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Outline

MLMC and the problem with discontinuous functions

7 approaches:
I explicit smoothing
I integration/differentiation
I Malliavin calculus
I conditional expectation
I change-of-measure
I splitting
I adaptive sampling

references

Several methods borrow ideas from computing sensitivities (“greeks”)
of the form

∂

∂α
E [f (ω, α)]

(and one or two from improving smoothness for QMC integration)
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Multilevel Monte Carlo

MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

where P̂` represents an approximation to output P on level `.

If Ŷ` has expected value E[P̂`−P̂`−1], with variance V` and cost C`,
then for a given target RMS error ε, the number of independent samples
on each level can be optimised to give overall cost

ε−2

(
L∑
`=0

√
C`V`

)2

∼


ε−2C0V0, C`V` → 0,

ε−2L2CLVL, C`V` → const, `→∞

ε−2CLVL, C`V` →∞.
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Challenge 1 – nested expectation (VaR in finance)

Suppose we want to estimate E
[
f (E[Z |X ])

]
where E[Z |X ] has a

bounded probability density function.

A simple MLMC treatment uses M` = 2`M0 inner samples on level `,
so the cost C` is O(M`) and the estimator for a given outer sample X is

Ŷ` = f

(
1

M`

M∑̀
m=1

Z (m)

)
− f

 1

M`−1

M`−1∑
m=1

Z (m+M`)


with the Z (m) all generated independently conditional on X .

If V[Z |X ] is finite and uniformly bounded, and f is Lipschitz, then

Ŷ` = O(M
−1/2
` ) so V` = O(M−1

` ) and the complexity is O(ε−2| log ε|2).

However, for the Heaviside step function H(·), Ŷ` = ±1 with probability

O(M
−1/2
` ), so V` = O(M

−1/2
` ) and the complexity is O(ε−5/2).
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Challenge 2 – SDEs

In the case of an SDE

dSt = a(St) dt + b(St) dWt

with an output quantity of interest P ≡ f (ST ), the standard estimator is

Ŷ` = ∆P̂` ≡ P̂` − P̂`−1

where the same Brownian motion Wt is used for both P̂` and P̂`−1, but
with different uniform timesteps h` and h`−1.

If f is Lipschitz, with constant Lf , then

V` ≤ E
[
(∆P̂`)

2
]
≤ L2

f E
[
(Ŝ` − Ŝ`−1)2

]
so we have V` = O(h`) for Euler-Maruyama discretisation, V` = O(h2

` )
for Milstein, and cost C` = O(h−1

` ) in both cases.

Mike Giles (Oxford) MLMC for digitals July 19, 2022 5 / 28



Challenge 2 – SDEs (digital option in finance)

In mathematical finance, a digital call option
payoff is 0 or 1, depending on whether ST is
below or above the strike K . The problem is
that a small change in the path can give a
big change in the payoff.
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Using the Euler-Maruyama approximation the strong error is O(h1/2),

=⇒ Ŝ` − Ŝ`−1 = O(h
1/2
` ).

An O(h
1/2
` ) fraction of fine/coarse pairs straddle the strike,

=⇒ V` = O(h
1/2
` ), and hence the complexity is O(ε−5/2).

Using the Milstein approximation the strong error is O(h) so V` = O(h`).
This is better, but the kurtosis is O(h−1

` ) which causes problems in
practice in estimating V`.
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1) Explicit smoothing

Digital options are also a problem for IPA / pathwise sensitivity analysis,
estimating the sensitivity of the expectation to a parameter change

One common solution to this is to explicitly smooth the payoff, and that
can be used also for MLMC – involves a tradeoff between bias and variance
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1) Explicit smoothing

G, Nagapetyan, Ritter (2015) use explicit smoothing for estimating CDFs.

For a scalar ST , to estimate C (x) = P(ST < x) = E[H(x−ST )]
where H(·) is the Heaviside step function, the approach is

use MLMC to estimate C (xj) for a set of spline points xj

interpolate with a cubic spline

To improve the MLMC variance, H(x) is replaced by Hδ(x) which
smooths H over a width of δ. Overall, have to balance four errors:

SDE discretisation bias on finest level

MLMC sampling error

smoothing error

interpolation error

Explicit smoothing also used recently by Xu, He, Wang (2020) for risk
estimation
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2) Integration/differentiation

Krumscheid, Nobile (2018) use a slightly different approach for estimating
CDFs, based on

d

dx
E [ max(0, x−ST ) ] = E[H(x−ST ) ]

use MLMC to estimate E[ max(0, xj−ST ) ] for spline points xj

interpolate with a cubic spline

differentiate to obtain an approximation to CDF C (x)

This avoids the smoothing error, but differentiating the cubic spline
amplifies the noise in the spline data.
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3) Malliavin calculus

On a similar note, Altmayer & Neuenkirch (2015) used Malliavin calculus
integration by parts to handle discontinuous payoffs with the Heston model

Used on its own it improves the asymptotic behaviour, but makes the
variance on coarse levels worse.

To address this, they split the payoff into a smooth part (handled by
standard MLMC) and a compact-support discontinuous part (handled
using Malliavin MLMC)

Again one key lesson is that techniques which help with computing
sensitivities can also help with MLMC.
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4) Conditional expectation
For the Milstein discretisation, one “fix” for digital options is to use E-M
approximation for the final timestep, then take conditional expectation
over final fine path Brownian increment ∆WN .

For fine path with timestep h`,

Ŝ f
T = Ŝ f

T−h` + a(Ŝ f
T−h`) h` + b(Ŝ f

T−h`) ∆WN ,

=⇒ P̂ f
` = Φ

(
Ŝ f
T−h` + a(Ŝ f

T−h`) h` − K

b(Ŝ f
T−h`)

√
h`

)
while for the coarse path with h`−1 = 2 h`,

Ŝc
T = Ŝc

T−h`−1
+ a(Ŝc

T−h`−1
) h`−1 + b(Ŝc

T−h`−1
) (∆WN−1+∆WN),

=⇒ P̂c
`−1 = Φ

(
Ŝc
T−h`−1

+ a(Ŝc
T−h`−1

) h` + b(Ŝc
T−h`−1

) ∆WN−1 − K

b(Ŝc
T−h`−1

)
√
h`

)
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4) Conditional expectation

Analysis (G, Debrabant, Roessler, 2019) proves V` ≈ O(h
3/2
` ) and the

kurtosis is O(h
−1/2
` ), so much better.

Heuristically, this is because there is an O(h
1/2
` ) probability of paths

being within O(h
1/2
` ) of the strike K , and for these

Ŝ` − Ŝ`−1 = O(h`),
∂P̂

∂ST
= O(h

−1/2
` ), =⇒ ∆P̂` = O(h

1/2
` )

Unfortunately, the conditional expectation approach does not help with
the E-M discretisation where

Ŝ` − Ŝ`−1 = O(h
1/2
` ) =⇒ ∆P̂` = O(1)
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4) Conditional expectation

Conditional expectation is a standard technique for smoothing the payoff
to enable IPA/pathwise sensitivity calculations (L’Ecuyer, Glasserman)

Another example is a down-and-out barrier option, where the option
is knocked out if the path drops below a certain value.

Payoff can be smoothed by computing probability of this happening,
conditional on computed path approximations at discrete timesteps.

Again, this works well for both pathwise sensitivity analysis and MLMC.

(G, 2008, Burgos, G, 2012)
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4) Conditional expectation
Achtsis, Cools, Nuyens (2013), Bayer, Siebenmorgen, Tempone (2018),
Bayer, Ben Hammouda, Tempone (2020) split the random inputs W into
a scalar Z and the remainder Wr .

They then express the desired MLMC level ` expectation as

E[P̂`−P̂`−1] = E
[
E[P̂`−P̂`−1 |Wr ]

]
and observe that in many financial applications it is possible to perform
this split in a way such that

E[P̂` |Wr ], E[P̂`−1 |Wr ]

are smooth functions of Wr , and can be evaluated analytically or very
accurately by root-finding in Z to locate the one discontinuity.

For a scalar SDE, Z could be the terminal value of the driving Brownian
motion, and Wr would be the other random variables required for a
Brownian Bridge construction of the Brownian increments.
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5) Change of measure
Another approach with the Milstein
discretisation is to use a change of measure
– similar to LRM for sensitivity analysis

For both the fine and coarse paths, we have
conditional Gaussian distributions for ŜT ,
with slightly different means and variances. 0.6 0.8 1 1.2
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Can perform a change of measure to the same Gaussian distribution,
and then pick the same sample for both paths, giving

P̂` − P̂`−1 = P̂(ŜT ) (R` − R`−1) = O(h
1/2
` )

where R`,R`−1 are the respective Radon-Nikodym derivatives
– works well in multiple dimensions where often cannot evaluate the
analytic conditional expectation (Burgos, 2014)

Doesn’t help with EM discretisation because R` − R`−1 = O(1)
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5) Change of measure

An earlier example of its use was for a
Merton-style jump-diffusion SDE with
path-dependent jump rate λ(S , t)
(Xia, G, 2012, Xia, 2014)

Problem is that coarse and fine paths will
jump at different times; one might jump just
before T , and the other just after 0 0.5 1

t

1

1.5

2

S

Solution: use Glasserman & Merener thinning technique, over-sampling
possible jump times using rate λsup > λ(S , t), and combine with change of
measure for identical acceptance/rejection decision for fine/coarse paths.

Leads to an estimator which looks like

P̂` R` − P̂`−1 R`−1

and gives V` = O(h2
` ) when combined with Milstein discretisation.
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6) Splitting

Back again to the digital option.

Conditional expectation can be estimated by
averaging over a number of independent
samples for the final Brownian increment.

O(h−1
` ) final samples can be used without

increasing the path cost significantly. 0 0.5 1
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This is sufficient to reduce V` to about the same level as using the analytic
conditional expectation.

Bonus: can use more accurate Milstein method for final timestep.

Burgos, G (2012), Burgos (2014) also used splitting for MLMC for
pathwise sensitivity analysis for put/call options.
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6) Splitting

Bernal, G (2019) used splitting for Feynman-Kac functionals arising for
stopped diffusions – SDE calculations which terminate when the path
leaves the domain.

The issue here is that when a fine path exits, there is an O(h
1/2
` )

probability that the corresponding coarse path does not leave until much
later.

This is solved by estimating a conditional expectation by splitting the

coarse path into O(h
−1/2
` ) independent sub-simulations.

V` is improved from O(h
1/2
` ) to approximately O(h`).
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6) Splitting

Digital options using the E-M discretisation
can be handled efficiently by repeated path
splitting.

When simulating on a unit time interval,
split into 2 paths at t = 1/2, then 4 paths
at t = 3/4, then 8 paths at t = 7/8, and so
on, with final split when there is just one
coarse timestep left.
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Each path continuation is independent of all of the others, i.e. uses its own
Brownian motion. Computational cost per sample is O(h−1

` | log h`|).

This effectively smoothes out the discontinuity, and the variance is reduced
to approximately O(h`) as with Lipschitz payoffs.

Paper with Haji-Ali in preparation.
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6) Splitting

Pros and cons of repeated splitting:

fairly easy to implement

near-optimal complexity for digital options with EM discretisation,
and with a moderate kurtosis

non-adaptive so can handle multiple discontinuities at same time
(e.g. for CDF estimation)

restricted to discontinuous functions of terminal state?
(no obvious way to handle barrier options)

maybe generalisable to SPDEs
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7) Adaptive sampling

We return to the nested expectation problem: E
[
H (E[Z |X ])

]
and note

that only need an accurate estimate of E[Z |X ] when it is near zero.

Building on adaptive sampling within MC (Broadie, Du, Moallemi, 2011),
adaptive sampling combined with MLMC (G., Haji-Ali, 2019) uses

M` = 2`M0 inner samples when |E[Z |X ]| �
√

V[Z |X ]/(2`M0)

M` = 4`M0 inner samples when |E[Z |X ]| = O(
√

V[Z |X ]/(4`M0))

2`M0 < M` < 4`M0 for intermediate values
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E[Z|X]
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2

Leads to C` ∼ 2`,V` ∼ 2−` and hence complexity of roughly O(ε−2)
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7) Adaptive sampling

Haji-Ali, Spence, Teckentrup (2021) extend this to

P[G ∈ Ω] ≡ E[1G∈Ω]

where G is a d-dimensional random variable which cannot be sampled
directly – the two examples they consider are precisely the two challenges
in this talk.

Adaptive sampling for the digital option with EM discretisation uses

h` = 2−` when |Ŝ` − K | large

h` = 4−` when |Ŝ` − K | small

2−` < h` < 4−` for intermediate values

A Brownian bridge construction is used when the timestep needs to be
refined from its base level.

Again leads to C` ∼ 2`,V` ∼ 2−` and hence complexity of roughly O(ε−2)
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7) Adaptive sampling

In earlier research, Elfverson, Hellman, Malqvist (2016) considered
estimation of E[H(X )] where X cannot be sampled exactly but there
is a sequence of approximations X ′0,X

′
1,X

′
2, . . .X of increasing accuracy

and increasing cost.

Motivated by PDE applications with a well-behaved truncation error
so that there are uniform geometric bounds on |X ′j − X |, level ` uses

X̂` = X ′j , j = min{`,min j : |X̂ ′j − X | < |X |}

and achieves similarly good MLMC benefits.

The idea is essentially the same as in the work of Haji-Ali et al but
requiring a uniform bound on |X ′j − X | is significantly more restrictive
than needing bounds on E[ |X ′j − X |q] for some q > 2.
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7) Adaptive sampling

Pros and cons of adaptive sampling:

also fairly simple to implement

near optimal complexity, but often with a bad kurtosis

adaptation is specific to output function – for CDF estimation would
have to adapt for each spline point

analysis of Haji-Ali, Spence, Teckentrup can be generalised to
product of indicator function and Lipschitz function, E[1G∈Ωf (S)],
and so can handle barrier options
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Conclusions

most MLMC applications use “plain” MLMC with no need for any
of these techniques – good strong convergence implies small variance

for applications with discontinuities, there is a growing toolkit
of techniques to consider, with the same techniques being used in
widely differing applications.

in many cases, ideas have been adapted from sensitivity analysis
which also has problems with discontinuous functionals

3 talks later this week:

Chiheb Ben Hammouda on conditional expectation (numerical
smoothing) on Wednesday at 14:00

Al Haji-Ali on repeated splitting (branching) on Thursday at 17:00

Jonny Spence on adaptive sampling on Friday at 9:00
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