphasis was placed on the following aspects:generality: OPlus uses general data structures. In a CFD application, for example, itallows cell, edge, face and other data structures, The cells could also be of any type,such as tetrahedra, prisms or hexahedra.performance: Messages are sent only when data has been modi�ed and are concatenatedto reduce latency. Also, local renumbering is used to improve the cache performanceon RISC processors.�Research supported by Rolls-Royce plc, EPSRC and DTI

2single source: A single source code can be executed either sequentially (without anymessage-passing of other parallel library) or in parallel, with identical treatmentof disk and terminal i/o. This greatly simpli�es development and maintenance ofparallel codes.This paper will �rst describe the concepts behind the OPlus framework, and then var-ious aspects of the implementation. Finally some results are presented for an applicationcode modelling the inviscid
ow over an aircraft using multiple tetrahedral meshes. Acompanion paper discusses the use of the distributed visualisation software pV3 whichwas a vital tool in this work [5].The PARTI library developed by Das et al [7,6] has similar objectives in dealing withparallel computations on generic sets. There are a number of detailed di�erences betweenPARTI and OPlus but the principal di�erence is that with OPlus the programmer is notaware of the message-passing required for the parallel execution. This greatly simpli�esthe programmer's task. PARTI has the same long-term objective but the aim is to achieveit through the incorporation of PARTI within an automatic parallelising compiler. Atpresent, the programmer must still explicitly specify the message-passing to be performed.2. OPlus LIBRARY2.1. Top level conceptThe concept behind the OPlus framework is that unstructured grid applications havethree key components.sets Examples of sets are nodes, edges, triangular faces, quadrilateral faces, cells of a va-riety of types, far-�eld boundary nodes, wall boundary faces, etc. Data is associatedwith these sets, for example the grid coordinates at nodes, the volumes of cells andthe normals on faces.pointers The connectivity of the computational problem is expressed by pointers fromelements of one set to another. For example, cell to node connectivity could de�netetrahedra, and face to node connectivity would de�ne the corresponding faces.operations over sets All of the numerically-intensive parts of unstructured applicationscan be described as operations over sets. For example, looping over the set of cellsusing cell{node pointers and nodal data to calculate a residual and scatter an updateto the nodes, or looping over the nonzeros of a sparse matrix accumulating a matrix-vector product.The OPlus framework makes the important restriction that an operation over a setcan be applied in any order without a�ecting the �nal result. Consequently, the OPlusroutines can choose an ordering to achieve maximum parallel e�ciency. This restrictionprevents the use of OPlus for certain numerical algorithms such as Gauss{Seidel iterationor globally implicit approximate factorisation time-marching methods. However, mostnumerical algorithms on unstructured grids in current use in CFD, and many other ap-plication areas, satisfy this restriction. Speci�c examples include explicit time-marchingmethods, multigrid calculations using explicit smoothing operators and conjugate gradientmethods using local preconditioning.

3Another current restriction is that the sets and pointers are declared at the start ofthe program execution and must then remain unaltered throughout the computation.Therefore, dynamic grid re�nement cannot be treated at present. This is an area forfuture development.2.2. Parallelisation approachThe implementation uses a standard data-parallel approach in which the computationaldomain is partitioned into a number of regions and each partition is treated by a separateprocess, usually on a separate processor.The communication requirements between partitions arise because of the pointer con-nectivity at the boundaries between partitions. An illustrative example is matrix-vectormultiplication for a symmetric sparse matrix:yi =Xj AijxjIf the matrix A is symmetric, then de�ning an edge k to correspond to nodes ik, jk forwhich Aij 6= 0, the product can be evaluated by the following algorithm:For all nodes i, yi := 0For all edges k, yik := yik + Akxjkyjk := yjk + AkxikExpressed in FORTRAN this algorithm becomesDO I = 1, NNODESY(I) = 0.0ENDDOC DO K = 1, NEDGESI = P(1,K)J = P(2,K)Y(I) = Y(I) + A(K)*X(J)Y(J) = Y(J) + A(K)*X(I)ENDDOThe integer array P is the pointer table de�ning the edge to node connectivity. Notethat operations on edges can be performed in any order and the �nal result will remainthe same, so this example satis�es the restriction required by the OPlus framework.In the data parallel approach the edges and nodes are partitioned so that each individualedge or node belongs to only one partition. There is no di�culty in performing the edgeoperations when the edge and its two nodes belong to the same partition. When morethan one partition is involved the approach used is to perform the edge operation on

4 Sequential programuser'scomputeprocessuser'si/oroutines
Server programOPlusserverprocessuser'si/oroutines

Client programsuser'scomputeprocessOPlusclientroutinesFigure 1. Sequential and parallel versions of user's programeach partition whose owned data is a�ected by the operation. In this case that meansperforming the calculation for each partition owning one of the two nodes. To carry outthis operation, temporary copies must be obtained of the unowned data from the othernode and/or the edge belonging to a di�erent partition; this is commonly referred to ashalo data.2.3. Software architecture and communicationsA key design goal for the OPlus framework was to allow users to write a single sourcecode which will execute either sequentially or in parallel depending only on the libraryto which it is linked. Moreover, the sequential and parallel execution should result inidentical disk and terminal i/o. To achieve this it was necessary to adopt the programstructure shown in Figure 1 in which all disk and terminal i/o is handled via subroutineswith a speci�ed interface.For sequential execution the user's main program is linked to user{written subroutineswhich handle all i/o. This enables the user to develop, debug and maintain their sequentialcode without any parallel message passing libraries.For parallel execution the OPlus framework creates server and client programs from theuser's single source. The server program is formed by linking the OPlus server process tothe user's i/o routines, while the client program is created by linking the user's computeprocess to the OPlus client routines. When the client routines collectively need to inputan array of data from disk, a request is passed to the server process; it reads the datafrom disk and passes to each client its piece of the array corresponding to its partition ofthe overall problem.The communication between the client and the server is performed using PVM 3.3 toallow the server to be on a di�erent type of machine from the clients. For the criticalclient-client communication in the main parallel computation phase, BSP FORTRAN isemployed. This is a FORTRAN library with strong similarities to the shmem_put andshmem_get directives for communication on the CRAY{T3D. It has been implemented ona wide range of machines using the most e�cient communication method in each case,e.g. MPL on the IBM SP1/SP2 and shared-memory pages on the Silicon Graphics PowerChallenge [8].

52.4. Initialisation phaseAt the beginning of the application program the user declares the sets and pointers tobe used in the application. At the beginning of the parallel execution these are then usedin the following key steps:partitioning All sets are partitioned. Simple recursive inertial bisection is used to ini-tially partition one or more sets. The other sets are partitioned consistently usingthe connectivity information contained in the pointers; see [5] for examples of in-herited partitioning.construction of import/export lists The initialisation phase constructs, for each par-tition, lists of the set members which may need to be imported during the mainexecution phase. Correspondingly, each partition also has export lists of the owneddata which may need to be imported by other partitions.local renumbering Each partition should only need to allocate su�cient memory tostore the small fraction of each set which it either owns or imports. To enablethis, it is necessary to locally renumber the set members. This local renumberingof each set forces a consistent renumbering of all of the pointer information. Thelocal-global mapping is also maintained for i/o purposes.It is important to note again that all of the above phases are performed automaticallyby the OPlus library, not the application code. In all applications performed to date, theCPU time taken for these initialisation phases has been signi�cantly less than the timerequired for the disk i/o, and so is considered to be negligible.2.5. Computation phaseThe heart of a parallel OPlus application is a DO-loop carrying out in parallel operationson a distributed partitioned set. Continuing with the example of the sparse matrix-vectorproduct, using the OPlus library the FORTRAN code for the main edge loop is:DO WHILE(OP_PAR_LOOP(EDGES,K1,K2))CALL OP_ACCESS('read' ,X,1,NODES,P,2,1,1,1,2)CALL OP_ACCESS('update',Y,1,NODES,P,2,1,1,1,2)CALL OP_ACCESS('read' ,A,1,EDGES,0,0,1,1,0,0)C DO K = K1, K2I = P(1,K)J = P(2,K)Y(I) = Y(I) + A(K)*X(J)Y(J) = Y(J) + A(K)*X(I)ENDDOEND WHILE

6 The purpose of the OP ACCESS calls is to inform the library which distributed arraysare being used within the DO-loop, which sets they are associated with, which pointersare being used to address those sets and the type of operation (read, write or update)being undertaken with the data. This is the information needed by the library to decidewhich data must be imported from neighbouring partitions. Full details of the argumentsof OP ACCESS and the other OPlus routines are available [2].The logical function OP PAR LOOP controls the number of times execution passes thoughthe interior of the DO WHILE loop. The �rst argument declares that the operations are tobe performed over the set of edges, and the second and third arguments set by the functionare the start and �nish indices of the inner loop. For sequential execution, there is justone pass through the DO WHILE loop with K1 and K2 set to 1 and NEDGES respectively.For parallel execution there are a number of preliminary passes through the DO WHILEloop during which K1 is set to a higher value than K2 so the inner DO loop is skipped;these passes process the information in the OP ACCESS calls and export the necessary halodata to neighbouring partitions. Next comes a single pass through the DO loop performingthose calculations which do not depend on halo data. There are then a number of passeswhich receive the incoming imported data from neighbouring partitions but perform nocalculations, and �nally there is an execution pass which performs the computations thatdo depend on the halo data. In this way it is possible to overlap interior computationswith the exchange of halo data, but so far this overlapping has not yielded signi�cantbene�ts on any of the machines tested.A point to emphasise is that the lines of FORTRAN which form the contents of theinner DO loop have not changed from the original sequential code. In this trivial examplethe number of OPlus subroutine calls which have been added is comparable to the numberof lines of application code, but in a real application there could be a hundred lines ormore of FORTRAN inside the DO loop and it is crucial that this does not have to bechanged.3. MULTIGRID AIRCRAFT COMPUTATIONThe utility and e�ciency of the OPlus library is illustrated here by its use for thecomputation of the steady inviscid
ow around a complex aircraft geometry. The CFDalgorithm uses a multigrid procedure based on a Lax-Wendro� solution algorithm [3,4].In this application �ve tetrahedral grids are used. The number of cells varies from 750kon the �nest grid to 28k on the coarsest. The surface triangulation of one of the gridsis shown in Figure 2 together with the �nal surface pressure contours. Previous research[3] showed that a W-cycle multigrid iteration is twice as fast as a V-cycle iteration, andso a W-cycle iteration is used in this work. However, this presents a great challenge forparallel e�ciency because of the very large number of iterations performed on the coarsestgrids which have relatively more communication and redundant computation.On each of the �ve grids there are four sets, tetrahedra, nodes, boundary faces andboundary nodes. For each grid there are pointers from the tetrahedra, boundary facesand boundary nodes to the regular nodes. There are also pointers between grid levels,giving for each node the four nodes of the enclosing tetrahedra on the �ner and coarsergrids. These are required for the transfer and interpolation operations within the multigrid

7

Figure 2. One of the grids used for the aircraft computation and computed contours ofsurface pressureprocedure.Calculations were performed on an 8 node distributed memory IBM SP1 and a 4 pro-cessor shared memory SGI Power Challenge. The elapsed times, in seconds per multigridcycle, and the corresponding speedup over the single processor performance, S, is givenin the following table. IBM SP1 SGI PCproc Smax time S time S1 1.0 1006 1.0 419 1.02 1.9 556 1.8 216 1.93 2.7 384 2.6 149 2.84 3.5 310 3.2 116 3.65 4.1 270 3.7 | |6 4.8 234 4.3 | |7 5.4 211 4.8 | |8 6.1 190 5.3 | |The maximum achieveable speed-up, Smax, is de�ned as the ratio of the total sequentialwork to the maximum work performed on any of the OPlus clients,Smax = sequential workmax slave work :This is the speedup which would be achieved in the complete absence of communicationcosts. There are two reasons why it does not increase linearly with the number of pro-cessors. One is that it is di�cult to achieve load-balancing on the coarser grid levels;the grid nodes may be load-balanced but the boundary faces may not be. The otheris that redundant computations are performed at the interfaces between partitions; theproportion of these becomes larger on the coarser grids. Nevertheless, very good parallelexecution speed up has been achieved for a highly complex application which is in manyways a worst case in that it employs the W-cycle multigrid iteration which is known tobe a challenge to e�cient parallel execution. Note that the factor of two saved by the useof W-cycle multigrid compared to V-cycle multigrid is still much greater than any loss of

8parallel e�ciency associated with the increased number of iterations on the coarse gridlevels.4. CONCLUSIONSA
exible and general library has been developed to parallelise a large class of unstruc-tured grid applications. The programmer speci�es the sets and pointers to be used inthe application and the library determines an appropriate partitioning for data-parallelexecution. The transfer of halo data is performed automatically by the library given theprogrammer's speci�cation of the data being used in operations performed on the mem-bers of the distributed sets. The resulting single source code will execute on a sequentialmachine without the need for any parallel libraries, or in parallel on a MIMD architecture.The use of the OPlus library has been demonstrated for a multigrid computation ofthe inviscid compressible
ow over a complete aircraft con�guration. For this realisticindustrial application good parallel e�ciency has been achieved with very little e�ortfrom the application programmer.REFERENCES1. D.A. Burgess, P.I. Crumpton, and M.B. Giles. A parallel framework for unstructuredgrid solvers. In S. Wagner, E.H. Hirschel, J. P�eriaux, and R. Piva, editors, Computa-tional Fluid Dynamics '94. Proceedings of the Second European Computational FluidDynamics Conference 5-8 September 1994 Stuttgart, Germany, pages 391{396. JohnWiley & Sons, 1994.2. P. Crumpton and M. Giles. OPlus programmer's guide, rev. 1.0. 1993.3. P. Crumpton and M.B. Giles. Aircraft computations using multigrid and an unstruc-tured parallel library. AIAA Paper 95-0210, 1995.4. P.I. Crumpton and M.B. Giles. Implicit time accurate solutions on unstructureddynamic grids. AIAA Paper 95-1671, 1995.5. P.I. Crumpton and R. Haimes. Parallel visualisation of unstructured grids. In S. Tay-lor, A. Ecer, J. Periaux, and N. Satofuka, editors, Proceedings of Parallel CFD'95,Pasadena, CA, USA 26{29 June, 1995.6. R. Das, D.J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. Design and imple-mentation of a parallel unstructured Euler solver using software primitives. AIAAJournal, 32(3):489{496, 1994.7. R. Das, J. Saltz, and H. Berryman. A manual for PARTI runtime primitives, revision1. Technical report, ICASE, NASA Langley Research Centre, Hampton, USA, 1993.8. R. Miller. A library for bulk synchronous parallel programming. In Proceedings ofthe BCS Parallel Processing Special Interest Group Workshop on General PurposeParallel Computing, Dec 1993. http://www.comlab.ox.ac.uk/oucl/oxpara/ppsg.html.

