
OP2 – an open-source library for
unstructured grid applications

Mike Giles, Gihan Mudalige

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

OP2 – p. 1

Outline

trends in computing

opportunity, challenges, context

user perspective (i.e. application developer)
API
build process

some implementation issues

some performance results

OP2 – p. 2

Computing

Computing used to be simple (1 CPU, 1 core, 1 thread)
but those days are long gone:

a server now has 2-4 CPUs, each with 2-12 cores

with 2 threads often running on each core, this gives a
total of up to 96 threads working in parallel on a single
application

unfortunately, the programmer has to take responsibility
for most of this – can’t just rely on the compiler to take
care of it

the good news – because of this parallelism, the overall
compute speed is still doubling every 18 months

OP2 – p. 3

Computing

OP2 – p. 4

Computing

And if you thought that was complicated . . .

graphics chips (GPUs) originally designed for graphics
and computer games, are now programmable and
capable of high performance computing

NVIDIA GPUs have up to 512 cores, arranged as
16 units each with 32 cores working as a vector unit
(i.e. all 32 doing the same operation at the same time
but with different data)

typically lots of threads per core (to hide the effect of
delays in fetching data from memory) so often up to
10,000 threads running at the same time on one GPU

can be quite challenging to do the programming
– needs a good understanding of the hardware

OP2 – p. 5

Unstructured grids

������

A
A
A
A

�
�
�
�
��

������

@
@
@
@
A
A
A
A

�
�
�
�
PPPPPP
A
A
A
A

�
�
�
�A
A
A
A

����

�
�
�
�
��

s

s

s

s

s

s

s

s

s

a collection of nodes, edges, faces, cells, etc., each
addressed by a 1D index

explicit connectivity – mapping tables define
connections from edges to nodes, or faces to cells, etc.

much harder to parallelise than structured grid
applications (not in concept so much as in practice)
but a lot of existing literature on the subject

OP2 – p. 6

Software Challenge

Application developers want the benefits of the latest
hardware but are very worried about the software
development effort, and the expertise required

Status quo is not really an option – running lots of
single-thread MPI processes on multiple CPUs won’t
give great performance

Want to exploit GPUs using CUDA, and CPUs using
OpenMP/AVX

However, hardware is likely to change rapidly in next
few years, and developers can not afford to keep
changing their software implementation

OP2 – p. 7

Software Abstraction

To address this challenge, need to move to a suitable level
of abstraction:

separate the user’s specification of the application from
the details of the parallel implementation

aim to achieve application level longevity with the user
specification not changing for perhaps 10 years

aim to achieve near-optimal performance through
re-targetting the back-end implementation to different
hardware and low-level software platforms

OP2 – p. 8

Context

Part of a larger project led by Paul Kelly at Imperial College:
David Ham will talk about the UFL work on Friday

FE applications

?

?

FD/FV applications

mathematical abstraction (UFL)

computational abstraction (OP2)

MPI MPI MPI MPI MPI MPI MPI MPI MPI

CUDA OpenCL OpenMP/AVX

? ?

H
H
H

H
HHj

�
�

�
�

��� ?

NVIDIA AMD Intel OP2 – p. 9

History

OPlus (Oxford Parallel Library for Unstructured Solvers)

developed for Rolls-Royce 10 years ago

MPI-based library for HYDRA CFD code on clusters
with up to 200 nodes

OP2:

open source project

keeps OPlus abstraction, but slightly modifies API

an “active library” approach with code transformation to
generate CUDA for GPUs and OpenMP/AVX for CPUs

OP2 – p. 10

OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

mappings (e.g. from edges to nodes)

parallel loops
operate over all members of one set
datasets have at most one level of indirection
user specifies how data is used
(e.g. read-only, write-only, increment)

OP2 – p. 11

OP2 Restrictions

set elements can be processed in any order, doesn’t
affect result to machine precision

explicit time-marching, or multigrid with an explicit
smoother is OK
Gauss-Seidel or ILU preconditioning is not

static sets and mappings (no dynamic grid adaptation)

OP2 – p. 12

OP2 API

void op init(int argc, char **argv)

op set op decl set(int size, char *name)

op map op decl map(op set from, op set to,
int dim, int *imap, char *name)

op dat op decl dat(op set set, int dim,
char *type, T *dat, char *name)

void op decl const(int dim, char *type,
T *dat)

void op exit()

OP2 – p. 13

OP2 API

Example of parallel loop syntax for a sparse matrix-vector
product:

op par loop(res,"res", edges,
op arg dat(A,-1,OP ID,1,"float",OP READ),
op arg dat(u, 1,pedge,1,"float",OP READ),
op arg dat(du,0,pedge,1,"float",OP INC));

This is equivalent to the C code:

for (e=0; e<nedges; e++)
du[pedge[2*e]] += A[e] * u[pedge[1+2*e]];

where each “edge” corresponds to a non-zero element in
the matrix A, and pedge gives the corresponding row and
column indices.

OP2 – p. 14

User build processes

Using the same source code, the user can build different
executables for different target platforms:

sequential single-thread CPU execution
purely for program development and debugging
very poor performance

CUDA for single GPU

OpenMP/AVX for multicore CPU systems

MPI plus any of the above for clusters

OP2 – p. 15

Sequential build process

Traditional build process, linking to a conventional library
in which many of the routines do little but error-checking:

op seq.h jac.cpp- op seq.c

? ?'

&

$

%
make / g++

OP2 – p. 16

CUDA build process

Preprocessor parses user code and generates new code:

jac.cpp

?�
�

�
�op2.m preprocessor

? ? ?

jac op.cpp jac kernels.cu res kernel.cu
update kernel.cu

op lib.cu

? ? ?

�

�
�

�
�make / nvcc / g++

OP2 – p. 17

GPU Parallelisation

Could have up to 10
6 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)
each partition sized to fit within global memory of
GPU (up to 6GB)
only halos need to be transferred from one GPU to
another, via the CPUs
hopefully, this will give a balanced implementation
– slight possibility that MPI networking will end up
being the primary bottleneck, so will work hard to
overlap computation and MPI communication

OP2 – p. 18

GPU Parallelisation

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different SMs
within the GPU
each mini-partition is sized so that all of the indirect
data can be held in shared memory and re-used as
needed
implementation requires re-numbering from global
indices to local indices – tedious but not difficult
can use different mini-partitions for different parallel
loops – “execution plan” generated during startup

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel OP2 – p. 19

Data dependencies

Data dependencies at thread block level avoided by
“coloring” edges so no two edges of the same color update
the same node at the same time

parallel update for each color, then synchronize

some loss of parallelism, but not too much

u

u

u

u

u

u

u

u

u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

PPPPPPPPP

A
A
A
A
A
A

@
@
@
@

@
@

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

���������

A
A
A
A
A
A

A
A
A
A
A
A

������

�
�
�
�
�
�

OP2 – p. 20

Airfoil test code

2D Euler equations, cell-centred finite volume method
with scalar dissipation (miminal compute per memory
reference – should consider switching to more
compute-intensive “characteristic” smoothing more
representative of real applications)

roughly 1.5M edges, 0.75M cells

5 parallel loops:
save soln (direct over cells)
adt calc (indirect over cells)
res calc (indirect over edges)
bres calc (indirect over boundary edges)
update (direct over cells with RMS reduction)

OP2 – p. 21

Airfoil test code

Library is instrumented to give lots of diagnostic info:
new execution plan #1 for kernel res_calc
number of blocks = 11240
number of block colors = 4
maximum block size = 128
average thread colors = 4.00
shared memory required = 3.72 KB
average data reuse = 3.20
data transfer (used) = 87.13 MB
data transfer (total) = 143.06 MB

OP2 – p. 22

Airfoil test code

Single precision performance for 1000 iterations on an
NVIDIA C2070:

count time GB/s GB/s kernel name PS BS
1000 0.22 101.8 save_soln 512
2000 1.09 74.1 75.4 adt_calc 256 128
2000 4.95 36.9 60.6 res_calc 128 128
2000 0.10 5.3 20.0 bres_calc 64 128
2000 1.03 94.7 update 64

TOTAL 7.40

Max bandwidth is about 130GB/s, so this application is
bandwidth limited.

OP2 – p. 23

Airfoil test code

Double precision performance for 1000 iterations on an
NVIDIA C2070:

count time GB/s GB/s kernel name PS BS
1000 0.44 104.9 save_soln 512
2000 2.62 52.9 53.8 adt_calc 256 128
2000 10.35 30.5 50.8 res_calc 128 128
2000 0.08 11.2 27.9 bres_calc 64 128
2000 1.87 104.5 update 64

TOTAL 15.36

OP2 – p. 24

Airfoil test code

Single precision performance on two Intel “Westmere”
6-core 2.67GHz X5650 CPUs using 16 OpenMP threads:

count time GB/s GB/s kernel name PS
1000 1.68 13.7 save_soln
2000 11.15 7.3 7.5 adt_calc 128
2000 16.57 10.3 11.2 res_calc 1024
2000 0.16 3.2 11.9 bres_calc 64
2000 4.67 20.9 update

TOTAL 34.25

Max bandwidth is about 25GB/s, so again bandwidth
limited.

OP2 – p. 25

Airfoil test code

Double precision performance on two Intel “Westmere”
6-core 2.67GHz X5650 CPUs using 12 OpenMP threads:

count time GB/s GB/s kernel name PS
1000 2.51 18.3 save_soln
2000 11.68 11.8 11.9 adt_calc 1024
2000 20.99 12.8 13.5 res_calc 1024
2000 0.17 5.0 12.4 bres_calc 512
2000 9.29 21.1 update

TOTAL 44.64

OP2 – p. 26

Conclusions

have created a high-level framework for parallel
execution of unstructured grid algorithms on GPUs
and other many-core architectures

looks encouraging for providing ease-of-use, high
performance and longevity through new back-ends

auto-tuning is useful for code optimisation, and a new
flexible auto-tuning system has been developed

C2070 GPU speedup versus two 6-core Westmere
CPUs is roughly 5× in single precision, 3× in double
precision

currently testing MPI version for CPU clusters;
multi-GPU version should be running soon

key challenge then is to build user community

OP2 – p. 27

Acknowledgements

Carlo Bertolli, David Ham, Paul Kelly, Graham Markall
and others (Imperial College)

Nick Hills (Surrey) and Paul Crumpton (original OPlus
development)

Yoon Ho, Leigh Lapworth, David Radford (Rolls-Royce)
Jamil Appa, Pierre Moinier (BAE Systems)

Tom Bradley, Jon Cohen and others (NVIDIA)

EPSRC, TSB, NVIDIA and Rolls-Royce for financial
support

Oxford Supercomputing Centre

Papers available from webpage:
http://people.maths.ox.ac.uk/gilesm/op2/

OP2 – p. 28

	Outline
	Computing
	Computing
	Computing
	Unstructured grids
	Software Challenge
	Software Abstraction
	Context
	History
	OP2 Abstraction
	OP2 Restrictions
	OP2 API
	OP2 API
	User build processes
	Sequential build process
	CUDA build process
	GPU Parallelisation
	GPU Parallelisation
	Data dependencies
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Conclusions
	Acknowledgements

