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Poisson CDF and inverse

A discrete Poisson random variable N with rate λ takes integer value n

with probability

e−λ
λn

n!

Hence, the cumulative distribution function is

C (n) ≡ P(N ≤ n) = e−λ

n∑

m=0

λm

m!
.

To generate N, can take a uniform (0, 1) random variable U and then

compute N = C
−1

(U), where N is the smallest integer such that

U ≤ C (N)
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Poisson CDF and inverse

Illustration of the inversion process
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Poisson CDF and inverse

When λ is fixed and not too large (λ<104 ?) can pre-compute C (n)
and perform a table lookup.

When λ is variable but small (λ<10 ?) can use bottom-up/top-down
summation.

When λ is variable and large, then rejection methods can be used to
generate Poisson r.v.’s, but the inverse CDF is sometimes helpful:

stratified sampling

Latin hypercube

QMC

This is the problem I am concerned with — approximating C
−1

(u) at
a cost similar to the inverse Normal CDF, or inverse error function.
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Poisson CDF and inverse

Illustration of the inversion process through rounding down of some

Q(u) ≡ C−1(u) to give C
−1

(u)
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Poisson CDF and inverse

Errors in approximating Q(u) can only lead to errors in rounding down
if near an integer
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Incomplete Gamma function

If X is a positive random variable with CDF

C (x) ≡ P(X < x) =
1

Γ(x)

∫
∞

λ

e−t tx−1 dt.

then integration by parts gives

P(⌊X ⌋ ≤ n) =
1

n!

∫
∞

λ

e−t tn dt = e−λ

n∑

m=0

λm

m!

=⇒ C
−1

(u) = ⌊C−1(u)⌋

We will approximate Q(u) ≡ C−1(u) so that |Q̃(u)−Q(u)| < δ ≪ 1

This will round down correctly except when Q(u) is within δ of an integer
– then we need to check some C (m)
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CPUs and GPUs

On a CPU, if the costs of Q̃(u) and C (m) are CQ and CC , the average
cost is approximately

CQ + 2 δ CC .

However, on a GPU with a warp length of 32, the CC penalty is incurred
if any thread in the warp needs it, so the average cost is

CQ +
(
1− (1−2 δ)32

)
CC ≈ CQ + 64 δ CC if δ ≪ 1.

This pushes us to more accurate approximations for GPUs.
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Temme expansion

Temme (1979) derived a uniformly convergent asymptotic expansion
for C (x) of the form

C (x) = Φ
(
λ

1
2 f (r)

)
+ λ−

1
2 φ

(
λ

1
2 f (r)

) ∞∑

n=0

λ−n an(r)

where r = x/λ and

f (r) ≡
√

2 (1− r + r log r),

with the sign of the square root matching the sign of r−1.
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Temme expansion

Based on this, can prove that the quantile function is

Q(u) ≈ λ r + c0(r)

where
r = f −1(w/

√
λ), w = Φ−1(u)

and

c0(r) =
log

(
f (r)

√
r/(r−1)

)

log r

Both f −1(s) and c0(r) can be approximated very accurately (over a
central range) by polynomials, and an additional ad hoc correction gives

Q̃T (u) = λ r + p2(r) + p3(r)/λ

Mike Giles (Oxford) Poisson inverse CDF March 26, 2014 11 / 23



Temme approximation

The function f (r)
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Temme approximation

Errors in f −1(s) and c0(r) approximations:
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Temme approximation

Maximum error in Q̃T approximation:
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C (m) evaluation

In double precision, when Q̃(u) is too close to an integer m+1,
we need to evaluate C (m) to choose between m and m+1.

When 1
2
λ≤m≤2λ, this can be done very accurately using another

approximation due to Temme (1987).

Outside this range, a modified version of bottom-up / top-down
summation can be used, because successive terms decrease by factor
2 or more.

In single precision this “correction” procedure does not improve the
accuracy.
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Temme approximation

Maximum relative error in Temme approximation for C (m)
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The GPU algorithm (single precision)

given inputs: λ, u

if λ > 4
w := Φ−1(u)
s := w/

√
λ

if smin<s<smax main branch
r := p1(s)
x := λ r + p2(r) + p3(r)/λ

else
r := f −1(w/

√
λ) Newton iteration

x := λ r + c0(r)
x := x − 0.0218/(x+0.065λ)

end

n := ⌊x⌋
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The GPU algorithm (single precision)

if x > 10
return n

end
end

use bottom-up summation to determine n

if u>0.5 and not accurate enough
use top-down summation to determine n

end

Top-down summation finds smallest n such that

1−u ≥ e−λ

∞∑

m=n+1

λm

m!
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The GPU algorithm (double precision)
given inputs: λ, u

if λ > 4
w := Φ−1(u)
s := w/

√
λ

if smin<s<smax

r := p1(s)
x := λ r + p2(r) + p3(r)/λ
δ := 2×10−5

else
r := f −1(w/

√
λ)

x := λ r + c0(r)
x := x − 0.0218/(x+0.065λ)
δ := 0.01/λ

end

n := ⌊x+δ⌋
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The GPU algorithm (double precision)

if x > 10
if x−n > δ

return n

else if C (n) < u “correction” test
return n

else
return n−1

end
end

end

use bottom-up summation to determine n

if u>0.5 and not accurate enough
use top-down summation to determine n

end
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Accuracy
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poissinvf
poissinv

L1 errors of poissinvf and poissinv functions written in CUDA.

(It measures the fraction of the (0, 1) interval for which the error is ±1.)
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Performance

Samples/sec for poissinvf and poissinv using CUDA 5.0

GTX670 K20
λ poissinvf poissinv poissinvf poissinv

2 1.25e10 1.03e09 1.94e10 5.29e09
8 5.66e09 3.70e08 8.77e09 2.07e09
32 8.07e09 6.98e08 1.25e10 4.20e09
128 8.38e09 6.98e08 1.25e10 4.20e09
mixed 4.91e09 3.00e08 6.83e09 1.64e09

normcdfinvf 1.96e10 2.70e10
normcdfinv 9.61e08 7.15e09
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Conclusions

By approximating the inverse incomplete Gamma function, have
developed an approach for inverting the Poisson CDF for λ>4

Computational cost is roughly cost of inverse Normal CDF function
plus three polynomials of degree 8–12

Report and open source CUDA implementation available now:
http://people.maths.ox.ac.uk/gilesm/poissinv

Report also describes a second approximation which is faster for
CPUs, but has more branching so is worse for GPUs
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