
CUDA implementation of MLMC on NVIDIA GPUs

Mike Giles

Mathematical Institute, University of Oxford

MCM 2025

July 28, 2025

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 1 / 18

Outline

motivation

MLMC algorithm

key considerations

implementation

performance results

current work

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 2 / 18

Motivation

NVIDIA GPUs have become dominant in HPC because of their
performance, particularly for AI/ML

top-of-the-line B200 GPU has 18,432 CUDA cores, capable of
80 TFlops (single-precision)

my little 70W desktop RTX 4000 SFF Ada GPU has 6,144 cores,
capable of 19 TFlops (single-precision)

in general, achieving good parallel performance on GPUs is no
harder than good parallel/vector performance on CPUs

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 3 / 18

Performance

Intel Xeon Gold 5418Y

24 cores with 2 AVX vector units and 80KB L1 cache per core

$1500, 185W
MT19337 uniform RNG, with inverse CDF conversion to Normals

2 CPUs generate 1.9× 1010 Normals/s

NVIDIA RTX 4000 SFF Ada GPU

6144 cores, 20GB memory

$1250, 70W
XORWOW uniform RNG, with inverse CDF conversion to Normals

1 GPU generates 2.7× 1011 Normals/s

Code available at: people.maths.ox.ac.uk/gilesm/codes/RNG test/

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 4 / 18

Hardware view

At the top-level, a PCIe graphics card with a many-core GPU and
high-speed graphics “device” memory sits inside a standard PC/server
with one or two multicore CPUs:

DDR4 GDDR6
or HBM

PCIe

motherboard

“host”

graphics card

“device”

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 5 / 18

Hardware view

An NVIDIA GPU is modular

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /
shared memory

�
���

��

J
J
J
J
J
J
J
J
J

�����

@
@
@
@@

SM = Streaming Multiprocessor – many more than can be shown here!

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 6 / 18

Software view
Host code:

▶ runs on CPU, typically single-threaded
▶ transfers data to/from GPU memory,
▶ launches multiple copies of CUDA kernel code on GPU

Kernel code:
▶ each copy runs within one SM, independent of all other copies
▶ typically, each has 128-512 threads, in groups of 32 (a “warp”)

Queue of waiting blocks:

Multiple blocks running on each SM:

SM SM SM SM

? ? ? ?

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 7 / 18

MLMC algorithm

start with L=2, and initial number of samples Nℓ on levels ℓ = 0, 1, 2

while extra samples need to be evaluated do
evaluate extra samples on each level
compute/update estimates for Vℓ, Cℓ, ℓ = 0, . . . , L
define optimal Nℓ, ℓ = 0, . . . , L
if no new samples needed then
test for weak convergence
if not converged then

if L = Lmax then
print warning message – failed to converge

else
set L := L+1, and initialise target NL

end if
end if

end if
end while

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 8 / 18

Software design

Key considerations:

to maximise parallelism, compute additional paths for all levels at
same time

generate random numbers on-the-fly within each thread, but they
must use different random number sub-streams

(instead of GPU idling while waiting for new instructions from CPU,
let it keep calculating more samples – future work)

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 9 / 18

Software design

host launches the maximum number of kernel copies which can run
without queueing

each thread initialises random number generator using skip-ahead
feature to ensure independent random number sequences

host sets/updates number of samples needed on each level

each warp operates independently computing additional samples as
needed (continuing even when need is 100% satisfied – future work)

kernels update sample sums on host (
∑

∆Pℓ,
∑

∆P2
ℓ ,
∑

cost, etc.)
when needs satisfied

host tells kernels when to stop

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 10 / 18

Software design

?

t

host code

kernel copies

-needed

� sums

-needed

� sums

-needed

� sums

-needed[0]=0

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 11 / 18

Software design

Host/kernel handshaking:

needed (in GPU memory)
▶ host sets/updates the array of required samples Nℓ

▶ first kernel to reach Nℓ sends sums to host, and negates Nℓ

(so others know not to do anything)

sums (in host memory)
▶ host initialises the array elements to NaN
▶ waits for them to be set by kernels
▶ resets to NaN before updating Nℓ

Kernel coordination:

started: number of samples on each level which have been started

device sums: local array of sums updated by kernels

lock: atomic lock to coordinate updating of device sums

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 12 / 18

Software design

Minor bits and pieces:

each warp acts independently, looping until the final termination,
deciding on each pass which level to work on

at the end of each pass, the warp has to add together the partial
sums from the 32 threads in the warp – doing this efficiently for
multiple sums required some careful coding (I’m happy with this bit)

atomic lock is used when updating the host (would prefer to use
simple atomic adds – future work)

all calculations are performed in single precision, except for sums
in double precision to avoid accumulation of rounding errors

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 13 / 18

Software design

Less common CUDA features:

cudaOccupancyMaxActiveBlocksPerMultiprocessor

function used to determine maximum number of kernel copies
which can run simultaneously in one SM, and hence the whole GPU

two CUDA streams, one for computation and one for data transfer

pinned host memory required for both needed and sums:
▶ needed data transferred by asynchronous cudaMemcpy
▶ sums in host memory directly updated by CUDA kernel

atomic locks for coordination between warps

Observation: debugging massively parallel codes with asynchronous
communication is tough

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 14 / 18

Results

It works! (but I’d prefer not to be using atomic locks – future work)

The current testcase is a European call option based on scalar geometric
Brownian motion.

In practice, it runs so fast that I think the timing is limited by the main
C/C++ code printing out the results to a text file.

The CUDA software is available here:

https://people.maths.ox.ac.uk/gilesm/mlmc/

and includes

mlmc.cpp – main MLMC driver routine

mlmc test.cpp – routine for MLMC tests

mcqmc06.cu – top-level application code

mcqmc06 device.cu – low-level application code with CUDA kernels

Makefile – uses NVIDIA’s nvcc compiler

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 15 / 18

Results

---- European call ----

**

*** MLMC file version 1.0 produced by ***

*** C++/CUDA mlmc_test on Wed Jul 23 10:00:12 2025 ***

**

**

*** Convergence tests, kurtosis, telescoping sum check ***

*** using N = 32 samples ***

**

l ave(Pf-Pc) ave(Pf) var(Pf-Pc) var(Pf) kurtosis check cost

0 9.9892e+00 9.9892e+00 1.8213e+02 1.8213e+02 6.0958e+00 0.0000e+00 1.0000e+00

1 1.7378e-01 9.9936e+00 1.1858e-01 1.9078e+02 2.9612e+01 1.1556e-02 2.0000e+00

2 1.0289e-01 1.0627e+01 4.2051e-02 2.2255e+02 2.9782e+01 3.4558e-02 4.0000e+00

3 5.5127e-02 1.0237e+01 1.1711e-02 2.1820e+02 2.4802e+01 2.8176e-02 8.0000e+00

4 2.9023e-02 1.0560e+01 4.0310e-03 2.4338e+02 1.4449e+01 1.8238e-02 1.6000e+01

5 1.2859e-02 8.1586e+00 6.2777e-04 1.6427e+02 6.5303e+00 1.6005e-01 3.2000e+01

6 7.5855e-03 9.4988e+00 2.6258e-04 2.2050e+02 6.2783e+00 9.0772e-02 6.4000e+01

7 3.3581e-03 1.1780e+01 3.6911e-05 2.5661e+02 2.8254e+00 1.3909e-01 1.2800e+02

8 2.8687e-03 1.3247e+01 2.0576e-05 3.2954e+02 5.0006e+00 8.0794e-02 2.5600e+02

9 6.1800e-04 1.0237e+01 1.3021e-06 1.4798e+02 3.0654e+00 1.8721e-01 5.1200e+02

10 7.0577e-04 1.3135e+01 1.3426e-06 3.5231e+02 5.4735e+00 1.7659e-01 1.0240e+03

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 16 / 18

Results

**

*** Linear regression estimates of MLMC parameters ***

**

alpha = 0.936768 (exponent for MLMC weak convergence)

beta = 1.939754 (exponent for MLMC variance)

gamma = 1.000000 (exponent for MLMC cost)

*** MLMC complexity tests ***

eps value mlmc_cost std_cost savings N_l

--

0.001 1.0451e+01 3.410e+08 4.810e+11 1410.64 298508288 5834752 2215936 825344 299264 108288 38592 13888

4992 1792 640

0.002 1.0451e+01 8.495e+07 2.525e+10 297.30 74465280 1458176 551936 206848 74496 26752 9600 3648

1344 448

0.005 1.0455e+01 1.355e+07 4.499e+09 332.17 11894784 233472 88064 32768 12032 4480 1600 576

224

0.010 1.0460e+01 3.387e+06 4.379e+08 129.29 2965504 59392 23552 8704 3072 1280 448 160

0.020 1.0452e+01 8.643e+05 4.704e+07 54.43 741376 16384 7168 3072 1024 384 128

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 17 / 18

Current work

CUDA half-precision calculations:
▶ half2 datatype with two FP16 variables in a 32-bit register
▶ uniform → approximate Normal mapping using a lookup table
▶ nested MLMC to correct accuracy to single precision

AVX-512 half-precision calculations on latest Intel Xeon CPUs:
▶ m512h datatype with 32 FP16 variables in a 512-bit vector register
▶ uniform → approximate Normal mapping using piecewise linear

approximation on dyadic intervals
▶ nested MLMC to correct accuracy to single precision

overall objective is to get fair comparison of FPGA, GPU and CPU
architectures, looking at both price/performance and energy efficiency

Is anyone else interested in collaborating on CUDA code?

Mike Giles (Oxford) MLMC on GPUs July 28, 2025 18 / 18

