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Outline

@ Feynman-Kac formula

@ prior work — Gobet & Menozzi

@ multilevel Monte Carlo

@ prior work — Higham et a/

@ new idea — approximating a conditional expectation

@ outline numerical analysis
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Feynman-Kac formula

Suppose that u(x, t) satisfies the parabolic PDE

ou 0%u
Z.Ia 1ZbJ/bk/aak—VU+f—0

J77

in bounded domain D, subject to u(x,t) = g(x,t) on the boundary dD.

It will be assumed that f(x, t), V(x, t), a(x, t), b(x, t) are all Lipschitz
continuous, and g(x, t) is continuously twice-differentiable.
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Feynman-Kac formula

Feynman and Kac proved that u(x, t) can also be expressed as

u(x,t)=E [/ E(t,s)f(Xs,s)ds+ E(t,7)g(X-,7) | Xe = x
t
where X; satisfies the SDE
dXt = a(Xt, t) dt + b(Xt, t) th,

with W; being a Brownian motion with independent components,
T is the first time at which X; leaves D, and

E(to, t1) = exp <— /t1 V(Xe, t)dt> .

to

Note: in the special case in which f(x,t)=0, g(x,t)=t, V(x,t)=0
Uexit(x, t) is the expected exit time.
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Numerical approximation
An Euler-Maruyama discretisation with uniform timestep h gives

y(tn+1 = 5\<tn —+ a(;(tn, tn) h + b(5\<tn7 tn) AWn,

with initial data Xp=x at time t.

If )A((t) is the piecewise-constant interpolant, we then have

U(x, t) = E [ / "E(t.5) F(X(s).5)ds + E(t.7) g(X(7). ?)] .

with 7 being the exit time, and

E(tp, t1) = exp <—/ V(X, t)dt) .
£

0
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Prior work — Gobet & Menozzi

The Euler-Maruyama method has strong accuracy

<E

and Gobet & Menozzi (2007) proved that it has weak error

sup || Xe — X(2)|?

[0,min(7,7

1/2
) = O(h'/?|log h|*/?),

u(x,t) — U(x, t) = O(h/?).

For standard Monte Carlo method, € RMS accuracy needs 0(5_2) paths,
each with h = O(e?), so total cost is O(s™%)

Gobet & Menozzi (2010) reduced this to O(¢~3) by shifting the boundary
by O(h'/?) to improve the weak error to O(h).
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Multilevel Monte Carlo
MLMC is based on the telescoping sum

L
E[P.] =E[Po] + > E[P,—P,_1]
=1

where P, represents an approximation using timestep hy = 2~ ho,
with weak convergence

E[P, — P] = 0(2=%)

If ?g is an unbiased estimator for IE[/F\’E—/F\’g_l], based on N, samples,
with variance

VIYd = O(N; 1277

and expected cost
E[C/] = O(N, 279),
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Multilevel Monte Carlo

then the finest level L and the number of samples N, on each level
can be chosen to achieve an RMS error of ¢ at an expected cost

0(e7?), B>,
C=<¢ 0O (5_2(Iog 6)2) ,  B=m,

0 (e2-0=A/e) 0 < B <.
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Prior work — Higham

Higham et al (2013) developed a MLMC treatment of the exit time
problem:

@ Euler-Maruyama discretisation
° O(h;/z) weak convergence = a =1/2
o V[P—Pr 1] = O(h)/*|log h|/?) = B ~1/2
o O(h;') cost per path => ~ =1
Hence, overall cost is O(e~3| log |'/?).

Gobet & Menozzi's boundary treatment would improve this to
O(e7%5|log e|*/?).

G & Primozic (2011) developed O(¢2) treatment using Milstein
discretisation for SDEs with special commutativity property.
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MLMC challenge

When coarse or fine path exits the domain, the other is within O(h/?).
However, there is a O(h'/?) probability that it will not exit the domain
until much later = V, ~ O(h'/?).

4 T T T

—>— coarse path
3 | | —k—fine path
boundary
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MLMC challenge

How can we do better?

Similar to previous work on digital options (G, Burgos), and also used
by Dickmann & Schweizer for stopping times, split second path into
multiple copies and average their outputs to approximate the conditional

expectation.

Approximately O(h1/2) expected time to exit for second path, so can
afford to use approximately O(h_l/z) copies of second path.

This gives an approximation to the conditional expectation resulting in
Py — Py_1 =~ O(h'/?), so V; =~ O(h).

This gives o = 1/2, B~ 1, v = 1 and the complexity is O(c~?|log¢|?).
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Numerical Analysis
Assumption 1: There is a Lipschitz constant L¢ such that

[FOt) =y, s)l < Le(Ix=ylla + [t =s[), V(xt),(y,s) € D,

and there are similar Lipschitz constants Lg, Ly, L,, Lp, Ly, Lexir for
g,V,a,b,u, Uei. In addition, g € C>1(D), with a bounded Hessian
Hgy = 9%g/0x>.

Comment: assumption about L,, Le: may require the boundary 0D
to be smooth, or at least not have re-entrant corners.

Assumption 2: There is a unit computational cost for each timestep, and
in determining whether or not X; , €D.

Assumption 3: There exist constants C, and Ceyt s.t. for all (x,t) € D
lu(x, t)=T(x,t)] < C, h*/?

|Uexit(X7 t)_aexit(xa t)| < Cexit h1/2
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Numerical Analysis

Defining the output functional

P, — / E(t,s) F(Xe,s)ds + E(t,7) g(X,, 7)
t
we get

Lemma
Given Assumption 1, there exists C such that for any (x,t) € D

d (E(t,s) g(Xs,s)> -
E(t,s) ( (— Ve+g+(Ve)  a+ Ltrace(b” Hg b)) ds+ (Vg)T des)

with a, b, g, § = 0g/0t, Vg, Hg, all evaluated at (X, s).

Mike Giles, Francisco Bernal (Oxford) Feynman-Kac MLMC July 6, 2015 13 /20



Numerical Analysis
Hence, P; — g(x,t) = pM + p® where
p = /: E(t,s) (f ~Vg+g+(Vg) a+ Ltrace(b” H, b)) ds,
pd = /T E(t,s)(Vg)" b dW..
t
Considering the second term, since E(t,s) < exp(T||V|o), we have

E[(p®)] = E [ [ (€52 1(9e) b2 ds]
< exp(2T||Vw) IVe

%,opoH%,oo IE[7—_1:- | Xt:X]u

where || b

2.00 ||VE&|l2,00 are the maximum values of ||b||2, [|[Vg||2 over D.
The first term is handled similarly to complete the proof.
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Numerical Analysis

The following is a standard result:

Lemma

If W and Z are independent random variables, then

M
Y =M1 f(w,zm)

m=1

with independent samples W and Z(™) s an unbiased estimator for
E[f(W, Z)] and its variance is

V[Y] =V [E[f(W, Z)] W]} +MIE [V[f(w, 7)| W]] .
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Numerical Analysis

Let 7 be the exit time of the first of a pair of coarse/fine paths,
and 7 be 7 rounded up to the end of a coarse timestep.

In our application W represents the Brownian path up to 7,

and Z is the Brownian path therafter.
4 T T T
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Numerical Analysis

Lemma

Given Assumptions 1 and 3, we have

E[[soup] 1Xee—Xe-1,6lIP12 = O(hy2 | log he_1[*/?)
E[[|Xer—Xe17121Y2 = O(hy'3 |log he—1]?)

— V[EP—Pa|W]| = O(healloghesl)

The key to the proof is that if 0 < t < 7 then
t T
Py = / E(0,5) F(Xe, 5) ds+E(0, £) { / E(t,5) F(Xs, ) ds + E(t,7) g(xT,T)}
0 t

= E[Po |.7-"t]—/OtE(O,s) f(Xs,s)ds = E(0,t) E[P: | Ft] = E(0,t) u(Xe, t)

Something similar for the discrete approximation yields
5 B 1/2
E[P;—Py_1 | W] = O(h}”2 |log hy_1|"/?)
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Numerical Analysis

Lemma

Given Assumptions 1 and 3,

E|V[P—P,1] W]] = O(hL? |log hy_1|1/?)

The key here is that, similar to the SDE analysis, there exists C such that
V[P—Pr—1 |[W] < CE[|F—7]| W])

= O(h"2 |log he_1[/?)
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Numerical Analysis

Corollary

Under the given assumptions, an RMS error of ¢ can be achieved with an
O(c72|loge|3) expected computational cost.

The proof is slightly non-standard because of log terms.
o hy=4""thy
o M,=[2!/¢'/2] paths in the splitting estimator
o expected cost is O(h, ')
@ variance V; = O(h;|log hy|) = O(hy ?).

This eventually gives the desired cost bound.
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Conclusions

@ conditional expectation / splitting is a useful technique in
MLMC estimation

@ in Feynmac-Kac application it improves the MLMC variance
from approximately O(h'/?) to approximately O(h), reducing
the complexity to O(e 2| loge|3)

@ numerical analysis is now complete but relies on key assumption
of uniform O(h1/2) weak convergence — an open problem

Webpages:

people.maths.ox.ac.uk/gilesm/mlmc.html
people.maths.ox.ac.uk/gilesm/mlmc_community.html
people.maths.ox.ac.uk/gilesm/acta/
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