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Introduction

Outline;

» basic ideas

P three finance applications:
» SDEs for option pricing
» reduced precision computing and approximate random variables
» nested simulations, such as CVaR

In doing this | hope to emphasise:
» the simplicity of the idea

> its flexibility — it's not prescriptive, more a generic approach

» sources of further information



Objective

To achieve a root-mean-square accuracy of &, Monte Carlo
simulation requires O(e~2) samples.

In many cases the cost of each sample also depends on ¢,
so the overall cost is often O(s~3) or worse.

The aim is to reduce the total cost to O(¢~2), and reduce
the cost even it is already O(c72).



Control variates

Control variates are a well-established technique for reducing
variance, and hence computational cost

If we want to estimate E[P(w)], and we know E[Q(w)] for some
Q(w) which is well correlated to P(w), then

E[P] = AE[Q] +E[P—AQ]
known

so we can instead use Monte Carlo to estimate E[P—AQ)] and
choose \ to minimise the variance, giving

V[P-AQ] = (1-p*) V[P]

where p is the correlation coefficient.



Two-level Monte Carlo

If we want to estimate E[P] but it is much cheaper to simulate
P =~ P, then since

E[P] = E[P] + E[P—P]

we can use the estimator

Nt %02 PO 4 g1 %1: (P(l,n) P(1,n))
n=1 n=1

Similar to a control variate except that
» we don’t know analytic value of E[P], so need to estimate it

» there is no multiplicative factor A

Benefit: if P—P is small, its variance will be~sma||, so won't need
many samples to accurately estimate E[P— P], so cost will be
reduced greatly.



Two-level Monte Carlo

If we define
» (o, Vo cost and variance of one sample of P
» (;, Vq cost and variance of one sample of P — P

then the total cost and variance of this estimator is
Cot =NoGo+ NG = Vior = Vo/No + Vi/ Ny

Treating Np, Ny as real variables, using a Lagrange multiplier to
minimise the cost subject to a fixed variance gives

(Crot + Mz Viot) =0, Np=p/Vi/G

ON,

Choosing 1 s.t. Vior = g2 gives

Crot = £ 2(vV Vo Co + vV V1G1)?



Multilevel Monte Carlo

Natural generalisation: given a sequence ﬁo, ﬁl, ey ,BL
~ ~ L ~ ~
E[PL] = E[Po] + > E[Pi— Py 1]
=1

we can use the estimator

No N
V=N SRR 4+ N {Nel > (P PED) }

L
n=1 /=1 n=1

with independent estimation for each level of correction



Multilevel Monte Carlo

If we define
» (o, Vo to be cost and variance of ISO
» (4, V, to be cost and variance of ﬁ’\g—ﬁ’\g,l
L L

then the total cost is Z Ny Cy and the variance is Z Ne_l\/g.
=0 £=0

Minimise the cost for a fixed variance

L
0 _
W Z Nka+M2Nk1Vk):O
k=0
gives
Ne=pu\Vi/C = NeCG=p\ Ve



Multilevel Monte Carlo

Setting the total variance equal to €2 gives
L
n= 2 (Z v Vy Cg)
=0
and hence, the total cost is
L L 2

Z Ny G = g2 (Z Vi VgCg)

£=0 =0
in contrast to the standard cost which is approximately ¢ =2 V, C;.
The MLMC cost savings are therefore approximately:

» Vi /Vo, if /V;Cy increases with level
> Co/Cyp, if /VyC; decreases with level



Multilevel Monte Carlo

If ﬁo, ﬁl, ... — P, then the Mean Square Error has the
decomposition

E[(Y-E[P?| = v[V]+(E[V]- IE[P]>2

L ~ 2
= > Vi/Ne+ (B[P - E[P))
=0
so can choose L so that ‘]E[ﬁL] - E[P]‘ <e/V2

L
and then choose N, so that Z Vi/Np < €22
/=0



MLMC Theorem

(Slight generalisation of version in my original 2008 Operations
Research paper, " Multilevel Monte Carlo path simulation”)

If there exist independent estimators ?g based on N, Monte Carlo
samples, each costing Cp, and positive constants «, 3,7, c1, ¢, C3
such that o> min(8, ) and

) [EP—Pl| < cr2e
_ E[Po], (=0

i) E[Ye] = S
E[Pg—ngl], £>0

i) V[Y)] < o N 12754

iv) E[C] < 327"



MLMC Theorem

then there exists a positive constant ¢4 such that for any e <1
there exist L and N, for which the multilevel estimator

~ 2
has a mean-square-error with bound E [(Y — E[P]) ] <é?
with an expected computational cost C with bound

C45_2> /8 >,
C < cae?(loge)?, B=r,

e 270-Ale o< p< .



MLMC Theorem

Two observations of optimality:

» MC simulation needs O(c~2) samples to achieve RMS
accuracy €, so when 3 > =, the cost is optimal — O(1) cost
per sample on average.

(Would need multilevel QMC to further reduce costs)

» When [ < «, another interesting case is when 8 = 2«, which

corresponds to E[Y;] and \/E[\A/f] being of the same order as

£ — 0.
In this case, the total cost is O(¢~7/®), which is the cost of a
single sample on the finest level — again optimal.



MLMC

Numerical algorithm:

1.

2.

start with L=0

if L < 2, get an initial estimate for V; using N; = 1000
samples, otherwise extrapolate from earlier levels

L

. for £ < L, determine optimal N, to achieve Z Vi/ Ny < 52/2

/=0

perform extra calculations as needed, updating estimates of V

if L<2 or the bias estimate is greater than 5/ﬁ set
L := L+1 and go back to step 2



Application: SDEs

With SDEs, level £ corresponds to approximation using M¢
timesteps, giving approximate payoff Py at cost C, = O(M?).

Usually choose M in the range 2 — 4; often 4 for Euler-Maruyama
and 2 for Milstein discretisation.

Simplest estimator for E[ﬁg—ﬁg_l] for £>0is

N
v, _ -l p(n) _ p(n)
Ye=N, Z(Pz _sz1)
n=1
using same driving Brownian path for both levels.
The implementation is easy — for a coarse timestep of size M h

we simply sum the M fine path Brownian increments AW to get
the coarse path Brownian increment.



Application: SDEs
Euler-Maruyama discretisation has O(h'/2) strong convergence so
B{(Se— S7)%] = O(h) = E[(St.7 — Se-1,7)] = O(hn)
Hence for Lipschitz European payoff functions P = f(S7),

V[P; = Py_1] < E[(Ps— Pr_1)?] < K2 E[(St.0— ST.0-1)?] = O(hy)

In terms of the MLMC theorem, this means we have

C = O(Me) — v =log, M,
Vi = O(h)) = O(M™") = B=logo M,

so the overall cost to achieve ¢ RMS accuracy is O(e 2| log |?).

Things are not so good for digital options — complexity is 0(5_5/2).



MLMC SDE algorithm

Input: fine and coarse timesteps hf, h, final time T = N A€,
refinement factor M = h¢/hf, initial states ST =5°= S,

for n=1,N do
AW :=0
for m=1,M do
generate r.v. AW ~ N(0, hf)
AWE = AW+ AWT
Sf =5+ a(S") hf + b(S) AWF
end for
5¢ = 5¢ 4 a(5°) he + b(5¢) AW
end for

Py — Py_y = f(5F) — £(5°)



Application: SDEs

vV v v v Vv Y

v

Milstein discretisation — MBG (2008, 2012)

MLQMC for SDEs — MBG, Waterhouse (2009)

Greeks — Burgos (2011)

American options — Belomestny & Schoenmakers (2011)
jump-diffusion models — MBG, Xia (2012)

Lévy-driven processes — Dereich (2010), Marxen (2010),
Dereich & Heidenreich (2011), Kyprianou (2014)

multi-dim Milstein without Lévy areas — MBG, Szpruch (2014)

» adaptive timesteps — Hoel, von Schwerin, Szepessy, Tempone

(2012), MBG, Lester, Whittle (2014), Fang, MBG (2020)

exponential Lévy processes — Xia (2017)



Basket call option

» 5 underlying assets, modelled by Geometric Brownian Motion
with correlation between 5 driving Brownian motions

» Milstein numerical approximation

> standard call option based on average at final time T



Basket call option
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Basket call option
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Application: reduced precision

One simple use of two-level MLMC is with reduced precision
floating point arithmetic:

» double precision on “fine" level

» single precision (or even half-precision?) on “coarse” level

This can be combined with SDE treatment by _using this two-level
treatment for each of the expectations E[Pg Pg 1],

E[ﬁg—//)\g,l] _ E[I/D\?oat_ﬁgfi] + E[(I/D\Z_,/D\Zfl)_( float Pfloa )]

For the low-accuracy computations can also use imprecise
conversion of uniform r.v.'s to Normal r.v.'s



Application: approximate r.v.'s

Continuing with that idea, one approach for the CIR model
drt = a(b—r)dt—l—a\ﬁth

is to use exact simulation which involves sampling from the
non-central x? distribution.

One method of sampling is to generate a (0, 1) uniform r.v. U
and then apply the inverse of the non-central xy? CDF.

Doing this accurately is expensive, but one can construct a cheap
fairly accurate piecewise bilinear approximation — linear in both U
and the non-centrality parameter (for fixed degrees of freedom

d = 4ab/a?).

Looks a good approach for interest rate models and Heston
stochastic volatility.



Application: nested expectation

The general form of a nested expectation is E [f (E[Y | X])} .

The standard approach uses N outer samples X(", and for each
M inner samples Y (™" To achieve ¢ RMS accuracy usually
requires N = O(¢72), M = O(e™!), so the total cost is O(s3).

The MLMC approach uses M; = 2¢ My inner samples on level ¢
> cost is O(2¢) so vy =1
» an “antithetic” construction gives 5 = 2 if f is smooth, and
B =3/2 if f is continuous and piecewise smooth; both good
enough for O(¢2) total cost
> if f is discontinuous 5 = 1/2 and the cost is O(c~%/?);
can be improved to O(¢ 2| loge|?) using adaptive sampling



Application: VaR and CVaR
VaR loss L, is defined implicitly by P[L>L,] = 7.

Given an estimate va Rockafellar & Uryasev (2000) show that
CVaR is

E[L|L>L,] = Ly+n "E[max(0,L—L,)]
— mXin {x + 7771[E[ma><(07 L—x)]}
— Zn + 7 E[max(0, L—Zn)] + O(Zn—l—n)2
For ¢ RMS error,

» first estimate Zn to accuracy O(£!/?) at cost o(e?)

> then estimate n~1E[max(0, L—Zn)] to accuracy € using
MLMC; 8 = 3/2 so total cost is O(s72)

Can also use random sampling to reduce cost for portfolios with
lots of products.



Final comments

>

>

MLMC has become widely used in academia over the past
10 years, and also MLQMC in some areas (mainly PDEs)

very large savings in some application areas (especially PDEs
and stochastic modelling of chemical reactions)

very limited uptake in the finance sector so far, but | think
there are very good opportunities here

research worldwide (inc. papers) is listed on a webpage:
people.maths.ox.ac.uk/gilesm/mlmc_community.html
MLMC software and examples available on another webpage:
people.maths.ox.ac.uk/gilesm/mlmc/

my papers are on:
people.maths.ox.ac.uk/gilesm/mlmc.html

best to start with review: 'Multilevel Monte Carlo methods'.
Acta Numerica, 24:259-328, 2015.



