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Outline

MLMC and the problem with discontinuities

9 approaches:

I explicit smoothing

I integration/differentiation

I Malliavin calculus

I conditional expectation

I change-of-measure

I splitting

I conditional integration with root-finding
(Christian Bayer talk tomorrow at 15:30)

I adaptive sampling (Al Haji-Ali talk yesterday)

I path branching (next talk by Al Haji-Ali)
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Multilevel Monte Carlo

MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

where P̂` represents an approximation to output P on level `.

If Ŷ` has expected value E[P̂`−P̂`−1], with variance V` and cost C`,
then for a given target RMS error ε, the number of independent samples
on each level can be optimised to give overall cost

ε−2

(
L∑
`=0

√
C`V`

)2

∼


ε−2C0V0, C`V` → 0,

ε−2L2CLVL, C`V` → const, `→∞

ε−2CLVL, C`V` →∞.
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Multilevel Monte Carlo

In the case of an SDE

dSt = a(St) dt + b(St) dWt

with an output quantity of interest P ≡ f (ST ), the standard estimator is

Ŷ` = P̂` − P̂`−1

where the same Brownian motion Wt is used for both P̂` and P̂`−1, but
with different uniform timesteps h.

If f is Lipschitz, with constant Lf , then

V` ≤ E
[
(∆P)2

]
≤ L2f E

[
(Ŝ` − Ŝ`−1)2

]
so we have V` = O(h`) for Euler-Maruyama discretisation, V` = O(h2` )
for Milstein, and cost C` = O(h−1

` ) in both cases.
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Digital options

In mathematical finance, a digital put option payoff is 0 or 1, depending
on whether ST is above or below the strike K . The problem is that a
small change in the path can give a big change in the payoff.

Using the Euler-Maruyama approximation the strong error is O(h1/2),

=⇒ Ŝ` − Ŝ`−1 = O(h
1/2
` ).

An O(h
1/2
` ) fraction of fine/coarse pairs straddles the strike,

=⇒ V` = O(h
1/2
` ), and hence the complexity is O(ε−5/2).

Using the Milstein approximation the strong error is O(h) so V`=O(h`).
This is better, but the kurtosis is O(h−1

` ) which causes problems in
estimating V`.
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Explicit smoothing

Digital options are also a problem for pathwise sensitivity analysis,
estimating the sensitivity of the expectation to parameter change

One common solution to this is to explicitly smooth the payoff, and that
can be used also for MLMC – involves a tradeoff between bias and variance
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Explicit smoothing

G, Nagapetyan, Ritter (2015) used explicit smoothing for estimating CDFs.

For a scalar ST , to estimate C (x) = P(ST < x) = E[H(x−ST )]
where H(x) is the Heaviside step function, the approach was

use MLMC to estimate C (xj) for a set of spline points xj

interpolate with a cubic spline

To improve the MLMC variance, H(x) was replaced by Hδ(x) which
smoothed H over a width of δ. Overall, had to balance four errors:

SDE discretisation bias on finest level

MLMC sampling error

smoothing error

interpolation error
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Integration/differentiation

Krumscheid, Nobile (2018) came up with a slightly different approach
for estimating CDFs, based on

d

dx
E [ max(0, x−ST ) ] = E[H(x−ST ) ]

use MLMC to estimate E[ max(0, xj−ST ) ] for spline points xj

interpolate with a cubic spline

differentiate to obtain desired CDF C (x)

This avoids the smoothing error, but differentiating the cubic spline
amplifies the noise in the spline data.
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Malliavin calculus

On a similar note, Altmayer & Neuenkirch (2015) used Malliavin calculus
integration by parts to handle discontinuous payoffs with the Heston model

Used on its own it improves the asymptotic behaviour, but makes the
variance on coarse levels worse.

To address this, they split the payoff into a smooth part (handled by
standard MLMC) and a compact-support discontinuous part (handled
using Malliavin MLMC)

Again one key lesson is that techniques which help with computing
sensitivities can also help with MLMC.
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Conditional expectation

For the Milstein discretisation, one “fix” for digital options is to use E-M
approximation for the final timestep, then take conditional expectation
over final fine path Brownian increment ∆WN .

For fine path
ŜT = ŜT−h + aT−h h` + bT−h ∆WN ,

=⇒ P̂` = Φ

(
ŜT−h + aT−h h` − K

bT−h

√
h`

)
while for the coarse path,

ŜT = ŜT−2h + 2 aT−2h h` + bT−2h (∆WN−1+∆WN),

=⇒ P̂`−1 = Φ

(
ŜT−2h + 2 aT−2h h` + bT−2h ∆WN−1 − K

bT−2h

√
h`

)
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Conditional expectation

Analysis (G, Debrabant, Roessler, 2019) proves V` = O(h
3/2
` ) and the

kurtosis is O(h
−1/2
` ), so much better.

Heuristically, this is because there is an O(h
1/2
` ) probability of paths

being within O(h
1/2
` ) of the strike, and for these

Ŝ` − Ŝ`−1 = O(h`) =⇒ ∆P = O(h
1/2
` )

Unfortunately, the conditional expectation approach does not help with
the E-M discretisation where

Ŝ` − Ŝ`−1 = O(h
1/2
` ) =⇒ ∆P = O(1)
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Conditional expectation

This conditional expectation is a standard technique for smoothing the
payoff to enable pathwise sensitivity calculations. (L’Ecuyer, Glasserman)

Another example is a down-and-out barrier options, where the option
is knocked out if the path drops below a certain value.

Payoff can be smoothed by computing probability of this happening,
conditional on computed path at discrete timesteps.

Again, this works well for both pathwise sensitivity analysis and MLMC.

(G, 2008, Burgos, G, 2012)
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Change of measure

Another approach with the Milstein discretisation is to use a change of
measure – similar to Likelihood Ratio Method for sensitivity analysis

For both the fine and coarse paths, we have conditional Gaussian
distributions for ŜT , with different means and variances.

Can perform a change of measure to the same Gaussian distribution,
and then pick the same sample for both paths.

P̂` − P̂`−1 = P̂(ŜT ) (R` − R`−1)

where R`,R`−1 are the respective Radon-Nikodym derivatives. Works well
in multiple dimensions where often cannot evaluate the analytic
conditional expectation. (Burgos, 2014)

Problem: still doesn’t help with Euler-Maruyama discretisation because
R` − R`−1 = O(1).
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Change of measure

An earlier example of its use was for a Merton-style jump-diffusion SDE
with path-dependent jump rate λ(S , t). (Xia, G, 2012, Xia, 2014)

Problem is that coarse and fine paths will jump at different times;
one might jump just before T , the other just after =⇒ large P̂`−P̂`−1

Solution: use Glasserman & Merener thinning technique, over-sampling
possible jump times using rate λsup > λ(S , t), and combine with change of
measure for identical acceptance/rejection decision for fine/coarse paths.

Leads to an estimator which looks like

P̂` R` − P̂`−1 R`−1

and gives V` = O(h2` ) when combined with Milstein discretisation.

Similar ideas have also been used for importance sampling and chaotic
SDEs (Fang, G, 2019)
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Splitting

Back again to the multi-dimensional digital option.

The conditional expectation can be estimated numerically by averaging
over a number of independent samples for the final Brownian increment.

O(h−1
` ) samples can be used without increasing the path cost significantly.

This is sufficient to reduce V` to about the same level as using the analytic
conditional expectation.

Bonus: can use more accurate Milstein method for final timestep.

Burgos, G (2012) and Burgos (2014) have also used splitting for MLMC
for pathwise sensitivity analysis for put/call options.
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Splitting

Bernal, G (2019) also used splitting for Feynman-Kac functionals arising
for stopped diffusions – SDE calculations which terminate when the path
leaves the domain.

The issue here is that when a fine path exits, there is an O(h
1/2
` )

probability that the corresponding coarse path does not leave until much
later.

This is solved by estimating a conditional expectation by splitting the

coarse path into O(h
−1/2
` ) independent sub-simulations.

V` is improved from O(h
1/2
` ) to approximately O(h`).
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Conditional integration with root-finding

Bayer, Ben Hammouda, Tempone (2020 – talk on Thurs at 15:30)
split the random inputs W into a scalar Z and the remainder Wr .

They then express the desired MLMC level ` expectation as

E[P̂`−P̂`−1] = E
[
E[P̂`−P̂`−1 |Wr ]

]
and observe that in many financial applications it is possible to perform
this split in a way such that

E[P̂` |Wr ], E[P̂`−1 |Wr ]

are smooth functions of Wr , and can be evaluated very accurately by
performing root-finding in Z to locate the one discontinuity.

For a scalar SDE, Z could be WT , the terminal value of the driving
Brownian motion, and Wr would be the other random variables required
for a Brownian Bridge construction of the Brownian increments.
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Conclusions

most MLMC applications use “plain” MLMC with no need for any
of these tricks – good strong convergence implies small variance

for applications with discontinuities, there is a growing toolkit
of tricks to consider, with the same tricks being used in widely
differing applications.

in many cases, ideas have been taken from sensitivity analysis
which also has problems with discontinuous functionals

next talk by Al Haji-Ali introduces another new trick, and
yesterday he talked about another one based on adaptive sampling

Christian Bayer presents another technique tomorrow at 15:30

Webpages:
http://people.maths.ox.ac.uk/gilesm/mlmc/

http://people.maths.ox.ac.uk/gilesm/mlmc.html

http://people.maths.ox.ac.uk/gilesm/mlmc community.html

Mike Giles (Oxford) MLMC for digitals Sept 18, 2021 18 / 20



References
M. Altmayer, A. Neuenkirch. ’Multilevel Monte Carlo quadrature of discontinuous
payoffs in the generalized Heston model using Malliavin integration by parts’.
SIAM Journal on Financial Mathematics, 6(1):22-52, 2015.

C. Bayer, C. Ben Hammouda, R. Tempone. ’Numerical smoothing and
hierarchical approximations for efficient option pricing and density estimation’.
arXiv preprint 2003.05708, 2020.

S. Burgos, G. ‘Computing Greeks using multilevel path simulation’. pp.281-296 in
Monte Carlo and Quasi-Monte Carlo Methods 2010, Springer, 2012.

S. Burgos. ‘The computation of Greeks with multilevel Monte Carlo’. PhD thesis,
University of Oxford, 2014.

W. Fang, G. ’Multilevel Monte Carlo method for ergodic SDEs without
contractivity’. Journal of Mathematical Analysis and Applications,
476(1):149-176, 2019

G. ‘Improved multilevel Monte Carlo convergence using the Milstein scheme’.
pp.343-358, in Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer,
2008.

Mike Giles (Oxford) MLMC for digitals Sept 18, 2021 19 / 20



References
G. ‘Multilevel Monte Carlo methods’. Acta Numerica, 24:259-328, CUP, 2015.

G, F. Bernal. ’Multilevel estimation of expected exit times and other functionals
of stopped diffusions’. SIAM/ASA Journal on Uncertainty Quantification,
6(4):1454-1474, 2018.

G, K. Debrabant, A. Roessler. ’Analysis of multilevel Monte Carlo path simulation
using the Milstein discretisation’. Discrete and Continuous Dynamical Systems –
series B, 24(8):3881-3903, 2019.

G, T. Nagapetyan, K. Ritter. ’Multi-Level Monte Carlo approximation of
distribution functions and densities’. SIAM/ASA Journal on Uncertainty
Quantification, 3:267-295, 2015.

S. Krumscheid, F. Nobile. ’Multilevel Monte Carlo approximation of functions’.
SIAM/ASA Journal on Uncertainty Quantification, 6(3):1256-1293, 2018.

Y. Xia, G. ‘Multilevel path simulation for jump-diffusion SDEs’, pp.695-708 in
Monte Carlo and Quasi-Monte Carlo Methods 2010, Springer, 2012.

Y. Xia. ‘Multilevel Monte Carlo for jump processes’. PhD thesis, University of
Oxford, 2014.

Mike Giles (Oxford) MLMC for digitals Sept 18, 2021 20 / 20


