
Computational Finance
using CUDA on NVIDIA GPUs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford-Man Institute for Quantitative Finance

Oxford eResearch Centre

Acknowledgments: Gerd Heber, Abinash Pati, Vignesh Sundaresh, Xiaoke Su,

Chris Yau, Anthony Ng, and support from NVIDIA, Microsoft, TCS/CRL and EPSRC

Computational Finance – p. 1/27

Overview

NVIDIA GPU’s

Monte Carlo methods
LIBOR model testcase
random number generation
particle filters

finite difference methods
explicit time-marching
implicit time-marching

Computational Finance – p. 2/27

NVIDIA GPUs

basic building block is a “multiprocessor” with 8 cores,
up to 16384 registers, 16KB shared memory and
8KB caches for texture and constant data

different chips have different numbers of these:

product multiprocs bandwidth cost
9800 GT 14 58GB/s $140
GTX 280 30 142GB/s $350

each card has fast graphics memory which is used for:
global memory accessible by all multiprocessors
texture and read-only constant memory
additional local memory for each multiprocessor

Computational Finance – p. 3/27

NVIDIA GPUs

For high-end HPC, NVIDIA have Tesla systems:

C1060 card:
PCIe card, plugs into standard PC/workstation
single GPU with 240 cores and 4GB graphics
memory

S1070 server:
4 cards packaged in a 1U server
connect to 2 external servers, one for each pair of
cards
each GPU has 240 cores plus 4GB graphics memory

neither product has any graphics output, intended
purely for scientific computing

Computational Finance – p. 4/27

NVIDIA GPUs

Most important hardware feature is that the 8 cores in a
multiprocessor are SIMD (Single Instruction Multiple Data)
cores:

all cores execute the same instructions simultaneously

vector style of programming harks back to CRAY vector
supercomputing

minimum of 4 threads per core, so minimum vector
length of 32 – I usually use at least 16 threads per core

natural for graphics processing and much scientific
computing

natural for massively multicore to simplify each core

Computational Finance – p. 5/27

Why GPUs will stay ahead?

Technical reasons:

SIMD cores (instead of MIMD cores) means larger
proportion of chip devoted to floating point performance

tightly-coupled fast graphics require high bandwidth

Commercial reasons:

CPUs driven by cost-sensitive office/home computing:
not clear these need vastly more speed

CPU direction may be towards low cost, low power
chips for mobile and embedded applications

GPUs driven by high-end applications – prepared to
pay a premium for high performance

Computational Finance – p. 6/27

Computational Finance

biggest growth area in scientific computing,
roughly 20% of Top 500 “supercomputers”

biggest employer of Oxford mathematicians and
theoretical physicists, often as “quants”

traders – make/lose the money
quants – develop the models and codes
IT – organise execution on large distributed systems,
and connect to data and external world

two main kinds of computations for options pricing
Monte Carlo (60% ?)
PDE / finite difference (30% ?)

Computational Finance – p. 7/27

Monte Carlo methods

Monte Carlo is a trivially parallel application:

involves 104–106 independent “path” simulations with
different random numbers

usually just interested in average of a single output (the
“payoff”) to determine the option value

it is compute-intensive, with a minimal amount of data
for each path (level 1 cache on CPU?)

ideally suited for GPU implementation, usually very little
conditional branching so good for vectorisation

Computational Finance – p. 8/27

LIBOR testcase

models behaviour of interest rates to compute prices for
lots of products dependent on future interest rates

lots of computation per random number – for testcase
omitted random number generation

testcase computes price sensitivities using adjoint
approach – requires more data storage than usual

timings in seconds for 96,000 paths, with 40 active
threads per core on 128-core 8800GTX

hardware cores time
original code Intel Xeon 1 26.9
CUDA code NVIDIA 8800GTX 128 0.2

Computational Finance – p. 9/27

LIBOR testcase

These CUDA results are for single precision – does it
matter?

Compared to modelling, discretisation and Monte Carlo
sampling errors, single precision perfectly sufficient
provided:

use binary tree summation when averaging payoffs
(natural approach to vectorisation)

avoid computing sensitivities by finite differencing:

∂V

∂θ
≈

V (θ+∆θ) − V (θ−∆θ)

2 ∆θ

Irrelevant in the long-term as double precision becomes
available at minimal cost.

Computational Finance – p. 10/27

Original LIBOR code

void path_calc(int N, int Nmat, double delta,

double L[], double lambda[], double z[])

{

int i, n;

double sqez, lam, con1, v, vrat;

for(n=0; n<Nmat; n++) {

sqez = sqrt(delta)*z[n];

v = 0.0;

for (i=n+1; i<N; i++) {

lam = lambda[i-n-1];

con1 = delta*lam;

v += (con1*L[i])/(1.0+delta*L[i]);

vrat = exp(con1*v + lam*(sqez-0.5*con1));

L[i] = L[i]*vrat;

}

}

}

Computational Finance – p. 11/27

CUDA LIBOR code

__constant__ int N, Nmat, Nopt, maturities[NOPT];

__constant__ float delta, swaprates[NOPT], lambda[NN];

__device__ void path_calc(float *L, float *z)

{

int i, n;

float sqez, lam, con1, v, vrat;

for(n=0; n<Nmat; n++) {

sqez = sqrtf(delta)*z[n];

v = 0.0;

for (i=n+1; i<N; i++) {

lam = lambda[i-n-1];

con1 = delta*lam;

v += __fdividef(con1*L[i],1.0+delta*L[i]);

vrat = __expf(con1*v + lam*(sqez-0.5*con1));

L[i] = L[i]*vrat;

}

}

}

Computational Finance – p. 12/27

Random number generation

Main challenge with Monte Carlo is parallel random number
generation

want to generate same random numbers as in
sequential single-thread implementation

two key steps:
generation of [0, 1] uniform random number
conversion to other output distributions
(e.g. unit Normal)

many of these problems are already faced with
multi-core CPUs and cluster computing

NVIDIA does not provide a RNG library, so I’m
developing one with NAG

Computational Finance – p. 13/27

Random number generation

Key issue in uniform random number generation:

when generating 10M random numbers, might have
5000 threads and want each one to compute 2000
random numbers

need a “skip-ahead” capability so that thread n can
jump to the start of its “block” efficiently
(usually log N cost to jump N elements)

Computational Finance – p. 14/27

Random number generation

mrg32k3a (Pierre l’Ecuyer, ’99, ’02)

popular generator in Intel MKL and ACML libraries

pseudo-uniform output is (xn,1−xn,2 mod m1) /m1

where integers xn,1, xn,2 are defined by

xn,1 = a1 xn−2,1 − b1 xn−3,1 mod m1

xn,2 = a2 xn−1,2 − b2 xn−3,2 mod m2

a1 =1403580, b1 =810728, m1 =232−209,
a2 =527612, b2 =1370589, m2 =232 − 22853.

Computational Finance – p. 15/27

Random number generation

Both recurrences are of the form

yn = Ayn−1 mod m

where yn is a vector yn = (xn, xn−1, xn−2)
T and A is a

3×3 matrix. Hence

yn+2k = A2
k

yn mod m = Ak yn mod m

where Ak is defined by repeated squaring as

Ak+1 = Ak Ak mod m, A0 ≡ A.

Can generalise this to jump N places in O(log N)
operations.

Computational Finance – p. 16/27

Random number generation

mrg32k3a speed-up is only 6× on 112-core 9800GT
compared to a single Athlon core because of extensive
use of 64-bit integer arithmetic (implemented in
software/firmware on top of 32-bit hardware?)

mrg32k3a speed-up is 13.5× when one includes the
conversion to unit Normals

have also implemented a Sobol generator to produce
quasi-random numbers

Sobol speedup is about 45× because it uses 32-bit
arithmetic

Computational Finance – p. 17/27

Random number generation

Other output distributions:

exponential: trivial

Normal: Box-Muller or inverse CDF

Gamma: only efficient approaches using “rejection”
methods which require a varying number of uniforms to
generate 1 Gamma variable – this means no efficient
skip-ahead, because don’t know how many uniforms
will be needed to generate 1000 Gammas

Computational Finance – p. 18/27

Sequential Monte Carlo

also known as particle filter

an alternative to Kalman filters used for estimating
some underlying state based on a sequence of
observations and a model for the underlying evolution

lots of applications in finance, economics, signal
processing, tracking, statistical genetics

main computation involves independent updates of the
state of a large number of particles – trivially
parallelisable

Computational Finance – p. 19/27

Sequential Monte Carlo

tricky bit is re-sampling step which involves parallel
scan operation to compute cumulative sums of
normalised weights

Cn =
n−1∑

i=1

wn

and then use of recursive bisection and textures to find
for any Um the n such that

Cn ≤ Um < Cn+1.

55× speedup with 112-core 9800GT compared to
single Intel core

currently working with colleagues (Chris Holmes, Neil
Shephard) to develop generic particle filter library

Computational Finance – p. 20/27

Finite difference applications

began with Jacobi iteration for simple Laplace equation
on a regular gird

then explicit and implicit (ADI) time-marching for 3D
finance PDEs

fairly straightforward for someone who is used to
partitioning grids for MPI implementations

each multiprocessor works on a block of the grid
threads within each block read data into local shared
memory, do the calculations in parallel and write new
data back to main device memory

tricky bits: maximising data re-use, minimising
bandwidth required and working with limited shared
memory

Computational Finance – p. 21/27

Jacobi Iteration

a grid of size 512 × 512 × 512 is broken up into blocks of
size 32 × 8 × 512 (plus halo)

each grid block is worked on by a block of 256 threads,
so each thread works along a grid line z-direction

it would be very inefficient for each thread to load in
both its data and its neighbours, so instead each loads
its data into shared memory for access by neighbours

problem: too little shared memory to hold whole block

solution: hold 3 working planes at a time

Computational Finance – p. 22/27

Jacobi Iteration

key steps in kernel code:
load in k=0 z-plane (inc x and y-halos)
loop over all z-planes

load k+1 z-plane (over-writing k−2 plane)
process k z-plane
store new k z-plane

50× speedup relative to Xeon single core, compared to
5× speedup using OpenMP with 8 cores

explicit time-marching is very similar

Computational Finance – p. 23/27

Implicit ADI Time-Marching

each timestep involves 4 main stages:
compute r.h.s. (similar to Jacobi iteration)
solve tri-diagonal equations in x-direction
solve tri-diagonal equations in y-direction
solve tri-diagonal equations in z-direction

between each phase, all data is held in graphics
memory

hence, can use a different data partitioning for each
phase, unlike a standard MPI implementation

Computational Finance – p. 24/27

Implicit ADI Time-Marching

first phase uses same partitioning as Jacobi iteration

other phases use directional partitioning so each thread
handles tri-diagonal solution along one line

exploits parallelism of independent tri-diagonal
solutions, rather than parallelising each one

speedup is the same as for explicit time-marching,
probably because bandwidth limited on both CPU and
GPU

Computational Finance – p. 25/27

Will GPUs have real impact?

I think they’re the most exciting development since
initial development of PVM and Beowulf clusters

Have generated a lot of interest/excitement in
academia, being used by application scientists,
not just computer scientists

Potential for at least 10× speedup and improvement in
GFLOPS/$ and GFLOPS/watt

Effectively a personal cluster in a PC under your desk

Needs more work on tools and libraries to simplify
development effort

IT staff in banks very interested; quants will become
convinced once tools/libraries are ready

Computational Finance – p. 26/27

Further Information

Wikipedia overviews of NVIDIA hardware:
en.wikipedia.org/wiki/GeForce 200 Series
en.wikipedia.org/wiki/Nvidia Tesla

NVIDIA’s CUDA homepage:
www.nvidia.com/object/cuda home.html

RNG library (free for academics):
John.Holden@nag.co.uk

LIBOR and finite difference test codes:
www.maths.ox.ac.uk/∼gilesm/hpc/

Particle filter library (first version in a month?):
Mike.Giles@maths.ox.ac.uk

Computational Finance – p. 27/27

	Overview
	NVIDIA GPUs
	NVIDIA GPUs
	NVIDIA GPUs
	Why GPUs will stay ahead?
	Computational Finance
	Monte Carlo methods
	LIBOR testcase
	LIBOR testcase
	Original LIBOR code
	CUDA LIBOR code
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Sequential Monte Carlo
	Sequential Monte Carlo
	Finite difference applications
	Jacobi Iteration
	Jacobi Iteration
	Implicit ADI Time-Marching
	Implicit ADI Time-Marching
	Will GPUs have real impact?
	Further Information

