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Motivation

New research interest – MLMC for parabolic SPDEs:

1D stochastic heat equation is the simplest example driven by
space-time white noise (cylindrical Wiener process)

focus on

three different noise representations: spectral, mass-lumped finite
element, finite volume
three different quantities of interest (QoI): squared amplitude of
a single Fourier mode, energy ∥u∥22, and ⟨φ, u⟩2

Key messages:

finite volume treatment has worst MLMC variance

finite element is as good as spectral, and both benefit from
Richardson extrapolation to overcome MLMC oddity (β > 2α)
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Multilevel Monte Carlo

Given a sequence P0,P1,P2, . . . → P

E[P] ≈ E[PL] = E[P0] +
L∑

ℓ=1

E[Pℓ−Pℓ−1]

so we can use the estimator

N−1
0

N0∑
n=1

P
(0,n)
0 +

L∑
ℓ=1

{
N−1
ℓ

Nℓ∑
n=1

(
P
(ℓ,n)
ℓ − P

(ℓ,n)
ℓ−1

)}

with independent estimation for each level of correction.

V[Pℓ−Pℓ−1] → 0 as ℓ → ∞ means we don’t need many samples
on finer levels.
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MLMC Meta Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators Yℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i) |E[Pℓ−P]| ≤ c1 2
−α ℓ

ii) E[Yℓ] =

{
E[P0], ℓ = 0

E[Pℓ−Pℓ−1], ℓ > 0

iii) V[Yℓ] ≤ c2N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Y =
L∑

ℓ=0

Yℓ,

has a mean-square-error with bound E
[
(Y − E[P])2

]
< ε2

with an expected computational cost C with bound

C ≤


c4 ε

−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.

Note: the MLMC parameters α, β, γ determine the asymptotic cost.
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Stochastic heat equation

Stochastic heat equation:

du − uxx dt = dW , 0 < x < 1, t > 0,

subject to homogeneous initial data and b.c.’s.

dW is the increment of space-time white noise (cylindrical Wiener
process) so that for arbitrary f , g ,

⟨f ,dW ⟩

is Normally-distributed with zero mean and variance ∥f ∥2 dt, and

E[⟨f , dW ⟩⟨g ,dW ⟩] = ⟨f , g⟩
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Stochastic heat equation

Solution has expansion in orthonormal modes ek(x) =
√
2 sin(kπx):

u(x , t) =
∞∑
k=1

ûk(t) ek(x)

Substituting gives Ornstein-Uhlenbeck SDE for each mode:

dûk = −λk ûk dt + dŴk , λk = k2π2,

where Ŵk are independent Brownian motions, due to orthonormality of
eigenmodes.
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Stochastic heat equation

The O-U solution is

ûk(t) =

∫ t

0
e−λk (t−s) dŴk(s),

and hence

E[û2k(t)] =
1

2λk
(1− e−2λk t) ≡ σ2

k = O(k−2)

and V[û2k ] = 2σ4
k = O(k−4).

As well as square amplitude of a single Fourier mode, other two QoIs are:

energy P = ∥u∥22 =
∞∑
k=1

û2k

squared functional P = ⟨φ, u⟩2 =
∞∑
k=1

φ̂2
k û

2
k
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Stochastic heat equation

Insight comes from truncating expansion to give:

uK (x , t) =
K−1∑
k=1

ûk(t) ek(x),

where K is roughly equivalent to 1/∆x in a numerical approximation.

For energy,

P − PK =
∞∑

k=K

û2k ,

so E[P−PK ] = O(K−1) and V[P−PK ] = O(K−3).

If φ̂k = O(k−p) then for squared functional E[P−PK ] and V[P−PK ]
are both O(K−2p−1).
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Spectral noise representation

Finite difference approximation to PDE, and spectral (K-L) representation
of noise gives semi-discretisation

dUj −
1

∆x2
(Uj+1 − 2Uj + Uj−1) dt =

J−1∑
k=1

dŴk ek(xj).

The semi-discrete solution is then

Uj(t) =
J−1∑
k=1

Ûk(t) ek(xj),

in which Ûk satisfy the modified O-U SDE

dÛk = −λ̃k Ûk dt + dŴk ,

with λ̃k = (4/∆x2) sin2(kπ∆x/2) = λk + O(k4∆x2).
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Spectral noise representation

The fully-discrete equations use Euler-Maruyama time discretisation

Un+1
j = Un

j +
∆t

∆x2
(Un

j+1 − 2Un
j + Un

j−1) +
J−1∑
k=1

∆Ŵ n
k ek(xj).

For MLMC use ∆xℓ ∝ 2−ℓ, ∆tℓ ∝ 4−ℓ with fixed ∆t/∆x2 < 1/2 for
stability.

If the fine grid uses
J−1∑
k=1

∆Ŵ n
k ek(xj),

then the coarse grid uses

n+3∑
m=n

J/2−1∑
k=1

∆Ŵm
k ek(xj).
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Key lemma for E-M time discretisation

Lemma

For the Ornstein-Uhlenbeck SDE dut = −λ ut dt + dWt ,

with Euler-Maruyama approximation Un+1 = (1−λ∆t)Un +∆Wn,

there exists a constant C such that for any fixed t and integer n = t/∆t
with λ∆t ≤ 1, ∣∣E[u2(t)− U2

n ]
∣∣ < C ∆t,

V[u(t)− Un] < C λ∆t2,

V[u2(t)− U2
n ] < C ∆t2.

Proof.

True for λ=1, then follows for all λ through re-scaling.
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Spectral noise representation

Lemma

For fixed t and k < 1/∆x:∣∣∣E[Ûk(t)
2 − û2k(t)]

∣∣∣ ≲ ∆x2,

V[Ûk(t)− ûk(t)] ≲ k2∆x4,

V[Ûk(t)
2 − û2k(t)] ≲ ∆x4.

Corollary

For fixed t, ∆t/∆x2 ≤ 1/4, integer n = t/∆t, and k < 1/∆x,∣∣∣E[ (Ûn
k )

2 − û2k(t) ]
∣∣∣ ≲ ∆x2,

V[ Ûn
k − ûk(t) ] ≲ k2∆x4,

V[ (Ûn
k )

2 − û2k(t) ] ≲ ∆x4.
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Spectral noise representation

Consequences for QoIs:

single mode: α = 2, β = 4

energy: α = 1, β = 3 (Note: β > 2α highly unusual in MLMC)

functional: α = 2, β = 4 if p=2

Note that γ=3 since ∆xℓ ∝ 2−ℓ, ∆tℓ ∝ 4−ℓ.
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Finite element noise

Using the usual “hat” piecewise linear basis functions ϕj , and
mass-lumping, the Galerkin semi-discrete approximation is

dUj −
1

∆x2
(Uj+1 − 2Uj + Uj−1)dt =

1

∆x
⟨dW , ϕj⟩, j = 1, . . . , J−1.

Note that E [⟨dW , ϕj1⟩⟨dW , ϕj2⟩] = 0 when |j1−j2| > 1, and

E
[
⟨dW , ϕj⟩2

]
= 2

3∆x dt, E [⟨dW , ϕj⟩⟨dW , ϕj±1⟩] = 1
6∆x dt,

The Euler-Maruyama discretisation gives

Un+1
j = Un

j +
∆t

∆x2
(Un

j+1 − 2Un
j + Un

j−1) + ∆W n
j ,

where ∆W n
j can be simulated as

∆W n
j =

√
∆t/∆x

(
Zn
j /

√
3 + Zn

j−1/2/
√
6 + Zn

j+1/2/
√
6
)

using iid standard Normals Zn
j , Z

n
j±1/2.
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Finite element noise

The coarse grid basis functions can be expressed in terms of fine grid ones:

ϕℓ−1,j(x) =
1
2ϕℓ,j−1(x) + ϕℓ,j(x) +

1
2ϕℓ,j+1(x).

so there is a natural MLMC coupling with

∆W n
ℓ−1,j =

n+3∑
m=n

(
1
4 ∆Wm

ℓ,j−1 +
1
2 ∆Wm

ℓ,j +
1
4 ∆Wm

ℓ,j+1

)
.

One of the takeaways from this talk is that this is easy to implement,
very natural, and comparable to the spectral treatment in accuracy.
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Finite element noise

The Fourier modes from the semi-discrete equations are given by

dÛk = −λ̃k Ûk dt + dW̃k

where

dW̃k =

〈
J−1∑
j=1

ek(xj)ϕj , dW

〉

=
4 sin2(kπ∆x/2)

k2π2∆x2
dŴk

+
∞∑
l=1

4 sin2(kπ∆x/2)

(2lJ+k)2π2∆x2
dŴ2lJ+k −

∞∑
l=1

4 sin2(kπ∆x/2)

(2lJ−k)2π2∆x2
dŴ2lJ−k

Note: aliasing coefficient proportional to (2lJ±k)−2 = O(∆x2)
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Finite element noise

By bounding the difference from the spectral solution, can establish
very similar lemmas concerning the accuracy of the semi-discrete and
fully-discrete solutions.

Hence, obtain the same α, β, γ for the different output QoIs.
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Finite volume noise

For the finite volume treatment

ϕj(x) = 1[xj−∆x/2, xj+∆x/2](x)

so

Un+1
j = Un

j +
∆t

∆x2
(Un

j+1 − 2Un
j + Un

j−1) + ∆W n
j ,

where ∆W n
j =

√
∆t/∆x Zn

j , the Zn
j again iid standard Normal.

However, this doesn’t give a natural MLMC coupling.
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Finite volume noise

Instead split the interval into two halves,

ϕj(x) = 1[xj−∆x/2, xj ](x) + 1[xj , xj+∆x/2](x),

∆W n
j =

√
∆t

2∆x
(Zn

j−1/4 + Zn
j+1/4)

The MLMC coupling is then

∆W n
ℓ−1,j =

√
∆t

8∆x

n+3∑
m=n

(
Zm
j−3/4 + Zm

j−1/4 + Zm
j+1/4 + Zm

j+3/4

)
,

corresponding to integrating over the coarse grid interval [xj−1, xj+1].
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Finite volume noise

The Fourier modes from the semi-discrete equations are given by

dÛk = −λ̃k Ûk dt + dW̃k

where now

dW̃k =

〈
J−1∑
j=1

ek(xj)ϕj ,dW

〉

=
2 sin(kπ∆x/2)

kπ∆x
dŴk

+
∞∑
l=1

2 sin(kπ∆x/2)

(2lJ+k)π∆x
dŴ2lJ+k −

∞∑
l=1

2 sin(kπ∆x/2)

(2lJ−k)π∆x
dŴ2lJ−k .

Note: aliasing coefficient now proportional to (2lJ±k)−1 = O(∆x)
which leads to a larger difference from the spectral solution.
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Finite volume noise

Corollary

For fixed t, ∆t/∆x2 ≤ 1/4, integer n = t/∆t, and k < 1/∆x,∣∣∣E[ (Ûn
k )

2 − û2k(t) ]
∣∣∣ ≲ ∆x2,

V[ Ûn
k − ûk(t) ] ≲ ∆x2,

V[ (Ûn
k )

2 − û2k(t) ] ≲ k−2∆x2.

Consequences for QoIs:

single mode: α = 2, β = 2

energy: α = 1, β = 2

functional: α = 2, β = 2 if p=2
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Richardson extrapolation

If
Pℓ = P + a 2−ℓ + O(2−2ℓ),

then
Pex
ℓ = 2Pℓ − Pℓ−1 = P + O(2−2ℓ).

Doubling weak order α eliminates anomalous β > 2α situation.

With extrapolation, MLMC estimator becomes

2Pℓ − Pℓ−1 − (2Pℓ−1 − Pℓ−2) = 2 (Pℓ − Pℓ−1)− (Pℓ−1 − Pℓ−2)

= 2Pℓ − 3Pℓ−1 + Pℓ−2

Extrapolation increases the variance, but it greatly reduces the finest
level L required for weak convergence, so overall gives big savings.
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Numerical results

T = 1/8

∆xℓ = 2−ℓ−2, ∆tℓ = 2−2ℓ−6 =⇒ ∆tℓ/∆x2ℓ = 1/4.

105 samples for spectral and finite element (FE),
4×105 for finite volume (FV) due to poorer variance

log2V[Pℓ−Pℓ−1] and log2 |E[Pℓ−Pℓ−1]| plotted versus level ℓ

functional weighting is φ(x) = 2
√
3 min(x , 1−x) so p=2
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Numerical results

V[Pℓ−Pℓ−1] for energy QOI:

level ℓ
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Numerical results

E[Pℓ−Pℓ−1] for energy QOI:
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Numerical results

V[Pℓ−Pℓ−1] for functional QOI:
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Numerical results

E[Pℓ−Pℓ−1] for functional QOI:
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Numerical results

V[Pℓ−Pℓ−1] for energy QOI with extrapolation:
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Numerical results

E[Pℓ−Pℓ−1] for energy QOI with extrapolation:

level ℓ
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Conclusions

Fourier analysis provides complete analysis of MLMC variance for
stochastic heat equation

3 different white noise treatments, 3 different output QoI’s

finite volume treatment is clearly the worst due to aliasing errors

finite element treatment as good as spectral treatment – both
need Richardson extrapolation to get full benefits

now ready to move on to more interesting SPDEs
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