Numerical Analysis of Multilevel Monte Carlo Path Simulation

Mike Giles

(joint work with Kristian Debrabant & Andreas Rößler, TU Darmstadt)

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford-Man Institute of Quantitative Finance

IMACS Seminar on Monte Carlo Methods Brussels, Sept 7 – 11, 2009

Approach

Given a scalar SDE driven by a Brownian diffusion

$$dS(t) = a(S, t) dt + b(S, t) dW(t),$$

to estimate $\mathbb{E}[P]$ where the path-dependent payoff P can be approximated by \widehat{P}_l using 2^l uniform timesteps, we use

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{l=1}^L \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}].$$

 $\mathbb{E}[\widehat{P}_l-\widehat{P}_{l-1}]$ is estimated using N_l simulations with same W(t) for both \widehat{P}_l and \widehat{P}_{l-1} ,

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} \right)$$

Approach

Using independent samples for each level, the variance of the combined estimator is

$$\mathbb{V}\left[\sum_{l=0}^{L} \widehat{Y}_{l}\right] = \sum_{l=0}^{L} N_{l}^{-1} V_{l}, \qquad V_{l} \equiv \begin{cases} \mathbb{V}[\widehat{P}_{l} - \widehat{P}_{l-1}], & l > 0 \\ \mathbb{V}[\widehat{P}_{0}], & l = 0 \end{cases}$$

and the computational cost is proportional to $\sum_{l=0}^{L} N_l h_l^{-1}$

Hence, the variance is minimised for a fixed computational cost by choosing N_l to be proportional to $\sqrt{V_l h_l}$.

Approach

Since

$$\mathbb{E}\left[(\widehat{Y} - \mathbb{E}[P])^2\right] = \mathbb{V}[\widehat{Y}] + \left(\mathbb{E}[\widehat{P}_L] - \mathbb{E}[P]\right)^2$$

can choose

- ullet constant of proportionality for N_l so that $\mathbb{V}[\widehat{Y}] pprox rac{1}{2} arepsilon^2$
- finest level L so that $\left(\mathbb{E}[\widehat{P}_L P]\right)^2 \approx \frac{1}{2}\varepsilon^2$

to get Mean Square Error approximately equal to ε^2

MLMC Theorem

Theorem: Let P be a functional of the solution of a stochastic o.d.e., and \widehat{P}_l the discrete approximation using a timestep $h_l = 2^{-l} T$.

If there exist independent estimators \widehat{Y}_l based on N_l Monte Carlo samples, with computational complexity (cost) C_l , and positive constants $\alpha \geq \frac{1}{2}$, β , c_1 , c_2 , c_3 such that

i)
$$\left| \mathbb{E}[\widehat{P}_l - P] \right| \leq c_1 h_l^{\alpha}$$

ii)
$$\mathbb{E}[\widehat{Y}_l] = \begin{cases} \mathbb{E}[\widehat{P}_0], & l = 0 \\ \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}], & l > 0 \end{cases}$$

iii)
$$\mathbb{V}[\widehat{Y}_l] \leq c_2 N_l^{-1} h_l^{\beta}$$

iv)
$$C_l \le c_3 \, N_l \, h_l^{-1}$$

MLMC Theorem

then there exists a positive constant c_4 such that for any $\varepsilon < e^{-1}$ there are values L and N_l for which the multilevel estimator

$$\widehat{Y} = \sum_{l=0}^{L} \widehat{Y}_l,$$

has Mean Square Error
$$MSE \equiv \mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[P]\right)^2\right] < \varepsilon^2$$

with a computational complexity C with bound

$$C \le \begin{cases} c_4 \varepsilon^{-2}, & \beta > 1, \\ c_4 \varepsilon^{-2} (\log \varepsilon)^2, & \beta = 1, \\ c_4 \varepsilon^{-2 - (1 - \beta)/\alpha}, & 0 < \beta < 1. \end{cases}$$

Previous work

- First paper (Operations Research, 2006 2008) applied idea to SDE path simulation using Euler-Maruyama discretisation
- Second paper (MCQMC 2006 2007) used Milstein discretisation for scalar SDEs – improved strong convergence gives improved multilevel variance convergence
- Multilevel method is a generalisation of two-level control variate method of Kebaier (2005), and similar to ideas of Speight (2009)
- Also related to multilevel parametric integration by Heinrich (2001)

Numerical Analysis

If P is a Lipschitz function of S(T), value of underlying path simulation at a fixed time, the strong convergence property

$$\left(\mathbb{E}\left[\left(\widehat{S}_N - S(T)\right)^2\right]\right)^{1/2} = O(h^{\gamma})$$

implies that $\mathbb{V}[\widehat{P}_l - P] = O(h_l^{2\gamma})$ and hence

$$V_l \equiv \mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l^{2\gamma}).$$

Therefore $\beta = 1$ for Euler-Maruyama discretisation, and $\beta = 2$ for the Milstein discretisation.

However, in general, good strong convergence is neither necessary nor sufficient for good convergence for V_l .

Numerics and Analysis

	Euler		Milstein	
option	numerics	analysis	numerics	analysis
Lipschitz	O(h)	O(h)	$O(h^2)$	$O(h^2)$
Asian	O(h)	O(h)	$O(h^2)$	$O(h^2)$
lookback	O(h)	O(h)	$O(h^2)$	$o(h^{2-\delta})$
barrier	$O(h^{1/2})$	$o(h^{1/2-\delta})$	$O(h^{3/2})$	$o(h^{3/2-\delta})$
digital	$O(h^{1/2})$	$O(h^{1/2}\log h)$	$O(h^{3/2})$	$o(h^{3/2-\delta})$

Table: V_l convergence observed numerically (for GBM) and proved analytically (for more general SDEs) for both the Euler and Milstein discretisations. δ can be any strictly positive constant.

Numerical Analysis

Analysis for Euler discretisations:

- lookback and barrier options: Giles, Higham & Mao
 (Finance & Stochastics, 2009)
 - lookback analysis follows from strong convergence
 - barrier analysis shows dominant contribution comes from paths which are near the barrier; uses asymptotic analysis, first proving that "extreme" paths have negligible contribution
 - similar analysis for digital options gives $O(h^{1/2-\delta})$ bound instead of $O(h^{1/2}\log h)$
- digital options: Avikainen (Finance & Stochastics, 2009)
 - method of analysis is quite different

Numerical Analysis

Analysis for Milstein discretisations:

- work in progress by Giles, Debrabant & Rößler
- uses boundedness of all moments to bound the contribution to V_l from "extreme" paths (e.g. for which $\max_n |\Delta W_n| > h^{1/2-\delta}$ for some $\delta > 0$)
- uses asymptotic analysis to bound the contribution from paths which are not "extreme"

Brownian interpolation: within each timestep, model the behaviour as simple Brownian motion (i.e. constant drift and volatility) conditional on the two end-points

$$\widehat{S}(t) = \widehat{S}_n + \lambda(t)(\widehat{S}_{n+1} - \widehat{S}_n) + b_n \left(W(t) - W_n - \lambda(t)(W_{n+1} - W_n) \right),$$

where
$$\lambda(t) = \frac{t - t_n}{t_{n+1} - t_n}$$
.

There then exist analytic results for the distribution of the min/max/average over each timestep, and probability of crossing a barrier.

The Brownian interpolant is different from the standard Kloeden-Platen interpolant defined as

$$\widehat{S}_{KP}(t) = \widehat{S}_n + a_n (t - t_n) + b_n (W(t) - W_n) + \frac{1}{2} b'_n b_n ((W(t) - W_n)^2 - (t - t_n)),$$

for which, under the usual conditions,

$$\mathbb{E}\left[\sup_{[0,T]} \left| \widehat{S}_{KP}(t) - S(t) \right|^m \right] = O(h^m).$$

Theorem: Under standard conditions,

i)

$$\mathbb{E}\left[\sup_{[0,T]} \left| \widehat{S}(t) - \widehat{S}_{KP}(t) \right|^m \right] = O((h \log h)^m),$$

ii)

$$\sup_{[0,T]} \mathbb{E}\left[\left|\widehat{S}(t) - \widehat{S}_{KP}(t)\right|^m\right] = O(h^m),$$

iii)

$$\mathbb{E}\left[\left(\int_0^T \widehat{S}(t) - \widehat{S}_{KP}(t) dt\right)^2\right] = O(h^3).$$

Proof:

$$\widehat{S}(t) - \widehat{S}_{KP}(t) = \frac{1}{2} b'_n b_n Y(t),$$

where

$$Y(t) = \lambda (W_{n+1} - W_n)^2 - (W(t) - W_n)^2$$

$$= \lambda (1 - \lambda) (W_{n+1} - W_n)^2 - (W(t) - W_n - \lambda (W_{n+1} - W_n))^2$$

$$- 2\lambda (W_{n+1} - W_n) (W(t) - W_n - \lambda (W_{n+1} - W_n)).$$

with $\lambda(t) = (t-t_n)/(t_{n+1}-t_n)$ as before.

i) Assertion follows from

$$\mathbb{E}\left[\sup_{[0,T]}\left|\hat{S}(t)-\hat{S}_{KP}(t)\right|^m\right]$$

$$\leq 2^{-m} \sqrt{\mathbb{E}\left[\max_{n} |b'_{n}b_{n}|^{2m}\right]} \mathbb{E}\left[\sup_{[0,T]} |Y(t)|^{2m}\right]$$

and an extreme value theory bound for $\mathbb{E}\left|\sup_{[0,T]}|Y(t)|^{2m}\right|$

ii) Assertion follows from

$$\mathbb{E}\left[\left|\hat{S}(t) - \hat{S}_{KP}(t)\right|^{m}\right] = 2^{-m} \mathbb{E}\left[\left|b'_{n}b_{n}\right|^{m}\right] \mathbb{E}\left[\left|Y\right|^{m}\right]$$

iii) Defining
$$X_n := \int_{t_n}^{t_{n+1}} Y(t) dt$$
 gives

$$\mathbb{E}\left[\left(\int_0^T (\hat{S}(t) - \hat{S}_{KP}(t)) dt\right)^2\right] = \frac{1}{4} \mathbb{E}\left[\left(\sum_{n=0}^{N-1} b'_n b_n X_n\right)^2\right].$$

The X_n are iid random variables, and

$$\mathbb{E}[b_m'b_mX_mb_n'b_nX_n]=0$$
 for $n\!>\!m$, so

$$\mathbb{E}\left[\left(\int_{0}^{T} (\hat{S}(t) - \hat{S}_{KP}(t)) dt\right)^{2}\right] = \frac{1}{4} \mathbb{E}[X^{2}] \sum_{n=0}^{N-1} \mathbb{E}[(b'_{n}b_{n})^{2}].$$

Result then follows from $\mathbb{E}[X^2] = O(h^4)$.

The variance convergence for the Asian option comes directly from the last result.

Will now outline the analysis for the lookback option – the barrier is similar but more complicated.

The digital option is based on a Brownian extrapolation from one timestep before the end – the analysis is similar.

The analysis for the lookback, barrier and digital options uses the idea of "extreme" paths which are highly improbable – the variance comes mainly from non-extreme paths for which one can use asymptotic analysis.

Extreme Paths

Lemma: If X_l is a random variable on level l, and $\mathbb{E}[|X_l|^m] \leq C_m$ is uniformly bounded, then, for any $\delta > 0$,

$$\mathbb{P}[|X_l| > h_l^{-\delta}] = o(h_l^p), \qquad \forall p > 0.$$

Proof: Markov inequality $\mathbb{P}[|X_l|^m > h_l^{-m\delta}] < h_l^{-m\delta} \mathbb{E}[|X_l|^m]$

Lemma: If Y_l is a random variable on level l, $\mathbb{E}[Y_l^2]$ is uniformly bounded, and the indicator function $\mathbf{1}_{E_l}$ satisfies $\mathbb{E}[\mathbf{1}_{E_l}] = o(h_l^p)$, $\forall p > 0$ then

$$\mathbb{E}[|Y_l| \mathbf{1}_{E_l}] = o(h_l^p), \qquad \forall p > 0.$$

Proof: Hölder inequality $\mathbb{E}[|Y_l| \mathbf{1}_{E_l}] \leq \sqrt{\mathbb{E}[Y_l^2] \mathbb{E}[\mathbf{1}_{E_l}]}$

Extreme Paths

Theorem: For any $\gamma > 0$, the probability that W(t), its increments ΔW_n and the corresponding SDE solution S(t) and approximations \widehat{S}_n^f and \widehat{S}_n^c satisfy any of the following "extreme" conditions

$$\max_{n} \left(\max(|S(nh)|, |\widehat{S}_{n}^{f}|, |\widehat{S}_{n}^{c}| \right) > h^{-\gamma}
\max_{n} \left(\max(|S(nh) - \widehat{S}_{n}^{c}|, |S(nh) - \widehat{S}_{n}^{f}|, |\widehat{S}_{n}^{f} - \widehat{S}_{n}^{c}|) \right) > h^{1-\gamma}
\max_{n} |\Delta W_{n}| > h^{1/2-\gamma}$$

is $o(h^p)$ for all p > 0.

Non-extreme paths

Furthermore, there exist constants c_1, c_2, c_3, c_4 such that if none of these conditions is satisfied, and $\gamma < \frac{1}{2}$, then

$$\max_{n} |\widehat{S}_{n}^{f} - \widehat{S}_{n-1}^{f}| \leq c_{1} h^{1/2 - 2\gamma}$$

$$\max_{n} |b_{n}^{f} - b_{n-1}^{f}| \leq c_{2} h^{1/2 - 2\gamma}$$

$$\max_{n} (|b_{n}^{f}| + |b_{n}^{c}|) \leq c_{3} h^{-\gamma}$$

$$\max_{n} |b_{n}^{f} - b_{n}^{c}| \leq c_{4} h^{1/2 - 2\gamma}$$

where b_n^c is defined to equal b_{n-1}^c if n is odd.

Proof: follows from Lemmas and standard bounds.

Consider a lookback option which is a Lipschitz function of the minimum and final values.

Computing $\widehat{P}_l - \widehat{P}_{l-1}$ requires a fine and coarse path simulation for the same underlying Brownian motion.

On the fine path, the minimum over one timestep is

$$\widehat{S}_{n,min}^{f} = \frac{1}{2} \left(\widehat{S}_{n}^{f} + \widehat{S}_{n+1}^{f} - \sqrt{\left(\widehat{S}_{n+1}^{f} - \widehat{S}_{n}^{f} \right)^{2} - 2(b_{n}^{f})^{2} h_{l} \log U_{n}} \right)$$

where U_n is a (0,1] uniform random variable.

For the coarse path, first define \widehat{S}_n^c for odd n using conditional Brownian interpolation, then use the same expression for the minimum with same U_n

The difference in minimum values is bounded by

$$\left| \widehat{S}_{min}^{f} - \widehat{S}_{min}^{c} \right| \leq \max_{n} \left| \widehat{S}_{n,min}^{f} - \widehat{S}_{n,min}^{c} \right|$$

$$\leq \max_{n} \left| \widehat{S}_{n}^{f} - \widehat{S}_{n}^{c} \right| + \max_{n} \left| \widehat{D}_{n}^{f} - \widehat{D}_{n}^{c} \right|,$$

where

$$\widehat{D}_{n}^{f} = \frac{1}{2} \sqrt{\left(\widehat{S}_{n+1}^{f} - \widehat{S}_{n}^{f}\right)^{2} - 2(b_{n}^{f})^{2} h_{l} \log U_{n}}$$

and \widehat{D}_n^c is defined similarly with b_n^c defined to equal b_{n-1}^c when n is odd.

We then get

$$\begin{aligned} \left| \widehat{D}_{n}^{f} - \widehat{D}_{n}^{c} \right| \\ &= \frac{\left| (\widehat{D}_{n}^{f})^{2} - (\widehat{D}_{n}^{c})^{2} \right|}{\widehat{D}_{n}^{f} + \widehat{D}_{n}^{c}} \\ &\leq \frac{\left| (\widehat{S}_{n+1}^{f} - \widehat{S}_{n}^{f})^{2} - (\widehat{S}_{n+1}^{c} - \widehat{S}_{n}^{c})^{2} \right|}{4(\widehat{D}_{n}^{f} + \widehat{D}_{n}^{c})} + \frac{\left| (b_{n}^{f})^{2} - (b_{n}^{c})^{2} \right| h_{l} \left| \log U_{n} \right|}{2(\widehat{D}_{n}^{f} + \widehat{D}_{n}^{c})} \\ &\leq \frac{1}{2} \left| \left| \widehat{S}_{n+1}^{f} - \widehat{S}_{n}^{f} \right| - \left| \widehat{S}_{n+1}^{c} - \widehat{S}_{n}^{c} \right| \right| + \frac{1}{\sqrt{2}} \left| \left| b_{n}^{f} \right| - \left| b_{n}^{c} \right| \right| \sqrt{h_{l} \left| \log U_{n} \right|} \\ &\leq \frac{1}{2} \left(\left| \widehat{S}_{n+1}^{f} - \widehat{S}_{n+1}^{c} \right| + \left| \widehat{S}_{n}^{f} - \widehat{S}_{n}^{c} \right| \right) + \frac{1}{\sqrt{2}} \left| b_{n}^{f} - b_{n}^{c} \right| \sqrt{h_{l} \left| \log U_{n} \right|} \end{aligned}$$

Paths are defined to be extreme if they satisfy any of the earlier conditions, or if

$$\max_{n} |\log U_n| > h_l^{-\gamma}.$$

 $\mathbb{E}[(\widehat{P}_l - \widehat{P}_{l-1})^4]$ is bounded and therefore extreme paths have negligible contribution to $\mathbb{E}[(\widehat{P}_l - \widehat{P}_{l-1})^2]$.

For non-extreme paths, by choosing $\gamma = \min(\frac{1}{2}, \delta/5)$, can deduce from the various inequalities that $\max_n |\widehat{S}_n^f - \widehat{S}_n^c|$ and

$$\max_n |\widehat{S}_{n,min}^f - \widehat{S}_{n,min}^c|$$
 are $o(h_l^{1-\delta/2})$, so the contribution to $\mathbb{E}[(\widehat{P}_l^f - \widehat{P}_{l-1}^c)^2]$ is $o(h_l^{2-\delta})$, and hence $V_l = o(h_l^{2-\delta})$.

Barrier Option

For barrier options, split paths into 3 subsets:

- extreme paths
- paths with a minimum within $O(h^{1/2-\gamma})$ of the barrier
- rest

Assuming $\inf_{[0,T]} S(t)$ has bounded density (at least near the barrier) the dominant contribution comes from the second subset, for which the O(h) difference between $\widehat{S}^f, \widehat{S}^c$ leads to an $O(h^{1/2})$ difference between $\widehat{P}^f, \widehat{P}^c$.

Hence,
$$V_l = o(h^{3/2-\delta}), \forall \delta > 0.$$

Digital Option

For digital options, again split paths into 3 subsets:

- extreme paths
- paths with final S(T) within $O(h^{1/2-\gamma})$ of the strike
- rest

Assuming S(T) has bounded density near the strike, the dominant contribution again comes from the second subset, where the O(h) difference between $\widehat{S}^f, \widehat{S}^c$ leads to an $O(h^{1/2})$ difference between $\widehat{P}^f, \widehat{P}^c$.

Hence, again, $V_l = o(h^{3/2-\delta}), \forall \delta > 0.$

Milstein scheme for multi-dimensional SDEs generally requires Lévy areas:

$$A_{jk,n} = \int_{t_n}^{t_{n+1}} (W_j(t) - W_j(t_n)) dW_k - (W_k(t) - W_k(t_n)) dW_j.$$

- $O(h^{1/2})$ strong convergence in general if omitted
- Can still get good convergence for Lipschitz payoffs by using $W^c(t) = \frac{1}{2}(W^{f1}(t) + W^{f2}(t))$ with two fine paths created by antithetic Brownian Bridge construction
- For barrier and digital options, need to simulate Lévy areas tradeoff between cost and accuracy, optimum may require $O(h^{3/2})$ sub-sampling of Brownian paths, giving $O(h^{3/4})$ strong convergence

Greeks:

- the multilevel approach should work well with pathwise sensitivities for Lipschitz payoffs
- "vibrato" treatment (a hybrid combination of pathwise sensitivity and LRM) should handle digital options and second order Greeks
- (can also incorporate the adjoint approach developed with Paul Glasserman – more efficient when many Greeks are wanted for one payoff function)

Digital options:

- current treatment uses conditional expectation one timestep before maturity, which smooths the payoff
- in multivariate cases without a known conditional expectation, can use "splitting" (with multiple independent samples for the final timestep of each path) to estimate the conditional expectation
- alternatively, the "vibrato" idea can be generalised, leading to the introduction of a Radon-Nikodym derivative due to a change of measure

Other processes:

- finite activity jump diffusion models
 - relatively straightforward if jump rate is not path-dependent
 - trickier if jump rate is path-dependent, but can again use a Radon-Nikodym derivative to force fine and coarse paths to jump at same times
- variance gamma and other Lévy processes
 - standard variance gamma model can be simulated exactly, so multilevel only helpful for path-dependent options – easily analysed?
 - could be harder to analyse if a local volatility surface is introduced

The multilevel approach also works well for SPDEs arising in finance

$$dp = -\mu \frac{\partial p}{\partial x} dt + \frac{1}{2} \frac{\partial^2 p}{\partial x^2} dt + \sqrt{\rho} \frac{\partial p}{\partial x} dW,$$

and oil reservoir modelling

$$\nabla \cdot (\kappa \, \nabla p) = 0,$$

where $\log \kappa$ is a stochastic field.

However, numerical analysis for these looks very challenging.

Conclusions

- have made progress in numerical analysis of multilevel Monte Carlo path simulation
- excluding the significance of "extreme" paths and using asymptotic analysis for the rest seems a flexible approach to numerical analysis

Papers are available from:

www.maths.ox.ac.uk/~gilesm/finance.html