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Approach

Given a scalar SDE driven by a Brownian diffusion

dS(t) = a(S, t) dt + b(S, t) dW (t),

to estimate E[P ] where the path-dependent payoff P can be
approximated by P̂l using 2l uniform timesteps, we use

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1].

E[P̂l−P̂l−1] is estimated using Nl simulations with same
W (t) for both P̂l and P̂l−1,

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Approach

Using independent samples for each level, the variance of
the combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡

{
V[P̂l−P̂l−1], l > 0

V[P̂0], l = 0

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

Multilevel Monte Carlo – p. 3/33



Approach

Since

E

[
(Ŷ −E[P ])2

]
= V[Ŷ ] +

(
E[P̂L] − E[P ]]

)2

can choose

constant of proportionality for Nl so that V[Ŷ ] ≈ 1
2ε2

finest level L so that
(
E[P̂L−P ]

)2
≈ 1

2ε2

to get Mean Square Error approximately equal to ε2

Multilevel Monte Carlo – p. 4/33



MLMC Theorem

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = 2−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo
samples, with computational complexity (cost) Cl, and positive

constants α≥ 1
2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂l − P ]

∣∣∣ ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l hβ

l

iv) Cl ≤ c3 Nl h
−1
l
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤






c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Previous work

First paper (Operations Research, 2006 – 2008) applied
idea to SDE path simulation using Euler-Maruyama
discretisation

Second paper (MCQMC 2006 – 2007) used Milstein
discretisation for scalar SDEs – improved strong
convergence gives improved multilevel variance
convergence

Multilevel method is a generalisation of two-level
control variate method of Kebaier (2005), and
similar to ideas of Speight (2009)

Also related to multilevel parametric integration by
Heinrich (2001)
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Numerical Analysis

If P is a Lipschitz function of S(T ), value of underlying path
simulation at a fixed time, the strong convergence property

(
E

[
(ŜN − S(T ))2

])1/2
= O(hγ)

implies that V[P̂l−P ] = O(h2γ
l ) and hence

Vl ≡ V[P̂l−P̂l−1] = O(h2γ
l ).

Therefore β=1 for Euler-Maruyama discretisation,
and β=2 for the Milstein discretisation.

However, in general, good strong convergence is neither
necessary nor sufficient for good convergence for Vl.
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Numerics and Analysis

Euler Milstein
option numerics analysis numerics analysis
Lipschitz O(h) O(h) O(h2) O(h2)

Asian O(h) O(h) O(h2) O(h2)

lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: Vl convergence observed numerically (for GBM)
and proved analytically (for more general SDEs) for both
the Euler and Milstein discretisations. δ can be any strictly
positive constant.
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Numerical Analysis

Analysis for Euler discretisations:

lookback and barrier options: Giles, Higham & Mao
(Finance & Stochastics, 2009)

lookback analysis follows from strong convergence
barrier analysis shows dominant contribution comes
from paths which are near the barrier; uses
asymptotic analysis, first proving that “extreme”
paths have negligible contribution

similar analysis for digital options gives O(h1/2−δ)

bound instead of O(h1/2 log h)

digital options: Avikainen (Finance & Stochastics, 2009)
method of analysis is quite different
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Numerical Analysis

Analysis for Milstein discretisations:

work in progress by Giles, Debrabant & Rößler

uses boundedness of all moments to bound the
contribution to Vl from “extreme” paths
(e.g. for which max

n
|∆Wn| > h1/2−δ for some δ>0)

uses asymptotic analysis to bound the contribution
from paths which are not “extreme”
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Milstein Scheme

Brownian interpolation: within each timestep, model the
behaviour as simple Brownian motion (i.e. constant drift and
volatility) conditional on the two end-points

Ŝ(t) = Ŝn + λ(t)(Ŝn+1 − Ŝn)

+ bn

(
W (t) − Wn − λ(t)(Wn+1−Wn)

)
,

where λ(t) =
t − tn

tn+1 − tn
.

There then exist analytic results for the distribution of the
min/max/average over each timestep, and probability of
crossing a barrier.
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Milstein Scheme

The Brownian interpolant is different from the standard
Kloeden-Platen interpolant defined as

ŜKP (t) = Ŝn + an (t−tn) + bn (W (t)−Wn)

+ 1
2 b′n bn

(
(W (t)−Wn)2 − (t−tn)

)
,

for which, under the usual conditions,

E

[
sup
[0,T ]

∣∣∣ŜKP (t) − S(t)
∣∣∣
m
]

= O(hm).
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Milstein Scheme

Theorem: Under standard conditions,

i)

E

[

sup
[0,T ]

∣∣∣Ŝ(t) − ŜKP (t)
∣∣∣
m
]

= O((h log h)m),

ii)

sup
[0,T ]

E

[ ∣∣∣Ŝ(t) − ŜKP (t)
∣∣∣
m]

= O(hm),

iii)

E




(∫ T

0
Ŝ(t)−ŜKP (t) dt

)2


 = O(h3).
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Milstein Scheme

Proof:

Ŝ(t) − ŜKP (t) = 1
2 b′nbn Y (t),

where

Y (t) = λ (Wn+1−Wn)2 − (W (t)−Wn)2

= λ (1−λ) (Wn+1−Wn)2 − (W (t) − Wn − λ (Wn+1−Wn))
2

− 2λ (Wn+1−Wn) (W (t) − Wn − λ (Wn+1−Wn)) .

with λ(t) = (t−tn)/(tn+1−tn) as before.
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Milstein Scheme

i) Assertion follows from

E

[
sup
[0,T ]

∣∣∣Ŝ(t) − ŜKP (t)
∣∣∣
m
]

≤ 2−m

√√√√E

[
max

n
|b′nbn|2m

]
E

[
sup
[0,T ]

|Y (t)|2m

]

and an extreme value theory bound for E

[

sup
[0,T ]

|Y (t)|2m

]

ii) Assertion follows from

E

[ ∣∣∣Ŝ(t) − ŜKP (t)
∣∣∣
m]

= 2−m
E[ |b′nbn|m] E[ |Y |m]
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Milstein Scheme

iii) Defining Xn :=

∫ tn+1

tn

Y (t) dt gives

E




(∫ T

0
(Ŝ(t) − ŜKP (t)) dt

)2


 = 1
4 E




(

N−1∑

n=0

b′nbnXn

)2


 .

The Xn are iid random variables, and
E[b′mbmXmb′nbnXn] = 0 for n>m, so

E




(∫ T

0
(Ŝ(t) − ŜKP (t)) dt

)2


 = 1
4 E[X2]

N−1∑

n=0

E[(b′nbn)2].

Result then follows from E[X2] = O(h4).
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Milstein Scheme

The variance convergence for the Asian option comes
directly from the last result.

Will now outline the analysis for the lookback option
– the barrier is similar but more complicated.

The digital option is based on a Brownian extrapolation
from one timestep before the end – the analysis is similar.

The analysis for the lookback, barrier and digital options
uses the idea of “extreme” paths which are highly
improbable – the variance comes mainly from non-extreme
paths for which one can use asymptotic analysis.
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Extreme Paths

Lemma: If Xl is a random variable on level l, and
E[ |Xl|m] ≤ Cm is uniformly bounded, then, for any δ > 0,

P[ |Xl| > h−δ
l ] = o(hp

l ), ∀p > 0.

Proof: Markov inequality P[ |Xl|m >h−mδ
l ] < h−mδ

l E[ |Xl|m]

Lemma: If Yl is a random variable on level l, E[Y 2
l ] is

uniformly bounded, and the the indicator function 1El

satisfies E[1El
] = o(hp

l ), ∀p > 0 then

E[ |Yl|1El
] = o(hp

l ), ∀p > 0.

Proof: Hölder inequality E[ |Yl|1El
] ≤

√
E[Y 2

l ] E[1El
]
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Extreme Paths

Theorem: For any γ>0, the probability that W (t), its
increments ∆Wn and the corresponding SDE solution S(t)

and approximations Ŝf
n and Ŝc

n satisfy any of the following
“extreme” conditions

max
n

(
max(|S(nh)|, |Ŝf

n |, |Ŝc
n|
)

> h−γ

max
n

(
max(|S(nh)−Ŝc

n|, |S(nh)−Ŝf
n |, |Ŝf

n−Ŝc
n|)
)

> h1−γ

max
n

|∆Wn| > h1/2−γ

is o(hp) for all p>0.
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Non-extreme paths

Furthermore, there exist constants c1, c2, c3, c4 such that if
none of these conditions is satisfied, and γ < 1

2 , then

max
n

|Ŝf
n − Ŝf

n−1| ≤ c1 h1/2−2γ

max
n

|bf
n− bf

n−1| ≤ c2 h1/2−2γ

max
n

(
|bf

n|+|bc
n|
)

≤ c3 h−γ

max
n

|bf
n− bc

n| ≤ c4 h1/2−2γ

where bc
n is defined to equal bc

n−1 if n is odd.

Proof: follows from Lemmas and standard bounds.
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Lookback Option

Consider a lookback option which is a Lipschitz function of
the minimum and final values.

Computing P̂l − P̂l−1 requires a fine and coarse path
simulation for the same underlying Brownian motion.

On the fine path, the minimum over one timestep is

Ŝf
n,min = 1

2

(
Ŝf

n + Ŝf
n+1 −

√(
Ŝf

n+1−Ŝf
n

)2
− 2 (bf

n)2 hl log Un

)

where Un is a (0, 1] uniform random variable.

For the coarse path, first define Ŝc
n for odd n using

conditional Brownian interpolation, then use the same
expression for the minimum with same Un
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Lookback Option

The difference in minimum values is bounded by
∣∣∣Ŝf

min − Ŝc
min

∣∣∣ ≤ max
n

∣∣∣Ŝf
n,min − Ŝc

n,min

∣∣∣

≤ max
n

∣∣∣Ŝf
n − Ŝc

n

∣∣∣+ max
n

∣∣∣D̂f
n − D̂c

n

∣∣∣ ,

where

D̂f
n = 1

2

√(
Ŝf

n+1−Ŝf
n

)2
− 2 (bf

n)2 hl log Un

and D̂c
n is defined similarly with bc

n defined to equal bc
n−1

when n is odd.
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Lookback Option

We then get
∣∣∣D̂f

n − D̂c
n

∣∣∣

=

∣∣∣(D̂f
n)2 − (D̂c

n)2
∣∣∣

D̂f
n + D̂c

n

≤

∣∣∣(Ŝf
n+1 − Ŝf

n)2 − (Ŝc
n+1 − Ŝc

n)2
∣∣∣

4(D̂f
n + D̂c

n)
+

|(bf
n)2 − (bc

n)2| hl | log Un|
2(D̂f

n + D̂c
n)

≤ 1
2

∣∣∣|Ŝf
n+1 − Ŝf

n | − |Ŝc
n+1 − Ŝc

n|
∣∣∣ + 1√

2

∣∣∣|bf
n| − |bc

n|
∣∣∣
√

hl | log Un|

≤ 1
2

(∣∣∣Ŝf
n+1 − Ŝc

n+1

∣∣∣+
∣∣∣Ŝf

n − Ŝc
n

∣∣∣
)

+ 1√
2
|bf

n − bc
n|
√

hl | log Un|

Multilevel Monte Carlo – p. 24/33



Lookback Option

Paths are defined to be extreme if they satisfy any of the
earlier conditions, or if

max
n

| log Un| > h−γ
l .

E[(P̂l − P̂l−1)
4] is bounded and therefore extreme paths

have negligible contribution to E[(P̂l − P̂l−1)
2].

For non-extreme paths, by choosing γ=min(1
2 , δ/5), can

deduce from the various inequalities that max
n

|Ŝf
n−Ŝc

n| and

max
n

|Ŝf
n,min−Ŝc

n,min| are o(h
1−δ/2
l ), so the contribution to

E[(P̂ f
l −P̂ c

l−1)
2] is o(h2−δ

l ), and hence Vl = o(h2−δ
l ).
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Barrier Option

For barrier options, split paths into 3 subsets:

extreme paths

paths with a minimum within O(h1/2−γ) of the barrier

rest

Assuming inf
[0,T ]

S(t) has bounded density (at least near the

barrier) the dominant contribution comes from the second
subset, for which the O(h) difference between Ŝf , Ŝc leads
to an O(h1/2) difference between P̂ f , P̂ c.

Hence, Vl = o(h3/2−δ), ∀δ > 0.
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Digital Option

For digital options, again split paths into 3 subsets:

extreme paths

paths with final S(T ) within O(h1/2−γ) of the strike

rest

Assuming S(T ) has bounded density near the strike, the
dominant contribution again comes from the second subset,
where the O(h) difference between Ŝf , Ŝc leads to an
O(h1/2) difference between P̂ f , P̂ c.

Hence, again, Vl = o(h3/2−δ), ∀δ > 0.
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Future Work

Milstein scheme for multi-dimensional SDEs generally
requires Lévy areas:

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk − (Wk(t)−Wk(tn)) dWj .

O(h1/2) strong convergence in general if omitted

Can still get good convergence for Lipschitz payoffs by
using W c(t) = 1

2(W f1(t)+W f2(t)) with two fine paths
created by antithetic Brownian Bridge construction

For barrier and digital options, need to simulate Lévy
areas – tradeoff between cost and accuracy, optimum
may require O(h3/2) sub-sampling of Brownian paths,
giving O(h3/4) strong convergence
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Future Work

Greeks:

the multilevel approach should work well with pathwise
sensitivities for Lipschitz payoffs

“vibrato” treatment (a hybrid combination of pathwise
sensitivity and LRM) should handle digital options and
second order Greeks

(can also incorporate the adjoint approach developed
with Paul Glasserman – more efficient when many
Greeks are wanted for one payoff function)
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Future Work

Digital options:

current treatment uses conditional expectation one
timestep before maturity, which smooths the payoff

in multivariate cases without a known conditional
expectation, can use “splitting” (with multiple
independent samples for the final timestep of each
path) to estimate the conditional expectation

alternatively, the “vibrato” idea can be generalised,
leading to the introduction of a Radon-Nikodym
derivative due to a change of measure
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Future Work

Other processes:

finite activity jump diffusion models
relatively straightforward if jump rate is not
path-dependent
trickier if jump rate is path-dependent, but can again
use a Radon-Nikodym derivative to force fine and
coarse paths to jump at same times

variance gamma and other Lévy processes
standard variance gamma model can be simulated
exactly, so multilevel only helpful for path-dependent
options – easily analysed?
could be harder to analyse if a local volatility surface
is introduced
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Future Work

The multilevel approach also works well for SPDEs arising
in finance

dp = −µ
∂p

∂x
dt +

1

2

∂2p

∂x2
dt +

√
ρ

∂p

∂x
dW,

and oil reservoir modelling

∇ ·
(
κ∇p

)
= 0,

where log κ is a stochastic field.

However, numerical analysis for these looks very
challenging.
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Conclusions

have made progress in numerical analysis of multilevel
Monte Carlo path simulation

excluding the significance of “extreme” paths and
using asymptotic analysis for the rest seems a flexible
approach to numerical analysis

Papers are available from:
www.maths.ox.ac.uk/∼gilesm/finance.html
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