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PDEs with Uncertainty

Looking at the history of numerical methods for PDEs, the first steps
were about improving the modelling:

1D → 2D → 3D

steady → unsteady

laminar flow → turbulence modelling → large eddy simulation
→ direct Navier-Stokes

simple geometries (e.g. a wing) → complex geometries
(e.g. an aircraft in landing configuration)

adding new features such as combustion, coupling to structural /
thermal analyses, etc.

. . . and then engineering switched from analysis to design.
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PDEs with Uncertainty

There is now a big move towards handling uncertainty:

uncertainty in modelling parameters

uncertainty in geometry

uncertainty in initial conditions

uncertainty in spatially-varying material properties

inclusion of stochastic source terms

Engineering wants to move to “robust design” taking into account the
effects of uncertainty.

Other areas want to move into Bayesian inference, starting with an
a priori distribution for the uncertainty, and then using data to derive
an improved a posteriori distribution.
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PDEs with Uncertainty
Examples:

Long-term climate modelling:

Lots of sources of uncertainty including the effects of aerosols,
clouds, carbon cycle, ocean circulation
(http://climate.nasa.gov/uncertainties)

Short-range weather prediction

Considerable uncertainty in the initial data due to limited
measurements

Engineering analysis

Perhaps the biggest uncertainty is geometric due to manufacturing
tolerances

Nuclear waste repository and oil reservoir modelling

Considerable uncertainty about porosity of rock

Mike Giles (Oxford) Monte Carlo methods August 15, 2015 4 / 34



PDEs with Uncertainty

In the past, Monte Carlo simulation has been viewed as impractical
due to its expense, and so people have used other methods:

stochastic collocation

polynomial chaos

Because of Multilevel Monte Carlo, this is changing and there are now
several research groups using MLMC for PDE applications
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Monte Carlo method

Given a function f of a random input ω, to estimate the value of E[f ]
we can use the Monte Carlo estimate

N−1
N∑

n=1

f (ω(n)).

based on N independent samples ω(n).

By the Central Limit Theorem, as N → ∞, the error in this estimate
becomes Normally distributed, with variance N−1

V[f ].

The error lies within 3 s.d. with probability 99.7%, giving us a
confidence interval.
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Control variate

Classic approach to variance reduction: approximate E[f ] using

N−1
N∑

n=1

{
f (ω(n))− λ

(
g(ω(n))− E[g ]

)}

where

control variate g has known expectation E[g ]

g is well correlated with f , and optimal value for λ can be estimated
by a few samples

For the optimal value of λ, the variance is reduced by factor (1−ρ2),
where ρ is the correlation between f and g .
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Two-level Monte Carlo

If we want to estimate E[f1] but it is much cheaper to simulate f0 ≈ f1,
then since

E[f1] = E[f0] + E[f1−f0]

we can use the estimator

N−1
0

N0∑

n=1

f
(0,n)
0 + N−1

1

N1∑

n=1

(
f
(1,n)
1 − f

(1,n)
0

)

Two differences from standard control variate method:

E[f0] is not known, so has to be estimated

λ = 1

Benefit: if f1−f0 is small, won’t need many samples to accurately estimate
E[f1−f0], so cost will be reduced greatly.
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Multilevel Monte Carlo

Natural generalisation: given a sequence f0, f1, . . . , fL

E[fL] = E[f0] +

L∑

ℓ=1

E[fℓ−fℓ−1]

we can use the estimator

N−1
0

N0∑

n=1

f
(0,n)
0 +

L∑

ℓ=1

{
N−1
ℓ

Nℓ∑

n=1

(
f
(ℓ,n)
ℓ − f

(ℓ,n)
ℓ−1

)}

with independent estimation for each level
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of f0

Cℓ,Vℓ to be cost and variance of fℓ−fℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂Nℓ

L∑

k=0

(
Nk Ck + µ2N−1

k Vk

)
= 0

gives
Nℓ = µ

√
Vℓ/Cℓ =⇒ Nℓ Cℓ = µ

√
Vℓ Cℓ
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Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)

and hence, the total cost is

L∑

ℓ=0

Nℓ Cℓ = ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore:

VL/V0, if
√
VℓCℓ increases with level

C0/CL, if
√
VℓCℓ decreases with level
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General MLMC Theorem

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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General MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with a computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.

Proof: M.B. Giles, Operations Research (2008)
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Discussion

If β > γ, the cost is O(ε−2):

Monte Carlo requires O(ε−2) samples to get a RMS error of ε

average cost per sample is O(1)

can’t do any better without going to Quasi-Monte Carlo

When β < γ, the cost is O(ε−2−(γ−β)/α):

cost of one calculation on the finest level is O(ε−γ/α)

MLMC is equivalent to O(ε−2+β/α) calcs on finest level

if β = 2α, that’s O(1) calcs on finest level — can’t do any better
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Engineering Uncertainty Quantification

consider a 3D elliptic PDE, with uncertain boundary data

use grid spacing proportional to 2−ℓ on level ℓ

cost is O(2+3ℓ) if using an efficient multigrid solver

assuming 2nd order accuracy for output P means that

P̂ℓ(ω)− P(ω) ≈ c(ω) 2−2ℓ

=⇒ P̂ℓ−1(ω)− P̂ℓ(ω) ≈ 3 c(ω) 2−2ℓ

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy

cost is O(ε−1.5) for a single deterministic PDE simulation

cost would be O(ε−3.5) for ordinary Monte Carlo
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Parabolic SPDE

Unusual parabolic SPDE arises in a financial setting
(Bush, Hambly, Haworth & Reisinger)

dp = −µ
∂p

∂x
dt +

1

2

∂2p

∂x2
dt +

√
ρ
∂p

∂x
dW

with absorbing boundary p(0, t) = 0

derived in limit as number of firms −→ ∞
x is distance to default

p(x , t) is probability density function

stochastic dW term corresponds to systemic risk
(a market crash or recession hits all firms)

∂2p/∂x2 comes from idiosyncratic risk
(each firm is affected by its own unique circumstances)
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Parabolic SPDE

Numerical discretisation combines Milstein time-marching with central
difference spatial approximation:

vn+1
j = vnj − µ k +

√
ρ∆Wn

2h

(
vnj+1 − vnj−1

)

+
(1−ρ) k + ρ∆W 2

n

2h2
(
vnj+1 − 2vnj + vnj−1

)

where k is the timestep, h is the grid spacing, and ∆Wn ∼ N(0, k).

Each finer level uses four times as many timesteps, and twice as many
spatial points, due to numerical stability constraints.

Mike Giles (Oxford) Monte Carlo methods August 15, 2015 17 / 34



Parabolic SPDE

coarsest level of approximation uses 1 timestep per quarter,
and 10 spatial points

implementation was really very easy – most interesting part of
research was mean-square stability theory, with and without absorbing
boundary

computational cost Cℓ ∝ 8ℓ

numerical results suggest variance Vℓ ∝ 8−ℓ

can prove Vℓ ∝ 16−ℓ when no absorbing boundary
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Elliptic SPDEs

I worked with Rob Scheichl (Bath) and Andrew Cliffe (Nottingham)
on multilevel Monte Carlo for the modelling of oil reservoirs and
groundwater contamination in nuclear waste repositories.

Here we have an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain, and log κ(x) is often modelled as
being Normally distributed with a spatial covariance such as

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)
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Elliptic SPDE

A typical realisation of κ for λ = 0.001, σ = 1.
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève expansion:

log k(x, ω) =

∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the correlation function:

∫
R(x, y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.

(Latest 2D/3D work uses an efficient FFT construction based on a
circulant embedding.)
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Elliptic SPDE

Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos approach, but
it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform grid – for rough
coefficients we need to make grid spacing very small on finest grid

each level of refinement has twice as many grid points in each
direction

old numerical experiments used a direct solver for simplicity,
but later 3D work used an efficient AMG multigrid solver with a cost
roughly proportional to the total number of grid points
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2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost taken to be proportional to number of nodes
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2D Results
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V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ h2ℓ
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2D Results
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Complexity analysis

Relating things back to the MLMC theorem:

E[P̂ℓ−P ] ∼ 2−2ℓ =⇒ α = 2

Vℓ ∼ 2−2ℓ =⇒ β = 2

Cℓ ∼ 2dℓ =⇒ γ = d (dimension of PDE)

To achieve r.m.s. accuracy ε requires finest level grid spacing h ∼ ε1/2

and hence we get the following complexity:

dim MC MLMC

1 ε−2.5 ε−2

2 ε−3 ε−2(log ε)2

3 ε−3.5 ε−2.5
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ℓ to level ℓ+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

increasing accuracy

increasing cost

increasingly small difference between outputs on successive levels
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Reduced Basis PDE approximation
Vidal-Codina, Nguyen, G, Peraire (2014) take a fine FE discretisation:

A(ω) u = f (ω)

and use a reduced basis approximation

u ≈
K∑

k=1

vkuk

to obtain a low-dimensional reduced system

Ar (ω) v = fr (ω)

larger K =⇒ greater accuracy at greater cost

in multilevel treatment, Kℓ varies with level

brute force optimisation determines the optimal number of levels,
and reduced basis size on each level
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Other SPDE applications

Schwab (ETH Zürich) – elliptic, parabolic, hyperbolic

Jenny (ETH Zürich) – fluids, two-phase flow

Efendiev (Texas A&M) & Iliev (ITWM)– two-phase flow, numerical
homogenization

Hou (Caltech) – numerical homogenization

Harbrecht (Basel) – elliptic

Tempone (KAUST) & Nobile (EPFL) – elliptic, Multi-Index Monte
Carlo (important generalisation of MLMC)

For other papers on multilevel, see my MLMC community homepage:

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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Final words

multilevel Monte Carlo has made the Monte Carlo approach viable
for engineering applications which require the solution of SPDEs
or PDEs with random data.

the implementation is often very straightforward, using the same
stochastic inputs for simulations on two levels of refinement

it is particularly effective for applications with strong nonlinearity
and high stochastic dimensionality, where the alternative methods
are not appropriate

For my multilevel papers see:
people.maths.ox.ac.uk/gilesm/mlmc.html

people.maths.ox.ac.uk/gilesm/acta/
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