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Nested expectations

In this lecture we are concerned with nested expectations.

In the simplest case, this is of the form E
[
f
(
E[X |Y ]

) ]
where

I X and Y can be either multi-dimensional or scalar

I we will assume that X |Y can be simulated exactly at O(1)
cost (on average)

Applications differ in the smoothness of f :

I C 2 – the nice case, e.g. x2

I continuous, piecewise C 2 – the more typical case.
e.g. max(x , 0)

I discontinuous – the nasty case, e.g. Heaviside H(x)



Outline

As with previous topics we will discuss
I motivating applications

I credit modelling with multiple firms
I financial risk estimation
I medical research decision making under uncertainty

I standard Monte Carlo method

I multilevel Monte Carlo

and will also outline the numerical analysis for both methods.



Financial credit modelling

First MLMC nested simulation – Bujok, Hambly, Reisinger (2013)

M individual firms each satisfying an SDE of the form:

dx
(i)
t = a(x

(i)
t ) dt + B(x

(i)
t ) dWt + b(x

(i)
t ) dW

(i)
t

I {Wt}0≤t≤T is common to all firms (systemic risk factor)

I {W (i)
t }0≤t≤T are independent Brownian motions

(idiosyncratic risk)

I model views firms as bankrupt if X
(i)
t drops below zero.

Quantity of interest is lim
M→∞

E [f (XM |Y )] = E
[
f (E[X |Y ])

]
I Y is the systemic risk factor ({Wt}0≤t≤T )

I XM is the fraction of M firms not bankrupt at time T

I X = 1min[0,T ] xt>0 is corresponding indicator function

I f is continuous and piecewise linear



Financial risk measures

Value-at-risk (VaR) and Conditional Value-at-risk (CVaR)
– first MLMC paper by Giles, Haji-Ali (2019), key previous papers
by Gordy & Juneja (2010) and Broadie, Du & Moallemi (2011)

Important financial risk question:

In a week, if the bank doesn’t change its holdings of various
stocks, bonds and other assets, can the reduction in the value of
the combined portfolio exceed its cash reserves?



Current and future portfolio values

Current value of portfolio: E[P].

This average is over multiple driving Brownian motions which
affect the value of various financial products within a large portfolio

P =

NP∑
i

P(i)

Future value of portfolio: E[P|Y ].

Y here represents the Brownian motions for the first week, and
the expectation is with respect to their subsequent evolution.

The loss is then L = E[P]− E[P|Y ].



Loss probability, VaR and CVaR
Given some expected loss L conditional on Y , the probability of a
loss exceeding Lη is

η = P[L>Lη]

VaR is defined implicitly by specifying η and computing Lη, and
CVaR (Expected Shortfall) is defined as

E
[
L | L>Lη

]
= min

s

{
s +

1

η
E [max(L−s, 0)]

}

The important point is that the loss is a conditional expectation

L− Lη ≡ E[X |Y ]

so the loss probability is a nested expectation

P[L>Lη] = E
[
H (E[X |Y ])

]
where H(·) is the Heaviside step function.



Medical application – EVPI/EVPPI/EVSI

There are huge uncertainties in medicine:

I Individual patients vary hugely – in the future it is likely
medicine will be more personalised, so that treatment is
more customised to each individual person

Is the cost of customisation justified?

I When using the same treating for the whole population
(with some particular ailment) there is uncertainty in how
effective different treatments are

If we knew more, could a better treatment be selected?

Is it worth the cost of the required research?

This second problem is the one we’re focussed on here.



Medical application – EVPI

Suppose X and Y are independent r.v.’s representing unknown
values of parameters in a cost-effectiveness model of a small set
of possible medical treatments d ∈ D.

If we don’t know either X or Y then the best treatment is the one
which maximises:

max
d

E[fd(X ,Y )]

but if we could somehow determine both of them then best
treatment gives

max
d

fd(X ,Y )



Medical application – EVPI

On average this perfect information gives

E[max
d

fd(X ,Y )]

and the difference is

E[max
d

fd(X ,Y )] − max
d

E[fd(X ,Y )]

which is the Expected Value of Perfect Information (EVPI), and
can be computed using standard Monte Carlo with an O(ε−2) cost.



Medical application – EVPPI

Totally eliminating uncertainty is rarely possible, so suppose
instead the experiment will determine Y but not X .

In that case, we get the Expected Value of Partial Perfect
Information (EVPPI)

E
[

max
d

E[fd(X ,Y ) |Y ]

]
− max

d
E[fd(X ,Y )]

which is a nested simulation problem.

Similar problems arise in other fields – e.g. an oil company trying
to decide whether to sink another exploratory well when mapping
out a new oil reservoir.



Medical application – EVSI

Even identifying Y exactly is unlikely; more likely is to obtain some
information Z which through Bayes Theorem updates a prior
distribution for X and Y .

This leads to the Expected Value of Sample Information (EVSI)
which has the form

EZ

[
E[maxd fd(X ,Y ) ρ(X ,Y |Z )]

E[ρ(X ,Y |Z )]
− maxd E[fd(X ,Y ) ρ(X ,Y |Z )]

E[ρ(X ,Y |Z )]

]



Monte Carlo for nested expectations

OK, let’s return to generic problem of estimating

E
[
f (E[X |Y ]

]
The standard Monte Carlo estimator uses N outer samples, and M
inner samples:

N−1
N∑

n=1

f
(
X (Y (n))

)
where

X (Y (n)) = M−1
M∑

m=1

X (m,n) |Y (n)

is an average of M samples of X conditional on Y (n).

How should M and N be chosen to achieve ε2 Mean Square Error?



Nested expectations

If X is scalar, f ∈ C 2, and |f ′′| < K , then a Taylor series expansion
gives

f
(
X (Y (n))

)
= f + f ′∆X + 1

2 f
′′ (∆X )2

where f , f ′ are evaluated at E[X |Y (n)] and f ′′ is evaluated
elsewhere and

∆X ≡ X (Y (n))− E[X |Y (n)].

Hence, for fixed Y (n),∣∣∣E [f (X (Y (n))
)]
− f

(
E[X |Y (n)]

)∣∣∣ ≤ K

2M
V[X |Y (n)]



Nested expectations

Hence overall∣∣E [f (X (Y )
)]
− E [f (E[X |Y ])]

∣∣ ≤ K

2M
E[V[X |Y ]]

so the bias is O(M−1) and therefore we need M = O(ε−1).

In addition we need N = O(ε−2) as usual, so the total cost
is O(ε−3).

As usual, we will aim to do better with MLMC.



Prior research on VaR

Gordy & Juneja (2010) considered

P
[
E[X |Y ] > 0

]
≡ E

[
H (E[X |Y ])

]
using a uniform sampling approach with N outer samples for Y ,
and M inner samples to estimate E[X |Y ].

The inner estimator has O(M−1) variance, – they prove this again
produces a bias in the outer estimate of the same order.

(The p.d.f. for X (Y ) differs from p.d.f. for E[X |Y ] by O(M−1),
even though X (Y ) differs from E[X |Y ] by O(M−1/2); this is
similar to weak and strong convergence with SDEs.)

Hence, ε RMS accuracy again requires O(ε−3) work.



Prior research on VaR

Broadie, Du & Moallemi (2011) improved on Gordy & Juneja by
noting that few samples are needed for H(E[X |Y ]) when
|E[X |Y ] | is large.

Their adaptive sampling algorithm used something like

M = min(ε−1, ε−1/2σ/d)

where
σ2 ≡ V[X |Y ], d = |E[X |Y ]|

The cross-over is at d = O(ε1/2) so the average number of inner
samples is

M = O(ε−1/2),

reducing the overall complexity to O(M N) = O(ε−5/2).

This is better, but still not the O(ε−2) that we aim for.



MLMC for nested simulation

The MLMC treatment is quite natural:

I on level ` use M` = 2` samples to compute X
(f ) ≈ E[X |Y ]

I on level `−1 can use an independent set of M`−1 = 2`−1

samples to compute X
(c) ≈ E[X |Y ]

I if f is globally Lipschitz then the level ` MLMC correction
estimator is

Z` ≡ f (X
(f )

)− f (X
(c)

) = O(X
(f )−X (c)

) = O(2−`/2)

so the variance is O(2−`) while the cost is O(2`)

I hence β=1, γ=1 in MLMC theorem =⇒ O(ε−2| log ε|2)
complexity



MLMC for nested simulation

We can do even better if f ∈ C 2 and |f ′′| is bounded:

I on level ` again use 2` samples to compute X
(f ) ≈ E[X |Y ]

I on coupled level `−1, split these samples into two subsets of

size 2`−1 and average each to get X
(c1)

,X
(c2)

I MLMC “antithetic” correction estimator is then

Z = f (X
(f )

)− 1
2

(
f (X

(c1)
) + f (X

(c2)
)
)

I if f (x) is linear then Z =0 ; with a bounded second derivative
then

Z = O
(

(X
(c1)− X

(c2)
)2
)

= O(2−`)

so the variance is O(2−2`) while the cost is O(2`)

I hence β=2, γ=1 in MLMC theorem =⇒ O(ε−2) complexity



MLMC for nested simulation

What if f (x) = max(x , 0)?

I Z = 0 if X
(c1)

,X
(c2)

have same sign

I if E[X |Y ] has bounded density near 0, then O(2−`/2)

probability of X
(c1)

,X
(c2)

having different signs, and in that
case Z = O(2−`/2)

I MLMC correction variance is O(2−3`/2) while the cost is
O(2`)

I hence β=3/2, γ=1 in MLMC theorem =⇒ O(ε−2)
complexity

I this is what Bujok, Hambly, Reisinger (2013) proved for their
financial credit model with a piecewise linear f



MLMC for nested simulation

Finally, the nasty case f (x) = H(x)

I Z = 0 if X
(c1)

,X
(c2)

have same sign

I if E[X |Y ] has bounded density near 0, then O(2−`/2)

probability of X
(c1)

,X
(c2)

having different signs, and in that
case Z = O(1)

I MLMC correction variance is O(2−`/2) while the cost is still
O(2`)

I hence β=1/2, γ=1 in MLMC theorem – additional analysis
gives α=1 so O(ε−5/2) complexity

I This can be made rigorous under certain conditions, using

P
[
|X − E[X |Y ]| > c d

]
< (σ2/M) / (c d)2 ≡ c−2M−1δ−2

where d ≡ |E[X |Y ]|, σ2 ≡ V[X |Y ] and δ ≡ d/σ.



MLMC + adaptive sampling
Instead of using M` = M0 2` inner samples, we instead want to use

M` = M0 4` max
(

2−`,min(1, (C−1M
1/2
0 2`δ)−r )

)
, 1 < r < 2,

with a minimum of M0 2` and maximum of M0 4`.

fixed `, decreasing r

fixed r , increasing `

δ

M
`



MLMC + adaptive sampling

Heuristic analysis:

I r > 1 ensures the intermediate region is small enough that the
average number of inner samples remains O(2`)

I r < 2 ensures high probability of correct value for H(X ) in
intermediate region

I M0 4` in core region ensures O(2−`) error in computed means,
so Z` = O(1) for O(2−`) fraction of outer samples

I hence, V` = V[Z`] = O(2−`) so now β = 1 and the overall
complexity is O(ε−2| log ε|2)

The heuristic analysis is fundamentally correct, but the rigorous
analysis for the real algorithm took another year, and the upper
bound on r had to be tightened.

Main challenge: real algorithm has to estimate δ.



Large portfolios

Another challenge with VaR and CVaR is the size of the portfolios:

P =

NP∑
i

P(i)

In real applications, can have NP = O(105) so cost of evaluating P
is not really O(1). What can we do?

Note that if I is a random index which takes value i with
probability pi then

P =

NP∑
i

P(i) =

NP∑
i

pi (P
(i)/pi ) = E[P(I )/pI ]

The best thing is to choose pi roughly proportional to the likely
size of P(i). Now can replace P by P(I )/pI in simulations.



EVPPI

We chose to calculate EVPI - EVPPI

E
[

max
d

fd(X ,Y )

]
− E

[
max
d

E[fd(X ,Y ) |Y ]

]
with antithetic estimator on level ` based on 2` inner samples

Z` = 1
2

(
max
d

f
(a)
d + max

d
f
(a)
d

)
−max

d
f d

I f
(a)
d is an average using 2`−1 inner samples

I f
(b)
d uses an independent set of 2`−1 inner samples

I f d is the average using the combined set of 2` samples



EVPPI

Analysis proves V[Z`] = O(2−3`/2) provided ∃c0, c1, c2>0 s.t.

P
(

min
y∈K
‖Y − y‖ ≤ ε

)
≤ c0 ε

max
d

E[f (X ,Y )|Y ] − max
d 6=dopt

E[f (X ,Y )|Y ] ≥ min

(
c1, c2 min

y∈K
‖Y − y‖

)
where K is the set of Y for which the optimal d is not uniquely
defined.

This gives O(ε−2) complexity, as usual.

The same can be achieved for EVSI (Expected Value of Sample
Information)



Future research?

We now have good algorithms and analysis for an increasing range
of applications, but there’s still lots to be done.

I Goda has new papers on Expected Information Gains, and
Expected Value of Sample Information

I Haji-Ali has an arXiv paper on nested MLMC to calculate
X |Y , when this requires the approximation of an SDE
solution – also addresses the large portfolio problem

I Szpruch and others working on applications to
McKean-Vlasov equations
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