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Decision making under uncertainty

The motivation comes from decision-making in funding medical research.

Models of the cost-effectiveness of medical treatments depend on various
parameters.

The parameter values are not known precisely, and are instead modelled
as random variables coming from some prior distribution.

The research question is whether it is worth conducting some medical
research to eliminate uncertainty in some of the parameters.

Similar applications arise in oil reservoir recovery – is it worth sinking an
additional exploratory oil well to learn more about the oilfield?
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Decision making under uncertainty

Given no knowledge of independent uncertain parameters X ,Y , best
treatment out of some finite set D corresponds to

max
d∈D

E [fd (X ,Y )]

while with perfect knowledge we would have

E

[

max
d∈D

fd(X ,Y )

]

.

However, if X is known but not Y , this is reduced to

E

[

max
d

E [fd(X ,Y ) |X ]

]

giving a nested simulation problem.
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EVPI & EVPPI

EVPI, the expected value of perfect information, is the difference

EVPI = E

[

max
d

fd (X ,Y )

]

−max
d

E[fd(X ,Y )]

which can be estimated with O(ε−2) complexity by standard methods,
assuming an O(1) cost per sample fd (X ,Y ).

EVPPI, the expected value of partial perfect information, is the difference

EVPPI = E

[

max
d

E [fd(X ,Y ) |X ]

]

−max
d

E[fd (X ,Y )].

In practice, we choose to estimate

EVPI− EVPPI = E

[

max
d

fd(X ,Y )

]

− E

[

max
d

E [fd (X ,Y ) |X ]

]
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MLMC treatment

Based on work by Oxford colleagues (Bujok, Hambly, Reisinger, 2015)
Takashi Goda (arXiv, April 2016) proposed an efficient MLMC estimator
using 2ℓ samples on level ℓ for conditional expectation.

For given sample X , define

Zℓ = 1
2

(

max
d

fd
(a)

+max
d

fd
(b)

)

− max
d

fd

where

fd
(a)

is an average of fd (X ,Y ) over 2ℓ−1 independent samples for Y ;

fd
(b)

is an average over a second independent set of 2ℓ−1 samples;

fd is an average over the combined set of 2ℓ inner samples.
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MLMC treatment

The expected value of this estimator is

E[Zℓ] = E[max
d

fd ,2ℓ−1 ]− E[max
d

fd ,2ℓ ]

where fd ,2ℓ is an average of 2ℓ inner samples, and hence

L
∑

ℓ=1

E[Zℓ] = E[max
d

f ]− E[max
d

fd ,2L ]

→ E[max
d

f ]− E[max
d

E[f (X ,Y ) |X ]

as L → ∞, giving us the desired estimate.
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MLMC treatment

How good is the estimator?

With reference to standard MLMC theorem, γ=1, but what are α and β?

Define

Fd(X ) = E [fd (X ,Y ) |X ] , dopt(X ) = argmax
d

Fd(X )

so dopt(x) is piecewise constant, with a lower-dimensional manifold K

on which it is not uniquely-defined.

Note that for any d , 1
2 (fd

(a)
+ fd

(b)
)− fd = 0, so Zℓ=0 if the same d

maximises each term in Zℓ.
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Numerical analysis

Heuristic analysis:

fd
(a)

− fd
(b)

= O(2−ℓ/2), due to CLT

O(2−ℓ/2) probability of both being within distance O(2−ℓ/2) of K

under this condition, Zℓ = O(2−ℓ/2)

hence E[Zℓ] = O(2−ℓ) and E[Z 2
ℓ ] = O(2−3ℓ/2), so α=1, β=3/2.

It is possible to make this rigorous given some assumptions.
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Numerical analysis

Assumptions

E [ |fd (X ,Y )|p] is finite for all p≥2.

Comment: helps to bound the difference between fd and Fd (X ).

There exists a constant c0>0 such that for all 0<ǫ<1

P(min
y∈K

‖X−y‖ ≤ ǫ) ≤ c0 ǫ.

Comment: bounds the probability of X being close to K.

There exist constants c1, c2 > 0 such that if X /∈ K, then

max
d

Fd (X )− max
d 6=dopt (X )

Fd(X ) > min(c1, c2 min
y∈K

‖X−y‖).

Comment: ensure linear separation of the optimal Fd away from K.
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Numerical analysis

Building on the heuristic analysis, and past analyses (Giles & Szpruch,
2015), we obtain the following theorem:

Theorem

If the Assumptions are satisfied, and fd
(a)

, fd
(b)

, fd are as defined

previously for level ℓ, with 2ℓ inner samples being used for fd ,

then for any δ>0

E

[

1
2 (max

d
fd

(a)
+max

d
fd

(b)
)−max

d
fd

]

= o(2−(1−δ)ℓ).

and

E

[

(

1
2 (max

d
fd

(a)
+max

d
fd

(b)
)−max

d
fd

)2
]

= o(2−(3/2−δ)ℓ).
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Supporting theory

Lemma

If Xi are iid scalar samples with zero mean, and XN is average of N

samples, then for p≥2, if E[|X |p] is finite then there exists a constant Cp ,

depending only on p, such that

E[ |XN |
p] ≤ Cp N

−p/2
E [ |X |p]

P[ |XN |>c ] ≤ Cp E[ |X |p] / (c2N)p/2.

Proof.

Use discrete Burkholder-Davis-Gundy inequality applied to
∑

i Xi

and then Markov inequality.
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Supporting theory

Applying the result to the EVPPI problem, we get:

Lemma

If all moments of fd are finite, then for p≥2, there exists a constant Cp,

depending only on p, such that

E[ |fd−Fd |
p] ≤ Cp 2

−pℓ/2
E[ |fd−Fd |

p]

P[ |fd−Fd |>c ] ≤ Cp E[ |fd−Fd |
p] / (c22ℓ)p/2.

Proof.

Conditional on X , we have E[ |fd−Fd |
p |X ] ≤ Cp 2

−pℓ/2
E[ |fd−Fd |

p |X ]
then taking an outer expectation w.r.t. X gives the desired result.
A similar argument works for P[ |fd−Fd |>c ] ≡ E[1|fd−Fd |>c ]
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Numerical results

Real application: Cost-effectiveness of Noval Oral AntiCoagulants
in Atrial Fibrillation

A choice of 6 different treatments, and a total of 99 input random
variables:

34 Normal

8 uniform

15 Beta

3 sets of MCMC inputs approximated by multivariate Normals
of dimension 7, 7 and 28 corresponding to an additional 42 Normals
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Numerical results
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Numerical results
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MCMC inputs

A key new challenge is that some of the random inputs come from a
Bayesian posterior distribution, with samples generated by MCMC
methods.

x1 ∼ N(0, 1), x2 ∼ N(0, 1)

MCMC sampler: (y1, y2)

MCMC sampler: (z1, z2)

−→

−→

−→

fd (X ,Y ,Z ) −→ fd

The standard procedure (?) would be to generate MCMC samples on
demand, and then use them immediately.

But how can this be extended to MLMC?
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MCMC within MLMC

An alternative idea is to first pre-generate and store a large collection of
MCMC samples:

{Y1,Y2,Y3, . . . ,YN}

Then, random samples for Y can be obtained from this collection by
uniformly distributed selection.

This avoids the problem of strong correlation between successive MCMC
samples, and also works fine for the MLMC calculation.

This approach also leads to ideas on QMC for empirical datasets, and
dataset thinning, reducing the number of samples which are stored.

Mike Giles (Oxford) EVPPI July 4, 2017 18 / 19



Conclusions

nested simulation is an important new direction for MLMC research

splitting a large set of samples into 2 or more subsets is key to a
good coupling

complete numerical analysis proves O(ε−2) complexity

numerical tests show good benefits in some cases, but in others
QMC is more effective – MLQMC might be best?

MCMC inputs can be introduced through random selection from
a large pre-generated empirical dataset

Webpages:
http://people.maths.ox.ac.uk/gilesm/slides.html

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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