
GPU implementation of explicit and implicit
finite difference methods in finance

Mike Giles

Oxford University
Mathematical Institute

Oxford e-Research Centre

Endre László, István Reguly (Oxford)
Julien Demouth, Jeremy Appleyard (NVIDIA)

GPU Technology Conference 2014

March 26th, 2014

Mike Giles (Oxford) HPC Trends March 26th, 2014 1 / 31

GPUs

In the last 6 years, GPUs have emerged as a major new technology in
computational finance, as well as other areas in HPC:

over 1000 GPUs used at JP Morgan

also used at a number of other banks and financial institutions
(e.g. BAML, Barclays, BNP Paribas, ING, Bloomberg)
but banks are very secretive about their IT facilities

use is driven by both energy efficiency and price/performance

main concern is level of programming effort required

Mike Giles (Oxford) HPC Trends March 26th, 2014 2 / 31

Monte Carlo simulations

Monte Carlo simulations are naturally parallel – ideally suited to GPU
execution:

each path calculation is independent

averaging of values computed by each thread is parallelised by using
binary tree reduction:

I sum in pairs recursively, until only one value per thread block
I pass sums back to CPU by final summation

or use atomic operations with data in graphics memory

implementations exist also for Longstaff-Schwartz least squares
regression for American options

key requirement is parallel random number generation, and that is
addressed by libraries such as CURAND

Mike Giles (Oxford) HPC Trends March 26th, 2014 3 / 31

Finite Difference calculations

Explicit time-marching methods are naturally parallel – again a good
target for GPU acceleration

Implicit time-marching methods usually require the solution of lots of
tridiagonal systems of equations – not so clear how to parallelise this.

Other key observation is that when moving lots of data to/from the
main graphics memory, the cost of this may exceed the cost of the
floating point computations – hence, try to avoid this data transfer.

Mike Giles (Oxford) HPC Trends March 26th, 2014 4 / 31

1D Finite Difference calculations

In 1D a simple explicit finite difference equation takes the form

un+1
j = aj u

n
j−1 + bj u

n
j + cj u

n
j+1

while an implicit finite difference equation takes the form

aj u
n+1
j−1 + bj u

n+1
j + cj u

n+1
j+1 = unj

requiring the solution of a tridiagonal set of equations.

What performance can be achieved?

Mike Giles (Oxford) HPC Trends March 26th, 2014 5 / 31

1D Finite Difference calculations

grid size: 256 points

number of options: 2048

number of timesteps: 50000 (explicit), 2500 (implicit)

K20 capable of 3.5 TFlops (single prec.), 1.2 TFlops (double prec.)

single prec. double prec.

msec GFinsts GFlops msec GFinsts GFlops

explicit1 347 227 454 412 191 382

explicit2 89 882 1763 160 490 980

implicit1 28 892 1308 80 401 637

implicit2 33 948 1377 88 441 685

implicit3 14 643 1103 30 294 505

Testing by Jorg Lotze (Xcelerit) shows implicit3 speeds are 12-14× faster
than a pair of 8-core Intel Xeon E5-2670 CPUs, using full AVX
vectorisation.

Mike Giles (Oxford) HPC Trends March 26th, 2014 6 / 31

1D Finite Difference calculations

Approach for explicit time-marching:

each thread block (256 threads) does one or more options

3 FMA (fused multiply-add) operations per grid point per timestep

doing an option calculation within one thread block means no need to
transfer data to/from graphics memory – can hold all data in SMX

Mike Giles (Oxford) HPC Trends March 26th, 2014 7 / 31

1D Finite Difference calculations

explicit1 holds data in shared memory

each thread handles one grid point

performance is limited by speed of shared memory access,
and cost of synchronisation

__shared__ REAL u[258];

...

utmp = u[i];

for (int n=0; n<N; n++) {

utmp = utmp + a*u[i-1] + b*utmp + c*u[i+1];

__syncthreads();

u[i] = utmp;

__syncthreads();

}

Mike Giles (Oxford) HPC Trends March 26th, 2014 8 / 31

1D Finite Difference calculations

explicit2 holds all data in registers

each thread handles 8 grid points, so each warp handles one option

no block synchronisation required

exchange of data with neighbouring threads is performed using
shuffle instructions

64-bit shuffles performed using in software
(Julian Demouth, GTC 2013)

Mike Giles (Oxford) HPC Trends March 26th, 2014 9 / 31

1D Finite Difference calculations

for (int n=0; n<N; n++) {

um = __shfl_up(u[7], 1);

up = __shfl_down(u[0], 1);

for (int i=0; i<7; i++) {

u0 = u[i];

u[i] = u[i] + a[i]*um + b[i]*u0 + c[i]*u[i+1];

um = u0;

}

u[7] = u[7] + a[7]*um + b[7]*u[7] + c[7]*up;

}

Mike Giles (Oxford) HPC Trends March 26th, 2014 10 / 31

1D Finite Difference calculations

Bigger challenge is how to solve tridiagonal systems for implicit solvers.

want to keep computation within an SMX and avoid data transfer
to/from graphics memory

prepared to do more floating point operations if necessary to avoid
the data transfer

need lots of parallelism to achieve good performance

Mike Giles (Oxford) HPC Trends March 26th, 2014 11 / 31

Solving Tridiagonal Systems

On a CPU, the tridiagonal equations

ai ui−1 + bi ui + ci ui+1 = di , i = 0, 1, . . . ,N−1

would usually be solved using the Thomas algorithm – essentially just
standard Gaussian elimination exploiting all of the zeros.

inherently sequential algorithm, with a forward sweep and then a
backward sweep

would require each thread to handle separate option

threads don’t have enough registers to store the required data
– would require data transfer to/from graphics memory to hold /
recover data from forward sweep

not a good choice – want an alternative with reduced data transfer,
even if it requires more floating point ops.

Mike Giles (Oxford) HPC Trends March 26th, 2014 12 / 31

Solving Tridiagonal Systems

PCR (parallel cyclic reduction) is a highly parallel algorithm.

Starting with

ai ui−1 + ui + ci ui+1 = di , i = 0, 1, . . . ,N−1,

where uj =0 for j<0, j≥N, can subtract multiples of rows i±1, and
re-normalise, to get

a′i ui−2 + ui + c ′i ui+2 = d ′i , i = 0, 1, . . . ,N−1,

Repeating with rows i±2 gives

a′′i ui−4 + ui + c ′′i ui+4 = d ′′i , i = 0, 1, . . . ,N−1,

and after log2N repetitions end up with solution because ui±N = 0.

Mike Giles (Oxford) HPC Trends March 26th, 2014 13 / 31

Solving Tridiagonal Systems

template <typename REAL> __forceinline__ __device__

REAL trid1_warp(REAL a, REAL c, REAL d){

REAL b;

uint s=1;

#pragma unroll

for (int n=0; n<5; n++) {

b = __rcp(1.0f - a*__shfl_up(c,s)

- c*__shfl_down(a,s));

d = (d - a*__shfl_up(d,s)

- c*__shfl_down(d,s)) * b;

a = - a*__shfl_up(a,s) * b;

c = - c*__shfl_down(c,s) * b;

s = s<<1;

}

return d;

}

Mike Giles (Oxford) HPC Trends March 26th, 2014 14 / 31

1D Finite Difference calculations

Using a naive implementation of PCR we would have:

1 grid point per thread

multiple warps for each option, so data exchange via shared memory,
and synchronisation required – not ideal

O(N log2N) floating point operations – quite a bit more than
Thomas algorithm

Mike Giles (Oxford) HPC Trends March 26th, 2014 15 / 31

1D Finite Difference calculations

This leads us to a hybrid algorithm: implicit1.

follows data layout of explicit2 with each thread handling 8 grid
points – means data exchanges can be performed by shuffles

each thread uses Thomas algorithm to obtain middle values as a
linear function of two (not yet known) “end” values

uJ+j = AJ+j + BJ+j uJ + CJ+j uJ+7, 0 < j < 7

the reduced tridiagonal system of size 2× 32 for the “end” values
is solved using PCR

total number of floating point operations is approximately double
what would be needed on a CPU using the Thomas algorithm

Mike Giles (Oxford) HPC Trends March 26th, 2014 16 / 31

1D Finite Difference calculations

implicit2 is very similar to implicit1, but instead of solving

aj u
n+1
j−1 + bj u

n+1
j + cj u

n+1
j+1 = unj

it instead computes the change ∆uj ≡ un+1
j − unj by solving

aj ∆uj−1 + bj ∆uj + cj ∆uj+1 = dn
j

and then updates uj .

This gives better accuracy, which might be important if working in
single precision.

Mike Giles (Oxford) HPC Trends March 26th, 2014 17 / 31

1D Finite Difference calculations

Errors:

explicit1, explicit2 SP errors: 1e-5

could improve a little by changing to

un+1
j = unj + (aj u

n
j−1 + bj u

n
j + cj u

n
j+1)

implicit1 SP errors: 5e-5

implicit2 SP errors: 1e-6

discretisation errors: 1e-4

model errors (wrong PDE, wrong coefficients): MUCH larger

Mike Giles (Oxford) HPC Trends March 26th, 2014 18 / 31

1D Finite Difference calculations

Personally, I think single precision is perfectly sufficient, but the banks
still prefer double precision.

One reason is that they compute sensitivities by “bumping” – perturbing
the value of an input parameter, re-running the calculation and computing

∂V

∂θ
≈ V (θ+∆θ)− V (θ−∆θ)

2 ∆θ

This amplifies the errors due to finite precision arithmetic.

Mike Giles (Oxford) HPC Trends March 26th, 2014 19 / 31

1D Finite Difference calculations

If the matrices do not change each timestep, then some parts of the
tridiagonal solution do not need to be repeated each time.

Impressively, the compiler noticed this in the original version of
implicit1, and pre-computed as much as it could, at the cost of
some additional registers.

For meaningful performance results for real time-dependent matrices,
I stopped this by adding a (zero) time-dependent term on the main
diagonal.

However, for applications with fixed matrices, implicit3 exploits this
to pre-compute as much as possible.

Mike Giles (Oxford) HPC Trends March 26th, 2014 20 / 31

3D Finite Difference calculations

What about a 3D extension on a 2563 grid?

memory requirements imply one kernel with multiple thread
blocks to handle a single option

kernel will need to be called for each timestep, to ensure that
the entire grid is updated before the next timestep starts

13-point stencil for explicit time-marching

��
��
��

��
��

��

����
����

����

��
��
��

��
��

��

tt tt tt tf tt tt tt

implementation uses a separate thread for each grid point in
2D x-y plane, then marches in z-direction

Mike Giles (Oxford) HPC Trends March 26th, 2014 21 / 31

3D Finite Difference calculations

grid size: 2563 points

number of timesteps: 500 (explicit), 100 (implicit)

K40 capable of 3.9 TFlops (single prec.), 1.3 TFlops (double prec.)
and 288 GB/s

single prec. double prec.

msec GFlops GB/s msec GFlops GB/s

explicit1 747 597 100 1200 367 127

explicit2 600 760 132 923 487 144

implicit1 505 360 130 921 235 139

Performance as reported by nvprof, the NVIDIA Visual Profiler

Mike Giles (Oxford) HPC Trends March 26th, 2014 22 / 31

3D Finite Difference calculations

explicit1 relies on L1/L2 caches for data reuse – compiler does an
excellent job on optimising loop invariant operations

u2[indg] = t23 * u1[indg-KOFF-JOFF]

+ t13 * u1[indg-KOFF-IOFF]

+ (c1_3*S3*S3 - c2_3*S3 - t13 - t23) * u1[indg-KOFF]

+ t12 * u1[indg-JOFF-IOFF]

+ (c1_2*S2*S2 - c2_2*S2 - t12 - t23) * u1[indg-JOFF]

+ (c1_1*S1*S1 - c2_1*S1 - t12 - t13) * u1[indg-IOFF]

+ (1.0f - c3 - 2.0f*(c1_1*S1*S1 + c1_2*S2*S2 + c1_3*S3*S3

- t12 - t13 - t23)) * u1[indg]

+ (c1_1*S1*S1 + c2_1*S1 - t12 - t13) * u1[indg+IOFF]

+ (c1_2*S2*S2 + c2_2*S2 - t12 - t23) * u1[indg+JOFF]

+ t12 * u1[indg+JOFF+IOFF]

+ (c1_3*S3*S3 + c2_3*S3 - t13 - t23) * u1[indg+KOFF]

+ t13 * u1[indg+KOFF+IOFF]

+ t23 * u1[indg+KOFF+JOFF];

Mike Giles (Oxford) HPC Trends March 26th, 2014 23 / 31

3D Finite Difference calculations

explicit2 uses extra registers to hold values which will be needed again

u = t23 * u1_om

+ t13 * u1_mo

+ (c1_3*S3*S3 - c2_3*S3 - t13 - t23) * u1_m;

u1_mm = u1[indg-JOFF-IOFF];

u1_om = u1[indg-JOFF];

u1_mo = u1[indg-IOFF];

u1_pp = u1[indg+IOFF+JOFF];

u = u + t12 * u1_mm

+ (c1_2*S2*S2 - c2_2*S2 - t12 - t23) * u1_om

+ (c1_1*S1*S1 - c2_1*S1 - t12 - t13) * u1_mo

+ (1.0f - c3 - 2.0f*(c1_1*S1*S1 + c1_2*S2*S2 + c1_3*S3*S3

- t12 - t13 - t23)) * u1_oo

+ (c1_1*S1*S1 + c2_1*S1 - t12 - t13) * u1_po

+ (c1_2*S2*S2 + c2_2*S2 - t12 - t23) * u1_op

+ t12 * u1_pp;

indg += KOFF;

u1_m = u1_oo;

u1_oo = u1[indg];

u1_po = u1[indg+IOFF];

u1_op = u1[indg+JOFF];

u = u + (c1_3*S3*S3 + c2_3*S3 - t13 - t23) * u1_oo

+ t13 * u1_po

+ t23 * u1_op;

Mike Giles (Oxford) HPC Trends March 26th, 2014 24 / 31

3D Finite Difference calculations

For implicit time-marching, the ADI discretisation requires the solution
of a tridiagonal equations along each line in the x-direction, and then
the same in the y - and z-directions.

implicit1 is based on library software being written by Jeremy Appleyard
(NVIDIA) and Endre László based on the 1D hybrid PCR code – better
than the Thomas method because it involves much less data transfer
to/from graphics memory.

The clever part of the implementation is in the data transpositions
required to maximise bandwidth – a bit like transposing a matrix.

Mike Giles (Oxford) HPC Trends March 26th, 2014 25 / 31

3D Finite Difference calculations

The implicit1 code has the following structure:

kernel similar to explicit kernel to produce r.h.s.

separate kernel for tridiagonal solution in each coordinate direction

Fairly balanced between computation and communication, provided
attention is paid to maximising data coalescence.

In x-direction:

each warp handles one tri-diagonal system

data is contiguous in global memory

data is loaded in coalesced way, then transposed in shared memory
so each thread gets 8 contiguous elements

care is taken to avoid shared memory bank conflicts

process is reversed when storing data

Mike Giles (Oxford) HPC Trends March 26th, 2014 26 / 31

3D Finite Difference calculations

In y and z-directions:

thread block with 8 warps to handle 8 tri-diagonal systems

data for 8 systems is loaded simultaneously to maximise coalescence

each thread gets 8 elements to work on

data transposition in shared memory so that each warp handles PCR
for one tridiagonal system

then data transposition back to complete the solution and finally
store the result

quite a tricky implementation but it performs very well

Mike Giles (Oxford) HPC Trends March 26th, 2014 27 / 31

Batch Tridiagonal Solver

We are developing library software for batched tri-diagonal equation
solution.

Similar to existing capability in CUSPARSE, but faster, and also able to
handle different strides encountered in multi-dimensional applications

However, for this financial application, the current implicit1 solver
is faster because it re-computes the matrix coefficients on-the-fly so
it reduces the amount of data transfer

For more on the new library software, see talk by Endre László at 3:00

Mike Giles (Oxford) HPC Trends March 26th, 2014 28 / 31

Batch Tridiagonal Solver

Hybrid PCR vs. Thomas algorithm for different tridiagonal system lengths

Note: at least 40 bytes/element =⇒ 1.4E-10 secs at max. bandwidth
and Hybrid PCR compute time =⇒ 0.7E-10 secs / element

0.E+00

1.E-10

2.E-10

3.E-10

4.E-10

5.E-10

6.E-10

7.E-10

8.E-10

9.E-10

1.E-09

0 50 100 150 200 250 300 350

T
im

e
 p

e
r

e
le

m
e

n
t

(s
)

System side-length

New solver vs Thomas in double precision (K20X)

x

z

y

Thomas z

Mike Giles (Oxford) HPC Trends March 26th, 2014 29 / 31

Finite Difference calculations

Other dimensions?

2D:

if the grid is small (1282?) one option could fit within a single SMX
I in this case, could adapt the 1D hybrid PCR method for the 2D ADI

solver
I main complication would be transposing the data between the x-solve

and y -solve so that each tridiagonal solution is within a single warp

otherwise, will have to use the 3D approach, but with solution of
multiple 2D problems to provide more parallelism

4D:

same as 3D, provided data can fit into graphics memory
(buy a K40 with 12GB graphics memory!)

Mike Giles (Oxford) HPC Trends March 26th, 2014 30 / 31

Conclusions

GPUs can deliver excellent performance for financial finite difference
calculations, as well as for Monte Carlo

some parts of the implementation are straightforward, but others
require a good understanding of the hardware and parallel algorithms
to achieve the best performance

some of this work will be built into future libraries
(CUSPARSE, CUB?)

For further info, see software and other details at
http://people.maths.ox.ac.uk/gilesm/codes/BS 1D/

http://people.maths.ox.ac.uk/gilesm/codes/BS 3D/

http://people.maths.ox.ac.uk/gilesm/cuda slides.html

Mike Giles (Oxford) HPC Trends March 26th, 2014 31 / 31

