Some trends in HPC, and 3 questions

Mike Giles

Oxford University Mathematical Institute
Oxford e-Research Centre

IFIP WG 2.5 talk, Oxford

August 4th, 2016

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 1/23

Outline

Some trends, followed by 3 questions:

@ fat or thin nodes?
@ FPGAs: has the time finally come?

@ high-level frameworks: lessons learned?

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 2/23

Trends

1) Performance is achieved through parallelism, and in particular vector
processing:

@ don't want lots of chip dedicated to “command & control”
— instead, cores work in small groups, all doing the same
instruction at the same time, but on different data

(similar to old days of vector computing on CRAY supercomputers)
@ on NVIDIA GPUs, cores work in groups of 32 (a thread warp)

@ CPUs also have vector units (SSE, AVX) which are getting longer

(256-bit on most, but 512-bit on Intel's Xeon Phi, coming soon to
regular Xeons — “Skylake” in 2016/17)

@ tricky for algorithms with lots of conditional branching,
but there are various algorithmic tricks that can be used

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 3/23

Trends

2) Multithreading is also very important:

@ CPU cores use complex, out-of-order execution for maximum single
thread performance

@ many-core chips use simple in-order execution cores, and rely instead
on multithreading

@ with 4-10 threads per core, hopefully there's one thread with data
ready to do something useful

@ requires more registers so that each thread has its own register space
(latest NVIDIA P100 has about 3.5M registers in total, 1000 per core)

@ this all increases the amount of parallelism an application must have
to achieve good performance

(on a GPU, I'll use 20,000 threads at the same time)

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 4/23

Trends

3) Data movement is often key to performance:

200-600 cycle delay in fetching data from main memory

many applications are bandwidth-limited, not compute limited

(in double precision, given 200 GFlops and 80 GB/s bandwidth,
needs 20 flops/variable to balance computation and communication)

takes much more energy / time even to move data across a chip
than to perform a floating point operation

often, true cost should be based on how much data is moved,
and this is becoming more and more relevant over time

@ in some cases, this needs a fundamental re-think about algorithms
and their implementation

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 5/23

Trends

4) Increasing integration of networking onto CPUs:

@ new low-end Intel Xeon D SoC server chip:

» 8 cores
> built-in 2x10Gb/s Ethernet
» aimed at applications such as web servers

@ Intel “Knights Landing” Xeon Phi chip has integrated OmniPath
100 Gb/sec networking

@ these moves reduce costs, power consumption, network latency

@ they also make all of Intel’s competitors extremely nervous

= rise of the OpenPOWER consortium
(IBM, NVIDIA, Mellanox, Xilinx and others)

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 6 /23

Trends

5) We're in a period of rapid hardware innovation ...

@ Intel Xeon CPUs:

> up to 24 cores at 2-3 GHz, each with a 256-bit AVX vector unit
(and costing up to $7.2k each!)

» 2.5 MB L3 cache per core — up to 60 MB total

» up to 300 GB/s L3 cache bandwidth

» up to 100 GB/s bandwidth to main memory

@ Intel Xeon Phi (Knights Landing):

» standalone or accelerator card like a GPU (about 300W)
(costing from $2.5k to $6.5k)

> 64-72 cores at 1.3-1.5 GHz, each with 0.5MB L2 cache and
a 512-bit AVX vector unit, connected by a ring bus

» 500 GB/s bandwidth to 16GB MCDRAM memory

» 100 GB/s to main DDR4 memory

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 7/23

Trends

@ NVIDIA GPUs:

» new P100 has 3584 cores running at 1.1-1.5 GHz

» organised as 56 groups of 64 cores operating (effectively)

as vector groups of 32

half precision mode for Deep Learning

170/85/42 TFlops in half/single/double precision

720 GB/s bandwidth to 16GB HBM2 memory

similar bandwidth (?) to 6MB of L2 cache

4 x 20 GB/s bi-directional NVlink interconnects to other GPUs
or new IBM Power 8 CPU

» 10 GB/s PCle bandwidth to/from x86 host

vV vy vy VvYyy

o IBM Power 8 CPU:

» up to 12 cores at 3 GHz, each with 4 FPUs
» 115 GB/s bandwidth to memory
» 2 x 20GB/s NVlink interconnect to NVIDIA GPUs

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 8/23

Fat or thin nodes?

Suppose there's £5M for a “novel” supercomputer — what do you buy?

1) NVIDIA DGX-1 Deep Learning server

8 x P100 GPUs = approximately 30k cores in 3U

4 NVlinks per GPU, each 20 GB/s bi-directional

2 x 20-core Intel Xeon E5 CPUs

only 40 GB/s aggregate bandwidth to system memory, via PCle

also 40 GB/s aggregate bandwidth to network via 4 x IB EDR ports

vV vy vy VvYyy

PCle PCle PCle PCle
Switch Switch Switch Switch
(e (] = T
‘I P100 | ' P100 | | P100 | | P100
I = = [
| 100 | ‘Ipmn! | 100 | | P100 |

(from NVIDIA blog) 7

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 9/23

Fat or thin nodes?

2) new IBM “Minsky” server

4 x P100 GPUs, each with 4 NVlink connections

2 x IBM Power 8 CPUs, with 2 NVlink connections
160-230 GB/s aggregate bandwidth to system memory
4 x |1B EDR 100Gb/s ports for networking

v

v vy

3) standard Intel server + GPUs

2-4 x P100 GPUs, each with 16x PCle v3 connections
2 x 16-20 core Xeon E5 processors

20-140 GB/s aggregate bandwidth to system memory
only 80 lanes of PCle unless there are PCle switches
1-4 x IB EDR 100Gb/s networking

vV vy vy VvVYYy

4) Intel microserver

» single CPU Xeon-D server
» 25 GB/s bandwidth to system memory
» 2 x Ethernet 10Gb/s networking integrated into SoC

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 10 / 23

Fat or thin nodes?
My choice: 1)

@ strongly motivated by machine learning applications
(and relationship with NVIDIA)

many of these need just one big GPU, with training data loaded in
once and then re-used repeatedly

some need up to 8 GPUs, so worth paying premium for NVlink

8-GPU fat node is also ideal for a lot of smaller molecular dynamics
applications

@ big caveat: very important that 8 x 16 GB of HBM2 memory is
sufficient to hold all working data — PCle access to larger system
memory is too slow

@ external networking is barely sufficient for balanced system

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 11 /23

Fat or thin nodes?

STFC Hartree choice: 2)

@ multiple motivations:

» machine learning
» classic HPC such as CFD
» strong relationship with IBM — hosts an OpenPOWER centre

@ should be excellent for massive datasets which need to be repeatedly
streamed in from main system memory (or SSD)

@ should give good distributed memory scalability for classic HPC?

@ still a bit concerned if working data too big for HBM?2
— maybe Xeon Phi would be better? or need “tiling”?

@ more balanced external networking with 10GB/s per GPU

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 12 /23

Fat or thin nodes?

Cambridge choice: 3)

@ multiple motivations:

» classic HPC such as CFD, material science, molecular modelling
» strong relationship with Dell

@ should be excellent for Cambridge CFD code — high compute/memory
ratio so data fits comfortably inside HBM2

@ cheapest solution for applications needing only 1 GPU 7
(but cheaper PCle P100 is also 15% slower)

@ concerned with performance if working data too big to fit into HBM?2

@ also concerned about balance of external networking because of
insufficient PCle lanes, unless there are PCle switches

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 13 /23

Fat or thin nodes?

Google, Facebook choice: 4)

http://www.anandtech.com/show/9186/intel-xeon-d-review-performance-per-watt-server-soc-champion

https://code.facebook.com/posts/1711485769063510/
facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/

http://www.storagereview.com/facebook.focuses.on.more_efficient_frontend_servers

@ good compute & memory |/O performance per watt

@ can pack servers very densely (20 per U?) with mini-blades each
holding 4 nodes and a mini Ethernet switch

@ applications don't need huge networking bandwidth

@ from an HPC perspective, networking is very poor — would need
integrated 100Gb/s Ethernet to be interesting

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 14 / 23

Fat or thin nodes?

Software implications?

Big emphasis on reducing data and data movement:
@ reducing data movement = “communication-avoiding algorithms”
@ reducing data storage = recomputation, and “tiling” to fuse

multiple loops and eliminate storage of intermediate values

Also, important to achieve vectorisation: in some applications this needs
some careful reorganisation of algorithms

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 15 / 23

FPGAs: their time at last?

A quote:
Mike, I've got to tell you about FPGAs! This new technology is
going to completely change computing!

lan Page, summer 1992

| have heard this regularly over the past 25 years — they've been wrong
so far, but that may change.

After all, there must be a reason why Intel paid $16.7bn for Altera in 2015.

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 16 / 23

FPGAs: their time at last?

What are FPGAs?
o Field Programmable Gate Arrays — reconfigurable hardware, i.e. a
bunch of logic gates and memory cells which do almost anything
@ “compiling” takes up to 12 hours
@ for max performance, programmed in VHDL (very difficult)

o for ease-of-use, programmed in OpenCL (similar to CUDA) but at
what loss in performance?

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 17 /23

FPGAs: their time at last?

My assessment:
o for double precision floating point arithmetic, forget it — custom
hardware, as in GPUs, is more efficient

@ for integer tasks, and low-precision fixed point arithmetic, FPGAs
can be very efficient

@ best suited to really important applications where a dedicated team
of experts can hand-optimise the code, and then supply the
application to others

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 18 / 23

FPGAs: their time at last?

So why do | think they could become important now?

@ for loT for power efficiency — but maybe simpler to just buy a
low-power ARM processor?

@ for switches, to handle complex protocols, and offload MPI processing
(e.g. global reductions)

@ for server chips for on-the-fly encryption and lossless data compression

@ for low precision fixed point arithmetic for machine learning
(Microsoft is working on this)

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 19 / 23

High-level frameworks: lessons learned?
Our own research: OP2 / OPS

@ Key postdocs:
» Gihan Mudalige — moving to Warwick as Assistant Prof
> Istvan Reguly — moved home to Hungary to lectureship at PPKE
@ aims for future-proof efficiency on wide variety of modern
architectures (GPUs, Xeon Phi, etc)

@ based on FORTRAN or C++, but with additional high-level
“library routines”

@ pre-processing library calls leads to automated code generation
(e.g. CUDA for GPUs)

@ challenges:

> “big"” enough to cover many applications
» “small” enough to make implementation / maintenance practical
» finding secure long-term funding for maintenance

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 20 /23

High-level frameworks: lessons learned?

Successes:

generating code is not difficult; only need to parse library calls
2 codes with OP2 (unstructured grids), including 1 at RR
3 codes with OPS (block-structured grids), with potential for AWE

creating framework code no harder than hand-coding of one
application code
@ lots of other benefits flow naturally from high-level view:

» simple automated checkpointing
» automated loop fusion / tiling through *“lazy execution”

Biggest difficulty: secure long-term funding for maintenance
(though RR paying for OP2, and AWE might pay for OPS)

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 21 /23

High-level frameworks: lessons learned?
Alternative: separate customised high-level framework for each application

@ write application code generator at a high-level in Python, Matlab,
Mathematica

@ generate code for low-level implementation on architecture of choice

@ can use symbolic differentiation to generate linearised / adjoint code
@ some UK examples:

» FEniCS (Cambridge / Simula / Imperial College)
» firedrake (Imperial College)
» SBLI (Southampton)

@ Met Office considering the approach for their next-gen weather code

Perhaps a more sustainable approach, but risks re-programming key
underlying bits (MPI data exchange, checkpointing, tiling)
— can we put these into supporting libraries?

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 22 /23

References

My computing talks and papers:
http://people.maths.ox.ac.uk/gilesm/cudaslides.html
http://people.maths.ox.ac.uk/gilesm/journals.html

A “trends” talk from a year ago:
http://people.maths.ox.ac.uk/gilesm/talks/accu.pdf

A “fat versus thin” talk from a year ago:
http://people.maths.ox.ac.uk/gilesm/talks/big little.pdf

A talk on code generation from two years ago:
http://people.maths.ox.ac.uk/gilesm/talks/codegen.pdf

A paper from 2 years ago:
M.B. Giles, |. Reguly. ‘Trends in high performance computing for
engineering calculations’, Proc. Royal Society A, 372(2022), 2014

Mike Giles (Oxford) HPC trends and questions August 4th, 2016 23 /23

