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Introduction

Outline:

I basic ideas

I three finance applications:
I SDEs for option pricing
I reduced precision computing and approximate random variables
I nested simulations, such as CVaR

In doing this I hope to emphasise:

I the simplicity of the idea

I its flexibility – it’s not prescriptive, more a generic approach

I sources of further information



Objective

To achieve a root-mean-square accuracy of ε, Monte Carlo
simulation requires O(ε−2) samples.

In many cases the cost of each sample also depends on ε,
so the overall cost is often O(ε−3) or worse.

The aim is to reduce the total cost to O(ε−2), and reduce
the cost even it is already O(ε−2).



Control variates

Control variates are a well-established technique for reducing
variance, and hence computational cost

If we want to estimate E[P(ω)], and we know E[Q(ω)] for some
Q(ω) which is well correlated to P(ω), then

E[P] = λE[Q]︸ ︷︷ ︸
known

+E[P−λQ]

so we can instead use Monte Carlo to estimate E[P−λQ] and
choose λ to minimise the variance, giving

V[P−λQ] = (1−ρ2)V[P]

where ρ is the correlation coefficient.



Two-level Monte Carlo

If we want to estimate E[P] but it is much cheaper to simulate
P̃ ≈ P, then since

E[P] = E[P̃] + E[P−P̃]

we can use the estimator

N−1
0

N0∑
n=1

P̃(0,n) + N−1
1

N1∑
n=1

(
P(1,n)− P̃(1,n)

)

Similar to a control variate except that

I we don’t know analytic value of E[P̃], so need to estimate it

I there is no multiplicative factor λ

Benefit: if P−P̃ is small, its variance will be small, so won’t need
many samples to accurately estimate E[P−P̃], so cost will be
reduced greatly.



Two-level Monte Carlo

If we define

I C0,V0 cost and variance of one sample of P̃

I C1,V1 cost and variance of one sample of P − P̃

then the total cost and variance of this estimator is

Ctot = N0C0 + N1C1 =⇒ Vtot = V0/N0 + V1/N1

Treating N0,N1 as real variables, using a Lagrange multiplier to
minimise the cost subject to a fixed variance gives

∂

∂N`
(Ctot + µ2Vtot) = 0, N` = µ

√
V`/C`

Choosing µ s.t. Vtot = ε2 gives

Ctot = ε−2(
√

V0C0 +
√

V1C1)2



Multilevel Monte Carlo

Natural generalisation: given a sequence P̂0, P̂1, . . . , P̂L

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

we can use the estimator

Ŷ = N−1
0

N0∑
n=1

P̂
(0,n)
0 +

L∑
`=1

{
N−1
`

N∑̀
n=1

(
P̂

(`,n)
` − P̂

(`,n)
`−1

)}

with independent estimation for each level of correction



Multilevel Monte Carlo

If we define

I C0,V0 to be cost and variance of P̂0

I C`,V` to be cost and variance of P̂`−P̂`−1

then the total cost is
L∑
`=0

N` C` and the variance is
L∑
`=0

N−1
` V`.

Minimise the cost for a fixed variance

∂

∂N`

L∑
k=0

(
Nk Ck + µ2N−1

k Vk

)
= 0

gives
N` = µ

√
V`/C` =⇒ N` C` = µ

√
V` C`



Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑
`=0

√
V` C`

)

and hence, the total cost is

L∑
`=0

N` C` = ε−2

(
L∑
`=0

√
V`C`

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore approximately:

I VL/V0, if
√
V`C` increases with level

I C0/CL, if
√
V`C` decreases with level



Multilevel Monte Carlo

If P̂0, P̂1, . . . −→ P, then the Mean Square Error has the
decomposition

E
[
(Ŷ−E[P])2

]
= V[Ŷ ] +

(
E[Ŷ ]− E[P]

)2

=
L∑
`=0

V`/N` +
(
E[P̂L]− E[P]

)2

so can choose L so that
∣∣∣E[P̂L]− E[P]

∣∣∣ < ε/
√

2

and then choose N` so that
L∑
`=0

V`/N` < ε2/2



MLMC Theorem

(Slight generalisation of version in my original 2008 Operations
Research paper, ”Multilevel Monte Carlo path simulation”)

If there exist independent estimators Ŷ` based on N` Monte Carlo
samples, each costing C`, and positive constants α, β, γ, c1, c2, c3

such that α≥ 1
2 min(β, γ) and

i)
∣∣∣E[P̂`−P]

∣∣∣ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], ` = 0

E[P̂`−P̂`−1], ` > 0

iii) V[Ŷ`] ≤ c2 N
−1
` 2−β `

iv) E[C`] ≤ c3 2γ `



MLMC Theorem

then there exists a positive constant c4 such that for any ε<1
there exist L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2
]
< ε2

with an expected computational cost C with bound

C ≤


c4 ε

−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.



MLMC Theorem

Two observations of optimality:

I MC simulation needs O(ε−2) samples to achieve RMS
accuracy ε, so when β > γ, the cost is optimal — O(1) cost
per sample on average.

(Would need multilevel QMC to further reduce costs)

I When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷ`] and
√
E[Ŷ 2

` ] being of the same order as
`→∞.
In this case, the total cost is O(ε−γ/α), which is the cost of a
single sample on the finest level — again optimal.



MLMC

Numerical algorithm:

1. start with L=0

2. if L < 2, get an initial estimate for VL using NL = 1000
samples, otherwise extrapolate from earlier levels

3. for ` ≤ L, determine optimal N` to achieve
L∑
`=0

V`/N` ≤ ε2/2

4. perform extra calculations as needed, updating estimates of V`

5. if L<2 or the bias estimate is greater than ε/
√

2, set
L := L+1 and go back to step 2



Application: SDEs

With SDEs, level ` corresponds to approximation using M`

timesteps, giving approximate payoff P̂` at cost C` = O(M`).

Usually choose M in the range 2 – 4; often 4 for Euler-Maruyama
and 2 for Milstein discretisation.

Simplest estimator for E[P̂`−P̂`−1] for `>0 is

Ŷ` = N−1
`

N∑̀
n=1

(
P̂

(n)
` −P̂

(n)
`−1

)
using same driving Brownian path for both levels.

The implementation is easy – for a coarse timestep of size M h
we simply sum the M fine path Brownian increments ∆W to get
the coarse path Brownian increment.



Application: SDEs

Euler-Maruyama discretisation has O(h1/2) strong convergence so

E[ (Ŝ`,T − ST )2] = O(h`) =⇒ E[(Ŝ`,T − Ŝ`−1,T )2] = O(h`)

Hence for Lipschitz European payoff functions P ≡ f (ST ),

V[P̂`− P̂`−1] ≤ E[(P̂`− P̂`−1)2] ≤ K 2 E[(ŜT ,`− ŜT ,`−1)2] = O(h`)

In terms of the MLMC theorem, this means we have

C` = O(M`) =⇒ γ = log2 M,

V` = O(h`) = O(M−`) =⇒ β = log2 M,

so the overall cost to achieve ε RMS accuracy is O(ε−2| log ε|2).

Things are not so good for digital options – complexity is O(ε−5/2).



MLMC SDE algorithm

Input: fine and coarse timesteps hf , hc , final time T = N hc ,
refinement factor M = hc/hf , initial states Ŝ f = Ŝc =S0

for n = 1,N do
∆W c := 0

for m = 1,M do
generate r.v. ∆W f ∼ N(0, hf )
∆W c := ∆W c + ∆W f

Ŝ f := Ŝ f + a(Ŝ f ) hf + b(Ŝ f ) ∆W f

end for

Ŝc := Ŝc + a(Ŝc) hc + b(Ŝc) ∆W c

end for

P̂` − P̂`−1 := f (Ŝ f )− f (Ŝc)



Application: SDEs

I Milstein discretisation – MBG (2008, 2012)

I MLQMC for SDEs – MBG, Waterhouse (2009)

I Greeks – Burgos (2011)

I American options – Belomestny & Schoenmakers (2011)

I jump-diffusion models – MBG, Xia (2012)

I Lévy-driven processes – Dereich (2010), Marxen (2010),
Dereich & Heidenreich (2011), Kyprianou (2014)

I multi-dim Milstein without Lévy areas – MBG, Szpruch (2014)

I adaptive timesteps – Hoel, von Schwerin, Szepessy, Tempone
(2012), MBG, Lester, Whittle (2014), Fang, MBG (2020)

I exponential Lévy processes – Xia (2017)



Basket call option

I 5 underlying assets, modelled by Geometric Brownian Motion
with correlation between 5 driving Brownian motions

I Milstein numerical approximation

I standard call option based on average at final time T



Basket call option
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Basket call option
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Application: reduced precision

One simple use of two-level MLMC is with reduced precision
floating point arithmetic:

I double precision on “fine” level

I single precision (or even half-precision?) on “coarse” level

This can be combined with SDE treatment by using this two-level
treatment for each of the expectations E[P̂`−P̂`−1],

E[P̂`−P̂`−1] = E[P̂float
` −P̂float

`−1] + E[(P̂`−P̂`−1)− (P̂float
` −P̂float

`−1)]

For the low-accuracy computations can also use imprecise
conversion of uniform r.v.’s to Normal r.v.’s



Application: approximate r.v.’s

Continuing with that idea, one approach for the CIR model

drt = a (b−r) dt + σ
√
r dWt

is to use exact simulation which involves sampling from the
non-central χ2 distribution.

One method of sampling is to generate a (0, 1) uniform r.v. U
and then apply the inverse of the non-central χ2 CDF.

Doing this accurately is expensive, but one can construct a cheap
fairly accurate piecewise bilinear approximation – linear in both U
and the non-centrality parameter (for fixed degrees of freedom
d = 4ab/σ2).

Looks a good approach for interest rate models and Heston
stochastic volatility.



Application: nested expectation

The general form of a nested expectation is E
[
f (E[Y |X ])

]
.

The standard approach uses N outer samples X (n), and for each
M inner samples Y (m,n). To achieve ε RMS accuracy usually
requires N = O(ε−2), M = O(ε−1), so the total cost is O(ε−3).

The MLMC approach uses M` = 2`M0 inner samples on level `

I cost is O(2`) so γ = 1

I an “antithetic” construction gives β = 2 if f is smooth, and
β = 3/2 if f is continuous and piecewise smooth; both good
enough for O(ε−2) total cost

I if f is discontinuous β = 1/2 and the cost is O(ε−5/2);
can be improved to O(ε−2| log ε|2) using adaptive sampling



Application: VaR and CVaR

VaR loss Lη is defined implicitly by P[L>Lη] = η.

Given an estimate L̃η, Rockafellar & Uryasev (2000) show that
CVaR is

E[ L | L>Lη] = Lη + η−1E[max(0, L−Lη)]

= min
x

{
x + η−1E[max(0, L−x)]

}
= L̃η + η−1E[max(0, L−L̃η)] + O(L̃η−Lη)2

For ε RMS error,

I first estimate L̃η to accuracy O(ε1/2) at cost o(ε−2)

I then estimate η−1E[max(0, L−L̃η)] to accuracy ε using
MLMC; β = 3/2 so total cost is O(ε−2)

Can also use random sampling to reduce cost for portfolios with
lots of products.



Final comments

I MLMC has become widely used in academia over the past
10 years, and also MLQMC in some areas (mainly PDEs)

I very large savings in some application areas (especially PDEs
and stochastic modelling of chemical reactions)

I very limited uptake in the finance sector so far, but I think
there are very good opportunities here

I research worldwide (inc. papers) is listed on a webpage:

people.maths.ox.ac.uk/gilesm/mlmc community.html

I MLMC software and examples available on another webpage:

people.maths.ox.ac.uk/gilesm/mlmc/

I my papers are on:

people.maths.ox.ac.uk/gilesm/mlmc.html

best to start with review: ’Multilevel Monte Carlo methods’.
Acta Numerica, 24:259-328, 2015.


