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Risk analysis

Stochastic models are increasingly being adopted in real-life
applications.

An important question in such applications is assessing the risk of
some extreme event:

I in finance: risk of loss, default or ruin,
I in industrial modelling: risk of component failure,
I in crowd modelling: risk of stampede,
I . . .

Risk assessment is the first step to risk management.

Computing risk measures is computationally difficult because
I extreme events are extremely rare,
I the risk measures are not smooth (either the event happened or not),
I and the underlying stochastic models are difficult to evaluate (or

expensive to approximate).

In this work, we address the last two points.
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Nested expectation in risk applications

The “losses” are modelled by P random variables {Xi}Pi=1.

{Xi}Pi=1 depend on another (multi-dimensional) random variable Y ,
the risk factor.

The expected loss for a given risk factor is

Λ = E

[
1

P

P∑
i=1

Xi

∣∣∣∣∣Y
]
.

We are interested in computing probability of the expected loss
exceeding Λη as

η = P[ Λ>Λη ] = E

[
H

(
E

[
1

P

P∑
i=1

Xi − Λη

∣∣∣∣∣Y
]) ]

where H(·) is the Heaviside step function.

Key message: the probability of a large expected loss involves a
nested expectation.
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Nested estimation using Monte Carlo

E

[
H

(
E

[
1

P

P∑
i=1

Xi

∣∣∣∣∣Y
]) ]

We use N inner samples of {Xi}Pi=1 to estimate
H(E[X |Y ]) ≈ H

(
XN(Y )

)
where

XN(Y ) = N−1P−1
N∑

n=1

P∑
i=1

X
(n)
i (Y )

This leads to a bias of O(P−1N−1). Using Monte Carlo for the outer
expectation as well,

E
[
H(E[X |Y ])

]
≈ 1

M

M∑
m=1

H
(
XN(Y (m))

)
leads to a sampling error of O(M−1/2).
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Nested estimation using Monte Carlo

To achieve a root mean-square error ε choose

N = max
(
1,O(P−1ε−1)

)
M = O(ε−2)

Cost of nested Monte Carlo estimator is M N P .

Hence complexity is O(max
(
Pε−2, ε−3

)
).

Ideally we would like the complexity to be O(ε−2), independently of P.
Hence we will

Devise a strategy to sample the sum with a complexity that is
independent of P so that the complexity is O(ε−3).

Use MLMC to reduce the complexity to almost O(ε−2).
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Estimating a sum

Recall that we have to compute 1
P

∑P
p=1 Xi for every sample of the risk

factors, Y . Here, we focus on a single computation for a single risk
scenario.

Using a random sub-sampler we can approximate

1

P

P∑
p=1

Xi =
1

P
E[Xj p

−1
j ] ≈ 1

PN

N∑
n=1

X
(n)

j(n) p−1
j(n)

where j is a random integer with P[ j = i ] = pi for i ∈ {1, . . . ,P}.
The cost of this random sub-sampler is N while the MSE is bounded by

N−1P−2
P∑
i=1

E[X 2
i ]p−1

i
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Estimating a sum

Minimizing the MSE leads to the optimal expression for the probabilities

pi = g̃i

/ P∑
k=1

g̃k

for g̃2
i ≈ E[X 2

i ] and the optimal MSE

N−1P−2

(
P∑
i=1

E[X 2
i ]

g̃i

)(
P∑
i=1

g̃i

)
≈ N−1P−2

(
P∑
i=1

g̃i

)2

= O(N−1)

which is bounded for all P.
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In nested expectation
Hence, we write

E

[
H

(
E

[
1

P

P∑
i=1

Xi

∣∣∣∣∣Y
]) ]

= E
[
H(E[X |Y ])

]
where

X = P−1 Xj p
−1
j

and

pj = g̃j

/ P∑
k=1

g̃k

for some sequence g̃k independent of Y , e.g., g̃k = E[X 2
k ] so that the

optimal probabilities have to computed only once.

Using the random sub-sampler, the computational complexity is
independent of the number of terms P. Moreover, in some cases it can be
reduced by a constant by using a mixed sub-sampler.
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Mixed sub-sampler

To illustrate the need for mixed sub-sampling, consider the simple example

1

P

P∑
i=1

Xi

where all Xi terms are deterministic. A mixed estimator for 0 ≤ Q ≤ N is

1

P

P∑
p=1

Xi =
1

P

Q∑
p=1

Xi +
1

P
E
[
Xj p

−1
j

]

≈ 1

P

Q∑
p=1

Xi +
1

P(N − Q)

N−Q∑
n=1

Xj(n) p−1
j(n)

where j is a random integer with P[ j = i ] = pi for i ∈ {Q + 1, . . . ,P}.
When Q = 0 we have a fully random sub-sampler and when Q = P we are
computing the sum exactly.
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Mixed sub-sampler

Using the previous choice for pi the MSE is bounded by

(N − Q)−1P−2

(
P∑

i=Q+1

Xi

)2

since the error contribution is only due to the random sub-sampler.
Hence, by sub-sampling the largest Q terms deterministically and
optimizing with respect to Q, using a knapsack-type optimization, we can
end up with a smaller MSE.
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Numerical illustration
For P = 1000 and X 2

i being i.i.d. samples from exponential distribution
with rate 3.
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MLMC for nested expectation

Next, we want to apply MLMC to nested expectation to reduce the overall
complexity from O(ε−3) to O(ε−2).
Building a hierarchy of L + 1 estimators with N` inner samples for
` = 0, 1, . . . , L, the MLMC estimator is

E[P ] ≈
L∑
`=0

1

M`

M∑̀
m=1

∆`P
(`,m),

where
P = H(E[X |Y ]),

P` = H
(
XN`(Y )

)
,

∆`P
(`,m) = P

(`,m)
` − P

(`,m)
`−1

= H
(
XN`(Y

(`,m))
)
−H

(
XN`−1

(Y (`,m))
)
,

and P−1 = 0.
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Multilevel Monte Carlo: summary
For P ≈ P` and ∆`P = P` − P`−1 with P−1 = 0, we have

E[P ] =
∞∑
`=0

E[ ∆`P ] ≈
L∑
`=0

E[ ∆`P ] ≈
L∑
`=0

1

M`

M∑̀
m=1

∆`P
(`,m)

where ∆`P
(`,m) is the (`,m)’th samples of ∆`P. Assuming

|E[P − P` ]| = O
(

2−α`
)
,

V` = Var[ ∆`P ] = O
(

2−β`
)
,

W` = O(2γ`),

where the work to sample ∆`P is W`, then there are optimal choices of L
and M` so that the MLMC estimator has complexityO

(
ε−2−max(0,γ−β

α )
)
, when γ 6= β

O
(
ε−2|log ε|2

)
otherwise.

c.f. MC: O(ε−2− γ
α )
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Choice of N`: Need for adaptivity

H(E[X |Y ]) ≈ H
(
XN`(Y )

)

σN
−1/2
`

E[X |Y1 ]

σ2 = Var[X |Y ]

E[X |Y2 ]

Heaviside H

pdf of XN`
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MLMC + adaptive inner sampling

Let

d = |E[X |Y ]|, σ2 = Var[X |Y ], δ = d/σ

We will instead use the following number of inner samples:

N` = max
(

2`, 4` min(1, (2`δ)−r )
)
, 1 < r < 2,

Note
2` ≤ N` ≤ 4`.
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MLMC + adaptive inner sampling

N` = max
(

2`, 4` min(1, (2`δ)−r )
)
, 1 < r < 2,

` = 2, r = 1.99

2−` 2−`(r−1)/r

δ = d/σ

N
`
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MLMC + adaptive inner sampling

N` = max
(

2`, 4` min(1, (2`δ)−r )
)
, 1 < r < 2,

` = 3, r = 1.99

2−` 2−`(r−1)/r

δ = d/σ

N
`
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MLMC + adaptive inner sampling

N` = max
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MLMC + adaptive inner sampling

N` = max
(

2`, 4` min(1, (2`δ)−r )
)
, 1 < r < 2,

` = 4, r = 1.4

2−` 2−`(r−1)/r

δ = d/σ

N
`

Giles (Oxford) MLMC for Risk Estimation 19 July, 2019 16 / 21



MLMC + adaptive inner sampling

N` = max
(
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MLMC + adaptive inner sampling

N` = max
(

2`, 4` min(1, (2`δ)−r )
)
, 1 < r < 2,

` = 4, r = 1.01

2−` 2−`(r−1)/r

δ = d/σ

N
`
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Numerical analysis
Problem: In practice δ = d/σ is unknown, so the real adaptive algorithm
has to use Monte Carlo estimates for d̂ and σ̂ to compute N`.

Algorithm: For a given outer sample Y , starting with the minimum,
N` = 2`, keep doubling the number of inner samples, N`, until it is large
enough based on current estimate δ̂ = d̂/σ̂, i.e.,

N` ≥ 4` (2`δ̂)−r ,

or it reaches the maximum, 4`.

Concerns:

If we use too many samples, the cost may be larger than we want.

If we use too few samples, the variance may be larger than we want.

The main idea of the analysis is to prove that the probability of ending up
with the “wrong” number of inner samples decays very rapidly as you
move away from the “right” number, that we get if we use the exact δ.
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MLMC + adaptive inner sampling

Theorem (main result on output of adaptive algorithm)

Provided

1 the random variable δ = d/σ has bounded density near 0,

2 there exists q > 2 such that

sup
y

{
E
[ (
|X−E[X |Y ]|

σ

)q ∣∣∣Y = y
]}

<∞,

3 and for
1 < r < 2−

√
4q+1−1

q

then using the adaptive algorithm with this r to compute N` we have

E[N` ] = O(2`) and V` := Var[ ∆`P ] = O(2−`)
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Other risk measures: Value-at-Risk and Conditional VaR

The Value-at-Risk (VaR), Λη, is defined implicitly by P[ Λ>Λη ] = η.

This can be estimated by a stochastic root-finding algorithm, with the
acceptable error ε being steadily reduced during the iteration.

Complexity is O(ε−2|log ε|2).

Given a VaR estimate, Λ̃η, the Conditional VaR (CVaR) is then

E[ Λ | Λ>Λη ] = min
x

{
x + η−1E[ max(0,Λ−x) ]

}
= Λ̃η + η−1E[ max(0,Λ−Λ̃η) ] +O(Λ̃η−Λη)2

= Λ̃η + η−1E[ max(0,E[X |Y ]) ] +O(Λ̃η−Λη)2.

Complexity is O(ε−2).
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Epilogue: key messages

Risk estimation (and nested expectations) is a great new application
area for MLMC.

Keys to performance:
I MLMC approach with more inner samples on “finer” levels,
I adaptive number of inner samples,
I sub-sampling to obtain a cost that is independent of the number of

options.

Using an antithetic estimator is possible and improves the
computational complexity by a constant.

The discussion can be easily extended to terms with heterogeneous
work.

More complicated underlying assets, requiring time discretization, are
also handled using unbiased MLMC (leading to nested MLMC).
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