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Motivation

New research interest — MLMC for parabolic SPDEs:
@ 1D stochastic heat equation is the simplest example driven by
space-time white noise (cylindrical Wiener process)
e focus on
o three different noise representations: spectral, mass-lumped finite
element, finite volume
o three different quantities of interest (Qol): squared amplitude of
a single Fourier mode, energy ||ul|3, and (i, u)?
Key messages:
o finite volume treatment has worst MLMC variance

o finite element is as good as spectral, and both benefit from
Richardson extrapolation to overcome MLMC oddity (5 > 2«)
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Multilevel Monte Carlo

Given a sequence Py, P1, Py,... — P

L
E[P] ~ E[P] = E[Po] + Y E[P—P; 1]
/=1

so we can use the estimator

e 3wy (et ) |

with independent estimation for each level of correction.

V[P¢—Py—1] — 0 as £ — oo means we don't need many samples
on finer levels.
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MLMC Meta Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators Y; based on N, Monte Carlo samples,

each costing C;, and positive constants «, 3,7, ¢1, ¢2, ¢3 such that
1 .
a> 35 min(f3,v) and

) [E[P—P]| < c127%¢

E[Po], (=0
i) Blv] = {
E[Pg—Pg_l], >0

i) V[Yi] < o N, P27F¢
iv) E[C] < c327°
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MLMC Theorem

then there exists a positive constant ¢4 such that for any £ <1 there exist

L and N, for which the multilevel estimator

Y=) Y,

M~

~

has a mean-square-error with bound E

— ©

(¥ ~E[P]?] < <2
with an expected computational cost C with bound

C48_27 /B >,

C < ae?(loge)?, B=r,

ca 5_2_(7_5)/0‘, 0< B <.

Note: the MLMC parameters «, 3, determine the asymptotic cost.
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Stochastic heat equation

Stochastic heat equation:
du — vy dt = dW, O0<x<1, t>0,

subject to homogeneous initial data and b.c.’s.

dW is the increment of space-time white noise (cylindrical Wiener
process) so that for arbitrary f, g,

(f,dW)
is Normally-distributed with zero mean and variance ||f||?dt, and

E[(f,dW)(g,dW)] = {f, g)
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Stochastic heat equation

Solution has expansion in orthonormal modes ex(x) = v/2sin(kmx):

u(x, t) =Y Gi(t) ex(x)
k=1
Substituting gives Ornstein-Uhlenbeck SDE for each mode:

di’\k = _)\kﬁk dt + de, Ak = k27T2,

where W, are independent Brownian motions, due to orthonormality of
eigenmodes.
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Stochastic heat equation

The O-U solution is

t —~
Gi(t) = / M=) AW (s),
0
and hence

EGF(0)] = 5y-(1 - &) = oF = O(k™?)

and V[i2] = 20% = O(k™*).

As well as square amplitude of a single Fourier mode, other two Qols are:

o
e energy P = ||ul3 = E uz
k=1
. A2 A2
@ squared functional P =
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Stochastic heat equation

Insight comes from truncating expansion to give:

K-1

UK(X7 t') = ﬁk(t) ek(x),
k=1

where K is roughly equivalent to 1/Ax in a numerical approximation.

For energy,
P—Px=> i
k=K
so E[P—Pk] = O(K™1) and V[P—Pk] = O(K~3).

If ox = O(k™P) then for squared functional E[P—Pk] and V[P—Pk]
are both O(K—2,P~1).
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Spectral noise representation

Finite difference approximation to PDE, and spectral (K-L) representation
of noise gives semi-discretisation

J-1
1 —
dUj = 1 (U1 = 20U+ Uja)dt = D> AW k().
k=1

The semi-discrete solution is then

J—1
Uk(t) ex(x)),

k=1
in which Uk satisfy the modified O-U SDE
dUk = —Xk Uk dt + de,

with A, = (4/Ax?)sin?(krAx/2) = A, + O(k*Ax?).
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Spectral noise representation

The fully-discrete equations use Euler-Maruyama time discretisation

J-1
At —
UMttt = ur + o (Ul =207 + U7, )+ AW e(x)).
k=1

For MLMC use Axy o< 27¢, Aty oc 47¢ with fixed At/Ax? < 1/2 for
stability.

If the fine grid uses

J-1
n
AW/ e (Xj)v
k=1
then the coarse grid uses
n+3 J/2—1
m
E E AW e(xj)-
m=n k=1
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Key lemma for E-M time discretisation

Lemma
For the Ornstein-Uhlenbeck SDE duy = —Aup dt + dW,,

with Euler-Maruyama approximation — Upy1 = (1-AAt) U, + AW,

there exists a constant C such that for any fixed t and integer n = t/At
with AAt <1,

[E[u*(t) — UZ]| < CAt,
V[u(t) — U] < CAAP,
V[iA(t) - U] < CAt?

Proof.
True for A=1, then follows for all A through re-scaling.

O
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Spectral noise representation

Lemma
For fixed t and k < 1/Ax:

E[Uk(t)? — 03(8)]| S DX
VIUk(t) — k(1)) S KDx%,
VIO(t)? - 33(t)] < Ox*.

Corollary
For fixed t, At/Ax? < 1/4, integer n = t/At, and k < 1/Ax,

E[(Up)? - G(t)]

N

AX?,
V[ U] - Ge(t)] < K2Ax4,
VI(UR)? —p(t)] S AxE

4
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Spectral noise representation

Consequences for Qols:
@ single mode: a =2, =4
@ energy: a =1, 5 =3 (Note: 8 > 2« highly unusual in MLMC)
o functional: « =2, =4 if p=2

Note that v=3 since Ax; x 276 Aty o 47,
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Finite element noise

Using the usual “hat” piecewise linear basis functions ¢;, and
mass-lumping, the Galerkin semi-discrete approximation is
1

1 :
Note that E [(dW, ¢;,)(dW, ¢},)] = 0 when |j1—jo| > 1, and
E [(dW, ¢;)?] = 2Axdt, E[(dW,¢;}(dW, ¢;j41)] = +Axdt,

The Euler-Maruyama discretisation gives

At

n+1 n n n n
urtt = Uj A2(J+1 207 + U ) + AW,

where AWJ-” can be simulated as

AW = \/Dt/Ax (Z"/W+Z” 12/V6+Z +1/2/\f>

using iid standard Normals Z” Zf;ﬂ/z
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Finite element noise

The coarse grid basis functions can be expressed in terms of fine grid ones:

Gr—1j(x) = 3brj-1(x) + dej(x) + 3brj+1(x).
so there is a natural MLMC coupling with
n+3

AWP ;=Y (FAWS  + 3 AW+ 2 AW ) .

m=n

One of the takeaways from this talk is that this is easy to implement,
very natural, and comparable to the spectral treatment in accuracy.
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Finite element noise

The Fourier modes from the semi-discrete equations are given by

dUk = *f)\vk Uk dt + de

where
N J-1
AWy = <Zek(xj)¢j,dw>
j=1
4sin?(knAx/2)
k2m2 Ax2 AW

4sin?(knAx/2) 4sin?(knAx/2)
AW AW
- ;(2/J+k)27r2Ax2 Mk Z}(%J K)2m2axe 2k

Note: aliasing coefficient proportional to (2/J4k)~2 = O(Ax?)
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Finite element noise

By bounding the difference from the spectral solution, can establish
very similar lemmas concerning the accuracy of the semi-discrete and

fully-discrete solutions.

Hence, obtain the same «, 3, for the different output Qols.
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Finite volume noise

For the finite volume treatment
0j(x) = - Ax/2, x+0x/2)(X)

SO
At
Ax A x2 ( J+1

urtt = ur + 2UF + U ) + AW,

where AW = VAt Ax ZJ, the Z7" again iid standard Normal.

However, this doesn't give a natural MLMC coupling.
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Finite volume noise

Instead split the interval into two halves,

$j(X) = Lpg—nx/2,5(X) + L, x4-ax/21 (%),

n At n n
AW =\ 55 (Z1/a+ Z1)4)

The MLMC coupling is then

At 8
AW, = \/; > (4"—73/4 T4 et 2yt 113/4) ’
m=n

corresponding to integrating over the coarse grid interval [x;_1, xj41].
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Finite volume noise

The Fourier modes from the semi-discrete equations are given by

dUk = —Xk Uk dt + de

where now
N -1
de = < eka ¢J,dW>
2sin(krAx/2) =
— aw,
kmAx K
— 2sin(krAx/2) 2 2sin(krAx/2)
Wap — > 02202 AWy
- L (2 +k)max A ; (21J—k)mAx dWau—«

Note: aliasing coefficient now proportional to (2/J4k)~! = O(Ax)
which leads to a larger difference from the spectral solution.
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Finite volume noise

Corollary

For fixed t, At/Ax? < 1/4, integer n = t/At, and k < 1/Ax,

E[(UR)° - G(D)]| S A<

VIO - (] 5 A%,
VI(UR? - G(t)] S Kk °AX°
Consequences for Qols:
@ single mode: a =2, =2
@ energy: a=1, =2
o functional: « =2, =2 if p=2
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Richardson extrapolation

Pr=P+a27"+0(27%),
then
PP =2P;— Py =P+ 0(27%).

Doubling weak order a eliminates anomalous 8 > 2« situation.

With extrapolation, MLMC estimator becomes

2P — P 1 —(2P1 —Pr2) = 2(Py— Pr—1) — (Pe—1 — Pe—2)
2 Pg -3 Pg_l + Pg_2

Extrapolation increases the variance, but it greatly reduces the finest
level L required for weak convergence, so overall gives big savings.
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Numerical results

e T=1/8

0 Axp =272 Aty =275 — At;/AxZ =1/4.

10° samples for spectral and finite element (FE),
4x10° for finite volume (FV) due to poorer variance

logy V[Py—Py_1] and log, |E[P;—Py_1]| plotted versus level ¢

e functional weighting is (x) = 2v/3 min(x, 1—x) so p=2

Mike Giles (Oxford) MLMC for stochastic heat equation 24 /32



Numerical results

V[P¢—Py_1] for energy QOI:

log, variance
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Numerical results

E[P;—Py_1] for energy QOI:
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Numerical results

V[P¢—Py_1] for functional QOI:
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Numerical results

E[P;—Py_1] for functional QOI:
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Numerical results

V[P¢—Py—1] for energy QOI with extrapolation:

log, variance
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Numerical results

E[P;—Py_1] for energy QOI with extrapolation:

log, |mean)|
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Conclusions

@ Fourier analysis provides complete analysis of MLMC variance for
stochastic heat equation

@ 3 different white noise treatments, 3 different output Qol's
@ finite volume treatment is clearly the worst due to aliasing errors

o finite element treatment as good as spectral treatment — both
need Richardson extrapolation to get full benefits

@ now ready to move on to more interesting SPDEs
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