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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

In many finance applications, we want to compute the
expected value of an option dependent on the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

Simplest estimator for expected payoff is an average of N

independent path simulations:

Ŷ = N−1
N∑

i=1

f(Ŝ
(i)
T/h

)

weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual path
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Standard MC Approach

Mean Square Error is O
(
N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−2(log ε)2

)
, by combining

simulations with different numbers of timesteps – same
accuracy as finest calculations, but at a much lower
computational cost.
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Multilevel MC Approach

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

each level adds more detail to Brownian path

E[P̂l−P̂l−1] reflects impact of that extra detail
on the payoff

different timescales handled by different levels
– similar to different wavelengths being handled
by different grids in multigrid
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡ V[P̂l−P̂l−1],

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l .

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

The constant of proportionality can be chosen so that the
combined variance is O(ε2).
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Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V[P̂l−P ] = O(hl) =⇒ V[P̂l−P̂l−1] = O(hl)

and the optimal Nl is asymptotically proportional to hl.

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost
which is O(ε−2L2) = O(ε−2(log ε)2).
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < T,

T =1, S(0)=1, r=0.05, σ=0.2

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with K =1.
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l h

β
l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multi-level estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤






c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Milstein Scheme

The theorem suggests use of Milstein approximation
– better strong convergence, same weak convergence

Generic scalar SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T.

Milstein scheme:

Ŝn+1 = Ŝn + a h + b ∆Wn + 1
2 b′ b

(
(∆Wn)2 − h

)
.
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Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs – trivial

O(ε−2) complexity for more complex cases using
carefully constructed estimators based on Brownian
interpolation or extrapolation

digital, with discontinuous payoff
Asian, based on average
lookback and barrier, based on min/max
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MLMC Results

GBM: European call, exp(−rT ) max(S(T ) − K, 0)
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MLMC Results

GBM: European call, exp(−rT ) max(S(T ) − K, 0)

0 2 4 6 8
10

2

10
4

10
6

10
8

l

N
l

 

 
ε=0.00005
ε=0.0001
ε=0.0002
ε=0.0005
ε=0.001

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ε

ε2  C
os

t

 

 
Std MC
MLMC

Multilevel Monte Carlo – p. 18/31



MLMC Results

GBM: Asian option, exp(−rT ) max(T−1
∫ T
0 S(t) dt − 1, 0)
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MLMC Results

GBM: Asian option, exp(−rT ) max(T−1
∫ T
0 S(t) dt − 1, 0)
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MLMC Results

GBM: lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))
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MLMC Results

GBM: lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))
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Extensions

1) Milstein scheme for vector SDEs

significantly more difficult because it involves Lévy
areas defined as

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk−(Wk(t)−Wk(tn)) dWj .

O(h) strong convergence if Lévy areas are simulated
correctly – expensive

O(h1/2) strong convergence in general if Lévy areas are
omitted, except if a certain commutativity condition is
satisfied (useful for a number of real cases)

Lipschitz payoffs can be handled well using antithetic
variables
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Extensions

2) Quasi-Monte Carlo

standard Monte Carlo has a random sampling error
proportional to N−1/2

Quasi-Monte Carlo uses a deterministic choice of
sample “points” to achieve an error which is nearly
O(N−1) in the best cases

Not much applicable theory because financial payoffs
don’t have required smoothness

In practice, get great results using rank-1 lattice rules
developed by Ian Sloan’s group at UNSW

Haven’t yet tried Sobol sequences
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Extensions

3) Numerical Analysis

paper with Des Higham and Xeurong Mao (Strathclyde)
on analysis of Euler discretisation with complex options

Klaus Ritter (Darmstadt) has generalised analysis of
Euler discretisation to path dependent options with
Lipschitz property

more work needed to analyse Milstein approximation
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Extensions

4) “Greeks”

this is the name given to derivatives such as
∂

∂S0
E[P ]

under certain circumstance, this is equal to E

[
∂P

∂S0

]

– this leads to the pathwise differentiation approach

the multilevel approach should again work well but not
tried yet

can also incorporate the adjoint approach developed
with Paul Glasserman – more efficient when many
Greeks are wanted for one payoff function
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Extensions

5) “vibrato” Monte Carlo

problem with discontinuous payoffs is that small
changes in path can lead to a big change in the payoff

so far, have treated digital options using a “trick” in Paul
Glasserman’s book, taking the conditional expectation
one timestep before maturity, which effectively smooths
the payoff

the “vibrato” Monte Carlo idea generalises this to cases
in which the conditional expectation is not known in
closed form
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Extensions

6) American options

with European options, the buyer can only exercise the
option at maturity, the final time T

with American options, the buyer can exercise at any
time, leading to an optimal control problem

in PDE approaches, this is solved using a linear
complementarity approach which marches backwards
in time

modifying Monte Carlo methods is much harder – an
active research topic

I have some ideas on how to incorporate the multilevel
approach – hope to start a project on this soon
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Extensions

7) SPDEs (stochastic PDEs)

working with a colleague Christoph Reisinger on a
financial SPDE which is a convection-diffusion PDE
with a stochastic convection “velocity”:

dv = −µ
∂v

∂x
dt +

1

2

∂2v

∂x2
dt −√

ρ
∂v

∂x
dW

– preliminary results look good

working with Rob Scheichl (Bath) on an elliptic SPDE
where the diffusivity is a log-normal stochastic field:

∇ ·
(
κ(x)∇p

)
= 0.

– again, preliminary 1D results look good.
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Extensions

8) CUDA implementation on NVIDIA graphics cards

advances in computer hardware/software are important
as well as advances in mathematics

graphics cards are very powerful parallel processors,
with up to 240 cores per graphics chip (GPU)

2 years ago, NVIDIA introduced the CUDA development
environment which uses minor extension to C/C++

with a visiting student, Xiaoke Su, achieved 100×
speedup on a Monte Carlo application using 128 cores

(more recently, achieved 50× speedup for simple PDE
applications, including implicit ADI time-marching)
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Conclusions

Multilevel Monte Carlo method has already achieved

improved order of complexity

significant benefits for model problems

but much more research is needed, both theoretical and
applied.
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