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Exit times

Given initial data S0 ∈ R
d and the SDE

dS = a(S , t)dt + b(S , t)dW

for d -dimensional uncorrelated Wt we are interested in estimating E[f (τ)]
where τ is the first exit time from some domain Vt :

τ = min( inf
St /∈Vt

t, T )

One engineering application is the exit of contaminated groundwater from
a nuclear waste repository – research with Rob Scheichl and Andrew Cliffe

Another is the modelling of a particle separator – Tigran Nagapetyan
discussed the estimation of the PDF of the exit times (joint research
with Klaus Ritter and Oleg Iliev)
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Exit times

Also interested in

E[f (Sτ , τ)1τ<T + g(ST )1τ≥T ]

due to Feynman-Kac link to solution of a parabolic PDE.

Assumptions:

a(S , t), b(S , t) satisfy the usual conditions for first order strong
convergence using the Milstein discretisation

b(S , t) satisfies commutativity condition so Lévy areas are not needed

∃c > 0 such that ξT (b bT ) ξ ≥ c‖ξ‖2, ∀ξ

boundary ∂Vt is smooth
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Prior work

Higham, Mao, Roj, Song, Yin (2013) developed a multilevel method of
estimating E[τ ] using an Euler-Maruyama discretisation.

The fine path approximation with timestep h uses

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn)∆Wn

with approximate exit time

τ̂ = min( min
Ŝn /∈Vtn

tn, T )

The coarse path approximation is essentially the same, with the Brownian
increments obtained by summing the fine path increments in pairs
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Prior work
Gobet & Menozzi (2010) proved that

E[ τ−τ̂ ] = O(h1/2)

so a single level Monte Carlo method achieves an RMS accuracy of ε
with O(ε−4) cost.

Higham, Mao, Roj, Song, Yin proved that

E[ |τ−τ̂ |p ] = O( |h log h|1/2), ∀p ≥ 1

and hence the multilevel complexity is O(ε−3| log ε|1/2).

(New 2013 paper by Bouchard, Geiss & Gobet removes log term)

Note: the errors are due to

O(h1/2) path variation within each timestep

O(h1/2) strong error in Euler-Maruyama discretisation
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Prior work

By addressing the first of these, Gobet (2000, 2001, 2009, 2010) has
developed and analysed 3 ways of improving the weak convergence:

move the barrier inwards by a distance proportional to h1/2

use a local half-space approximation to the boundary, and sample
from the minimum of the continuous Euler approximation
(Brownian Bridge construction)

instead of sampling from the minimum, compute the probability of
Brownian Bridge crossing the half-space boundary

I prefer the third approach, because it allows pathwise sensitivities for
barrier options – it is also the basis of our multilevel approach
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Prior work

These approaches improve the weak convergence to

E[ τ−τ̂ ] = O(h)

giving a single level method with complexity O(ε−3).

Conjecture: we still get

E[ |τ−τ̂ |p ] = O( |h log h|1/2), ∀p ≥ 1

due to the O(h1/2) strong convergence, so a multilevel version will have
complexity O(ε−2.5| log ε|1/2).

(New paper by Bouchard, Geiss & Gobet proves this, without the log term)

In this new work, we aim to achieve O(ε−2) complexity, by using a Milstein
discretisation and a Brownian Bridge interpolation within each timestep.
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1D barrier options

Our new work builds on an multilevel approximation and numerical
analysis developed for down-and-out barrier options with payoff

P = f (ST ) 1inf(0,T )St>B

so the option only pays out if St doesn’t drop below the barrier B .

A Milstein discretisation is used to compute Ŝn, and approximating
the drift and volatility as being constant within each timestep leads
to a Brownian Bridge interpolation for Ŝ(t)

Ŝ(t) = Ŝn + λ(t) (Ŝn+1−Ŝn)

+ b(Ŝn, tn)
(
W (t)−Wn − λ(t) (Wn+1−Wn)

)

where λ(t) ≡ (t − tn)/h.
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1D barrier options

For the fine path, a standard Brownian Bridge result gives the probability
of having crossed the barrier during the timestep:

p̂n = exp

(
−2 (Ŝn−B)+ (Ŝn+1−B)+

b2n h

)

= exp

(
−2

(Ŝn−B)+

bn h1/2
(Ŝn+1−B)+

bn h1/2

)

and then the payoff approximation is

P̂ = f (ŜN)

N−1∏

n=0

(1− p̂n).

This gives O(h) weak convergence, but using exactly the same treatment
for the coarse path does not improve the multilevel variance.
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1D barrier options

Why no improvement in the multilevel variance?

tn tn+1 tn+2 t

St

✲

✻

s

s

s

❝

❝

s

❝

fine
coarse

barrier

✻

O(h1/2)

For paths near the barrier, can still get an O(1) difference in the crossing
probability for the fine and coarse paths – need to make the coarse path
simulation more tightly coupled to the fine path
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Multilevel formulation

Multilevel is based on the telescoping sum

E[P̂L] = E[P̂0] +
L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

with each of the expectations on the r.h.s. being estimated independently,
usually by a standard Monte Carlo estimator of the form

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
P̂ℓ(ω

(i))− P̂ℓ−1(ω
(i))
)

Note that P̂ℓ appears twice, in E[P̂ℓ+1−P̂ℓ] and E[P̂ℓ−P̂ℓ−1], and use of
the same P̂ℓ(ω) naturally leads to cancellation and the telescoping sum.
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Multilevel formulation

However, there is freedom to use a different formulation depending on
whether it is the coarser or finer of the two levels:

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
P̂ f
ℓ (ω

(i))− P̂c
ℓ−1(ω

(i))
)

provided E[P̂ f
ℓ ] = E[P̂c

ℓ ] so that the telescoping sum is still valid.

This freedom has been used by

MBG for barrier and digital options with conditional expectations

Chen for antithetic estimator in nested simulation

MBG & Szpruch for antithetic Milstein estimator

Park for elliptic SPDEs

In each case, the objective is to reduce the variance while respecting the
telescoping sum.
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1D barrier options
Considering a coarse timestep [tn, tn+2] corresponding to two fine
timesteps, we can evaluate the Brownian Bridge interpolant at the
midpoint tn+1 to get

Ŝc
n+1 =

1
2 (Ŝ

c
n + Ŝc

n+2) + b(Ŝc
n , tn)

(
Wn+1 − 1

2(Wn +Wn+2)
)

and then compute the probability of crossing within each of the fine
timesteps.

The telescoping sum is respected because

P[ not crossing | Ŝc
n , Ŝ

c
n+2] = E

[
P[ not crossing | Ŝc

n , Ŝ
c
n+1, Ŝ

c
n+2]

]

or, more precisely,

E[1
inf [tn ,tn+2]

Ŝc
t >B

| Ŝc
n , Ŝ

c
n+2] = E

[
E[1

inf [tn,tn+2]
Ŝc
t >B

| Ŝc
n , Ŝ

c
n+1, Ŝ

c
n+2]

]
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1D barrier options

Hence, for the coarse path we have

∏

even n

(1−pcn) = E


∏

all n

(1−p∗n)




where pcn is the standard crossing probability for the coarse timesteps,
and p∗n is the crossing probability for each of the fine timesteps within
the coarse path calculation.

There is an O(h1/2) fraction of paths with a minimum within O(h1/2) of
the barrier. MBG, Debrabant, Roessler (2013) prove, roughly speaking,
that for these paths P̂ℓ−P̂ℓ−1 = O(h1/2), and for the others it is O(h).

Hence, E[(P̂ℓ−P̂ℓ−1)
2] = O(h3/2−δ) for any δ > 0, and the multilevel

complexity is O(ε−2).
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1D barrier options
Why the improvement in the multilevel variance?

tn tn+1 tn+2 t

St

✲

✻

s

s

s

❝

x❝

❝

s

❝

fine
coarse

We now have first order convergence at all of the fine timesteps, not just
the coarse timesteps, so for each timestep

∆p ≈ ∆Ŝ
∂p

∂S
= O(h)× O(h−1/2) = O(h1/2)
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1D barrier options

This construction and numerical analysis is for constant barriers,
but it could be easily extended to barriers B(t) which vary in time.

The numerical approximation would treat the barrier as being linear
within each timestep so it can compute the crossing probability.

If B(t) is Lipschitz, the difference between the fine and coarse path
piecewise linear approximations is O(h), and the existing analysis
extends very naturally.
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1D exit times

The extension to 1D exit times for a fixed barrier value is very natural.

On the fine path, if we define

q̂fn =
∏

m<n

(1−p̂fm)

to be the computed probability at time tn that the path has not yet
crossed the boundary, then the fine path estimate for the expected exit
time is given by

P̂ f = q̂fN T +
N−1∑

n=0

(q̂fn − q̂fn+1) tn

since q̂fn − q̂fn+1 is the probability it crosses during timestep n.
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1D exit times

Along the coarse path, we first construct the midpoint values as before,
define

q̂∗n =
∏

m<n

(1−p̂∗m)

and then approximate the expected exit time by

P̂c = q̂∗N T +

N−2∑

even n=0

(q̂∗n − q̂∗n+2) tn

Note the use of tn for the whole coarse timestep [tn, tn+2] – this is
needed to ensure the telescoping sum is respected.

Primozic (2011) implemented this algorithm and obtained O(h3/2)
multilevel variance convergence, and hence O(ε−2) complexity.
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1D exit times

Generalising this to E[f (τ)], we have

P̂ f = q̂fN f (T ) +
N−1∑

n=0

(q̂fn − q̂fn+1) f (tn)

= f (0) +
N∑

n=1

q̂fn (f (tn)− f (tn−1))

and

P̂c = q̂∗N f (T ) +
N−2∑

even n=0

(q̂∗n − q̂∗n+2) f (tn)

= f (0) +
N∑

even n=2

q̂∗n (f (tn)− f (tn−2)).
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1D exit times

Theorem: if f (t) is Lipschitz with constant L, then

E[(P̂ f
ℓ −P̂c

ℓ−1)
2] = O(h3/2−δ), ∀δ > 0

Proof: After some slight rearrangement, we obtain

P̂ f − P̂c =
N−2∑

even n=0

(q̂fn − q̂∗n) (f (tn)− f (tn−2))

+
N−1∑

odd n=1

(q̂fn+1 − q̂fn) (f (tn)− f (tn−1))
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1D exit times
∣∣∣∣∣∣

N−1∑

odd n=1

(q̂fn+1−q̂fn) (f (tn)−f (tn−1))

∣∣∣∣∣∣
< L h

N−1∑

odd n=1

(q̂fn − q̂fn+1) < L h

Also,

E



(

N−2∑

even n=0

(q̂fn−q̂∗n) (f (tn)−f (tn−2)

)2



≤ N

2

N−2∑

even n=0

E

[
(q̂fn−q̂∗n)

2 (f (tn)−f (tn−2)
2
]

≤ L2T 2 max
n

E[(q̂fn−q̂∗n)
2]

The barrier option error analysis gives E[(q̂fn−q̂∗n)
2] = O(h3/2−δ), ∀δ > 0,

and hence the result follows.
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Multi-dimensional exit times

How can we extend the 1D approach to multiple dimensions?

If Vt is a half-space, so ∂Vt is planar with inward normal n and distance
to the boundary D = nTS , then

dD = nTa(S , t)dt + nTb(S , t)dW

which is equivalent in distribution to

dD = nTa(S , t)dt + σ(S , t)dB

where B is a scalar Brownian motion and

σ2(S , t) =
∥∥∥nTb(S , t)

∥∥∥
2

2
= nTb(S , t) bT (S , t) n
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Multi-dimensional exit times

Can again use a Brownian Bridge interpolation

Ŝ(t) = Ŝn + λ (Ŝn+1−Ŝn) + b(Ŝn, tn) (W (t)−Wn − λ (Wn+1−Wn))

where λ ≡ (t − tn)/h.

Then

D̂(t) = D̂n + λ (D̂n+1−D̂n) + nTb(Ŝn, tn) (W (t)−Wn − λ (Wn+1−Wn))

which is equivalent in distribution to

D̂(t) = D̂n + λ (D̂n+1−D̂n) + σ(Ŝn, tn) (B(t)− Bn − λ (Bn+1−Bn))
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Multi-dimensional exit times

The conditional probability of the fine path crossing the boundary is

p̂n = exp

(
−2 (D̂ f

n )
+ (D̂ f

n+1)
+

σ2
n h

)

The coarse path midpoints can be defined from the Brownian Bridge as

Ŝc
n+1 =

1
2(Ŝ

c
n+Ŝc

n+2) + b(Ŝc
n , tn)

(
Wn+1 − 1

2(Wn+Wn+2)
)

which gives

D̂c
n+1 =

1
2(D̂

c
n+D̂c

n+2) + nTb(Ŝc
n , tn)

(
Wn+1 − 1

2(Wn+Wn+2)
)

and then p̂∗n can be defined accordingly, and everything works as in the
1D case – bigger problem is how to extend the treatment to curved
boundaries.
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Multi-dimensional exit times
Following Gobet, we assume that in a neighbourhood of the boundary we
have computable, C 2,1 signed distance D(S , t) to boundary ∂Vt :

S

D(S , t)

π(S , t)

Then we have
S = π(S , t) + D(S , t) n(S , t)

where

π(S , t) is projection onto the boundary ∂V

n(S , t) = ∇D is the inward normal at that point
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Multi-dimensional exit times
We need to respect the telescoping sum by ensuring that E[P̂ f

ℓ ] = E[P̂c
ℓ ].

The only way we have found to do this is based on the 1D distance SDE:

dD = µ dt + σ dB

The fine path conditional crossing probability

p̂n = exp

(
−2 (D̂ f

n )
+ (D̂ f

n+1)
+

(σf
n)

2 h

)

corresponds to the Brownian Bridge interpolant

D̂ f (t) = D̂ f
n + λ (D̂ f

n+1−D̂ f
n ) + σf

n (B(t)− Bn − λ (Bn+1−Bn))

with
σf
n =

∥∥∥nT(S f
n , tn) b(S

f
n , tn)

∥∥∥
2
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Multi-dimensional exit times
For the coarse path midpoint, we directly define

D̂c
n+1 =

1
2(D̂

c
n+D̂c

n+2) + n(Ŝc
n , tn)

Tb(Ŝc
n , tn)

(
Wn+1 − 1

2 (Wn+Wn+2)
)

and then use

p̂∗n = exp

(
−2 (D̂c

n )
+ (D̂c

n+1)
+

(σc
n)

2 h

)

p̂∗n+1 = exp

(
−2 (D̂c

n+1)
+ (D̂c

n+2)
+

(σc
n)

2 h

)

Because
n(Ŝc

n , tn)
Tb(Ŝc

n , tn)
(
Wn+1 − 1

2(Wn+Wn+2)
)

is equivalent in distribution to

σ(Ŝc
n , tn)

(
Bn+1 − 1

2 (Bn+Bn+2)
)

the condition for the telescoping sum is respected.
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Multi-dimensional exit times

Theorem:
max
n

E[(q̂fn−q̂∗n)
2] = O(h3/2−δ), ∀δ > 0

Proof: generalisation of the 1D proof by MBG, Debrabant, Roessler
(2013).

Theorem: if f (t) is Lipschitz with constant L, then

E[(P̂ f
ℓ −P̂c

ℓ−1)
2] = O(h3/2−δ), ∀δ > 0

Proof: same as for 1D.
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Multi-dimensional exit times
Outline of key steps in extension of 1D proof:

Since D ∈ C 2,1,

D(S+∆S , t+h) = D(S , t) + nT(S , t)∆S + O(‖∆S‖2, h) (1)

Applying (1) to the coarse path for even n gives

D̂c
n+2 = D̂c

n + nT(Ŝc
n , tn) b(Ŝ

c
n , tn) (Wn+2−Wn) + O(h)

and hence

D̂c
n+1 = D̂c

n + nT(Ŝc
n , tn) b(Ŝ

c
n , tn) (Wn+1−Wn) + O(h) (2)

while applying (1) to the fine path gives

D̂ f
n+1 = D̂ f

n + nT(Ŝ f
n , tn) b(Ŝ

f
n , tn) (Wn+1−Wn) + O(h) (3)

strong convergence gives D̂ f
n − D̂c

n = O(h), for even n, and then
comparing (2) and (3) gives D̂ f

n+1 − D̂c
n+1 = O(h).
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Multi-dimensional exit times

Conjecture: if we extend the problem to E[f (Sτ , τ)] for some function f

which is Lipschitz with respect to both Sτ and τ , then

E[(P̂ f
ℓ −P̂c

ℓ−1)
2] = O(h1−δ), ∀δ > 0

so the multilevel complexity is ε−2−δ, ∀δ > 0.

Why is this worse than for E[f (τ)]?

The problem is the O(h1/2) difference between Ŝ f and Ŝc at the
mid-point of each coarse timestep – currently can’t see how to fix this
while still respecting the telescoping sum
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Numerical Results

Test case:

5-dimensional Geometric Brownian Motion

dSi = r Si dt + σi Si dWi , 0 < t < T

with T = 1 and r = 0.05, σi = (0.3, 0.35, 0.4, 0.45, 0.5)

Brownian motions have correlation E[dWi dWj ] = 0.2 dt, i 6= j

If Ω = L LT is the correlation matrix, then

b = Σ L =⇒ nTb bTn = nTΣ Ω Σ n

where Σ is the diagonal matrix with eigenvalues σi Si

Initial data is Si = 100 and boundary is set at ‖S‖2 = 110
√
5
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Numerical results
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Details of MATLAB MLMC code

If a, b, c are estimates for E[P f
ℓ−1], E[P

f
ℓ ], E[P

f
ℓ −Pc

ℓ−1], respectively,
then it should be true that a − b + c ≈ 0

A consistency check verifies that this is true, to within the accuracy
one would expect due to sampling error.

Since √
V[a − b + c] ≤

√
V[a] +

√
V[b] +

√
V[c]

the code computes and plots the ratio

|a − b + c |
3(
√

V[a] +
√

V[b] +
√

V[c])

The probability of this ratio being greater than 1 based on random
sampling errors is extremely small – if it is, it indicates a likely error.
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Details of MATLAB MLMC code
Optimal MLMC needs a good estimate for Vℓ = V[P f

ℓ − Pc
ℓ−1],

but how many samples are needed for this?

10 is often sufficient, but more are needed when there are rare outliers.

The standard deviation of the sample variance for a random variable X

with zero mean is approximately

√
κ− 1

N
E[X 2] where kurtosis κ =

E[X 4]

(E[X 2])2

(see http://mathworld.wolfram.com/SampleVarianceDistribution.html)

In this case, P f
ℓ − Pc

ℓ−1 = O(h1/2) with probability O(h1/2) so

E[X 2] = O(h3/2), E[X 4] = O(h5/2) =⇒ κ = O(h−1/2)

More precisely, we obtain κ ∼ a h−1/2 1 + b h3/2

(1 + c h1/2)2
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Numerical results
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Numerical results
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Conclusions

We have developed and analysed a multilevel method for computing
the expected value of functionals of the exit time.

Using the Milstein discretisation, and a probabilistic treatment of
boundary crossing, an r.m.s. error of ε is achievable with an O(ε−2)
complexity.

The primary restrictions are:

the SDE must satisfy the commutativity condition so that there
is no need to simulate the Lévy areas

the signed distance to the boundary must be C 2,1 in a neighbourhood
of the boundary

Future work will address the first of these restrictions by approximately
simulating the Lévy areas.
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