Fast evaluation of the inverse Poisson CDF

Mike Giles

University of Oxford Mathematical Institute Oxford e-Research Centre

GPU Technology Conference 2014

March 26, 2014

Outline

- problem specification
- incomplete Gamma function
- CPUs versus GPUs
- inverse approximation based on Temme expansion
- Temme asymptotic evaluation
- complete algorithm
- results

3

A discrete Poisson random variable N with rate λ takes integer value n with probability

$$e^{-\lambda} \frac{\lambda^n}{n!}$$

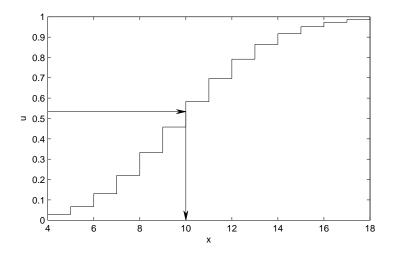
Hence, the cumulative distribution function is

$$\overline{C}(n) \equiv \mathbb{P}(N \leq n) = e^{-\lambda} \sum_{m=0}^{n} \frac{\lambda^m}{m!}.$$

To generate N, can take a uniform (0,1) random variable U and then compute $N = \overline{C}^{-1}(U)$, where N is the smallest integer such that

$$U \leq \overline{C}(N)$$

Illustration of the inversion process



Mike Giles (Oxford)

March 26, 2014 4 / 23

When λ is fixed and not too large ($\lambda < 10^4$?) can pre-compute $\overline{C}(n)$ and perform a table lookup.

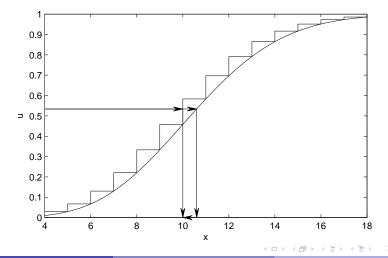
When λ is variable but small ($\lambda\!<\!10$?) can use bottom-up/top-down summation.

When λ is variable and large, then rejection methods can be used to generate Poisson r.v.'s, but the inverse CDF is sometimes helpful:

- stratified sampling
- Latin hypercube
- QMC

This is the problem I am concerned with — approximating $\overline{C}^{-1}(u)$ at a cost similar to the inverse Normal CDF, or inverse error function.

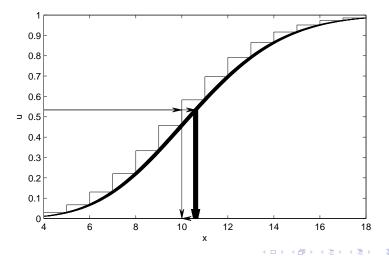
Illustration of the inversion process through rounding down of some $Q(u) \equiv C^{-1}(u)$ to give $\overline{C}^{-1}(u)$



Mike Giles (Oxford)

March 26, 2014 6 / 23

Errors in approximating Q(u) can only lead to errors in rounding down if near an integer



Mike Giles (Oxford)

Incomplete Gamma function

If X is a positive random variable with CDF

$$C(x) \equiv \mathbb{P}(X < x) = \frac{1}{\Gamma(x)} \int_{\lambda}^{\infty} e^{-t} t^{x-1} dt.$$

then integration by parts gives

$$\mathbb{P}(\lfloor X \rfloor \le n) = \frac{1}{n!} \int_{\lambda}^{\infty} e^{-t} t^{n} dt = e^{-\lambda} \sum_{m=0}^{n} \frac{\lambda^{m}}{m!}$$
$$\implies \overline{C}^{-1}(u) = \lfloor C^{-1}(u) \rfloor$$

We will approximate $Q(u)\equiv C^{-1}(u)$ so that $|\widetilde{Q}(u)-Q(u)|~<~\delta~\ll~1$

This will round down correctly except when Q(u) is within δ of an integer – then we need to check some $\overline{C}(m)$

CPUs and GPUs

On a CPU, if the costs of $\widetilde{Q}(u)$ and $\overline{C}(m)$ are C_Q and C_C , the average cost is approximately

$$C_Q + 2 \delta C_C$$
.

However, on a GPU with a warp length of 32, the C_C penalty is incurred if any thread in the warp needs it, so the average cost is

$$C_Q + (1 - (1 - 2\,\delta)^{32}) C_C \approx C_Q + 64\,\delta C_C \text{ if } \delta \ll 1.$$

This pushes us to more accurate approximations for GPUs.

Temme expansion

Temme (1979) derived a uniformly convergent asymptotic expansion for C(x) of the form

$$C(x) = \Phi\left(\lambda^{\frac{1}{2}}f(r)\right) + \lambda^{-\frac{1}{2}}\phi\left(\lambda^{\frac{1}{2}}f(r)\right)\sum_{n=0}^{\infty}\lambda^{-n}a_n(r)$$

~~

where $r = x/\lambda$ and

$$f(r) \equiv \sqrt{2 (1 - r + r \log r)},$$

with the sign of the square root matching the sign of r-1.

▲□ ► < □ ► </p>

Temme expansion

Based on this, can prove that the quantile function is

 $Q(u)\approx\lambda\,r+c_0(r)$

where

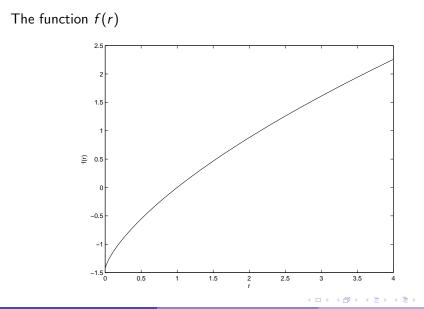
$$r = f^{-1}(w/\sqrt{\lambda}), \quad w = \Phi^{-1}(u)$$

and

$$c_0(r) = \frac{\log\left(f(r)\sqrt{r}/(r-1)\right)}{\log r}$$

Both $f^{-1}(s)$ and $c_0(r)$ can be approximated very accurately (over a central range) by polynomials, and an additional *ad hoc* correction gives

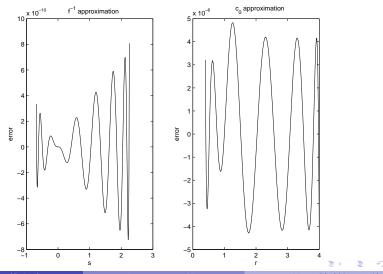
$$\widetilde{Q}_{T}(u) = \lambda \ r + p_{2}(r) + p_{3}(r)/\lambda$$



March 26, 2014 12 / 23

æ

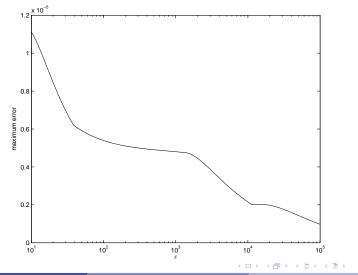
Errors in $f^{-1}(s)$ and $c_0(r)$ approximations:



Mike Giles (Oxford)

March 26, 2014 13 / 23

Maximum error in $\widetilde{Q}_{\mathcal{T}}$ approximation:



Mike Giles (Oxford)

Poisson inverse CDF

3

C(m) evaluation

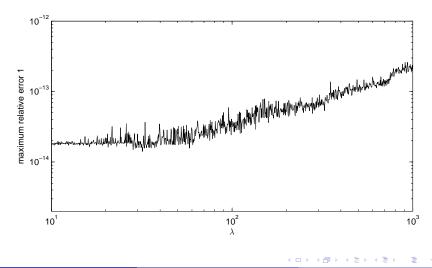
In double precision, when $\widetilde{Q}(u)$ is too close to an integer m+1, we need to evaluate C(m) to choose between m and m+1.

When $\frac{1}{2}\lambda \le m \le 2\lambda$, this can be done very accurately using another approximation due to Temme (1987).

Outside this range, a modified version of bottom-up / top-down summation can be used, because successive terms decrease by factor 2 or more.

In single precision this "correction" procedure does not improve the accuracy.

Maximum relative error in Temme approximation for C(m)



The GPU algorithm (single precision)

```
given inputs: \lambda, u
if \lambda > 4
    w := \Phi^{-1}(u)
    s := w/\sqrt{\lambda}
    if s_{min} < s < s_{max}
                                                  main branch
        r := p_1(s)
        x := \lambda r + p_2(r) + p_3(r)/\lambda
    else
        r := f^{-1}(w/\sqrt{\lambda})
                                            Newton iteration
        x := \lambda r + c_0(r)
        x := x - 0.0218/(x + 0.065\lambda)
    end
    n := |x|
```

The GPU algorithm (single precision)

 $\begin{array}{l} \text{if } x > 10 \\ \text{return } n \\ \text{end} \\ \text{end} \end{array}$

use bottom-up summation to determine nif u > 0.5 and not accurate enough use top-down summation to determine nend

Top-down summation finds smallest n such that

$$1-u \geq e^{-\lambda} \sum_{m=n+1}^{\infty} \frac{\lambda^m}{m!}$$

The GPU algorithm (double precision)

given inputs: λ , u if $\lambda > 4$ $w := \Phi^{-1}(u)$ $s := w/\sqrt{\lambda}$ if $s_{min} < s < s_{max}$ $r := p_1(s)$ $x := \lambda r + p_2(r) + p_3(r)/\lambda$ $\delta = 2 \times 10^{-5}$ else $r := f^{-1}(w/\sqrt{\lambda})$ $x := \lambda r + c_0(r)$ $x := x - 0.0218/(x + 0.065\lambda)$ $\delta := 0.01/\lambda$ end

$$n := \lfloor x + \delta \rfloor$$

/₽ ► < ∃ ►

- 3

The GPU algorithm (double precision)

```
if x > 10

if x - n > \delta

return n

else if C(n) < u "correction" test

return n

else

return n-1

end

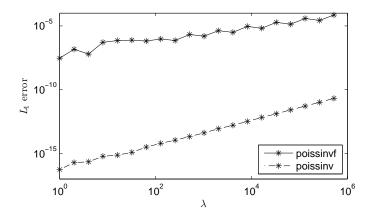
end

end
```

use bottom-up summation to determine n

if u > 0.5 and not accurate enough use top-down summation to determine nend

Accuracy



 L_1 errors of poissinvf and poissinv functions written in CUDA. (It measures the fraction of the (0, 1) interval for which the error is ± 1 .)

Performance

Samples/sec for poissinvf and poissinv using CUDA 5.0

	GTX670		K20	
λ	poissinvf	poissinv	poissinvf	poissinv
2	1.25e10	1.03e09	1.94e10	5.29e09
8	5.66e09	3.70e08	8.77e09	2.07e09
32	8.07e09	6.98e08	1.25e10	4.20e09
128	8.38e09	6.98e08	1.25e10	4.20e09
mixed	4.91e09	3.00e08	6.83e09	1.64e09
normcdfinvf	1.96e10		2.70e10	
normcdfinv		9.61e08		7.15e09

< 17 ▶

э

Conclusions

- By approximating the inverse incomplete Gamma function, have developed an approach for inverting the Poisson CDF for λ>4
- Computational cost is roughly cost of inverse Normal CDF function plus three polynomials of degree 8–12
- Report and open source CUDA implementation available now: http://people.maths.ox.ac.uk/gilesm/poissinv
- Report also describes a second approximation which is faster for CPUs, but has more branching so is worse for GPUs