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Monte Carlo

Monte Carlo simulation uses the average

N−1
N∑

n=1

P(n)

to estimate E[P].

To achieve a RMS error of ε requires N ≈ ε−2V samples, where
V = V[P] is the variance.

If each sample costs C then the total cost is approximately ε−2VC
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Two-level Monte Carlo

If P̃ ≈ P, then since E[P] = E[P̃] + E[P−P̃] we can instead use

N−1
0

N0∑
n=1

P̃(n) + N−1
1

N1∑
n=1

(P(n) − P̃(n)).

The cost of this estimator is N0C0 + N1C1, and the variance is
V0/N0 + V1/N1, where V0 ≡ V[P̃], V1 ≡ V[P−P̃].

Minimising the cost subject to the same accuracy requirement gives the
total cost

ε−2(
√

V0C0 +
√

V1C1)2.

If
C0 =10−1C , C1 =C , V0 =V , V1 =10−3V

then the total cost is 0.121 ε−2VC , a factor 8 savings compared to the
original Monte Carlo.
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Multilevel Monte Carlo
Given a sequence of increasingly accurate (and costly) approximations
P̂0, P̂1, P̂2, . . .→ P, for example from the approximation of an SDE
using 2` timesteps on level `, then

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

and so the MLMC estimate is

N−1
0

N0∑
n=1

P̂
(n)
0 +

L∑
`=1

N−1
`

N∑̀
n=1

(P̂
(`,n)
` − P̂

(`,n)
`−1 ),

and the total cost ends up being approximately

ε−2

(
L∑
`=0

√
V`C`

)2
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MLMC Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators Ŷ` based on N` Monte Carlo samples,
each costing C`, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂`−P]

∣∣∣ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], ` = 0

E[P̂`−P̂`−1], ` > 0

iii) V[Ŷ`] ≤ c2N
−1
` 2−β `

iv) E[C`] ≤ c3 2γ `
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2]

< ε2

with an expected computational cost C with bound

C ≤


c4 ε

−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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Approximate random variables

In some applications, generating the random numbers can be a
significant cost, especially with QMC when inverting the CDF.

e.g. Poisson distribution, increments of a Lévy process, non-central
chi-squared distribution (CIR model in finance)

Even with Normal random variables, cost of conversion from uniform
r.v. to Normal is non-trivial for vector implementation.

This has led to previous research by Hefter, Mayer, Ritter and others.

Note: one way of generating a sample of a scalar random variable X
with CDF C (x), is to first generate a (0, 1) uniform random variable,
then define X = C−1(U)
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Approximate random variables

Simplest example: Euler-Maruyama approximation of a scalar SDE:

X̂tm+1 = X̂tm + a(X̂tm) h + b(X̂tm)
√
h Zm

where Zm is a unit Normal r.v. generated as

Zm = Φ−1(Um)

where Um is a uniform (0, 1) r.v. and Φ−1 is the inverse Normal CDF.

Suppose instead we use approximate Normals Z̃m generated by

Z̃m = Q̃(Um)

where Q̃ is an approximation to Φ−1.
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Approximate random variables

a) quantised approximation – piecewise constant on 2d intervals
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Good for scalar execution on CPUs – lookup in L1 cache based on d-digit
random integer (d=10 is a reasonable choice)
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Approximate random variables

b) piecewise linear on dyadic intervals – smaller near singularities
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Good for vector execution on CPUs – lookup within a vector when 32
sub-intervals (cubic version used by Intel in their MKL software?)

Interval index from exponent of uniform random number in (0, 1/2).

Mike Giles (Oxford) MLMC with approximate distributions Sept 13, 2022 11 / 22



Approximate random variables

c) classic least-squares polynomial approximation
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Good for half-precision on GPUs – no lookup
(degree 7 polynomial a reasonable approximation?)
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Approximate random variables

For an SDE approximation with a specified number of timesteps,
a two-level MLMC approach gives

E[P̂] = E[P̃] + E[P̂−P̃]

Further analysis proves that for P ≡ f (XT ) for a Lipschitz f (x)

V[P̂−P̃] = O
(
V[Z−Z̃ ]

)
so this can lead to significant savings if we have both

V[Z−Z̃ ]� 1

Z̃m ≡ Q̃(Um) is much cheaper to evaluate than Zm ≡ Φ−1(Um)
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Approximate random variables

How does this work in combination with standard timestepping MLMC?

Answer: nested MLMC

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

= E[P̃0] + E[P̂0−P̃0]

+
L∑
`=1

{
E[P̃`−P̃`−1] + E

[
(P̂`−P̂`−1)− (P̃`−P̃`−1)

]}

The pair (P̃`, P̃`−1) are generated in the same way as (P̂`, P̂`−1),
just replacing exact Zm by approximate Z̃m, for same underlying Um
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Approximate random variables

Numerical analysis of path differences:

(strong convergence) X̂` − X̂`−1 ∼ h1/2

(similar, but non-standard) X̃` − X̃`−1 ∼ h1/2

(similar, but non-standard) X̂` − X̃` ∼
√

V[Z−Z̃ ]

(harder) (X̂`−X̂`−1)− (X̃`−X̃`−1) ∼ h1/2
√

V[Z−Z̃ ]

More precisely, for any q > 2 there is a constant c s.t.√
E
[ (

(X̂`−X̂`−1)− (X̃`−X̃`−1)
)2]
≤ c h1/2

(
E[ |Z̃−Z |q]

)1/q
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Approximate random variables

Analysis of MLMC variances:

For smooth payoff functions f (x), for q>2 can prove

V[(P̂`−P̂`−1)− (P̃`−P̃`−1)] ∼ h
(
E[ |Z̃−Z |q]

)2/q
For continuous piecewise smooth functions (e.g. financial put/call
functions) the analysis is much tougher. Numerical results suggest

V[(P̂`−P̂`−1)− (P̃`−P̃`−1)] ∼ min

{
h1/2V[Z−Z̃ ], h

√
V[Z−Z̃ ]

}
but unable to prove better than for any q > 2 and δ > 0

V[(P̂`−P̂`−1)−(P̃`−P̃`−1)] ∼ min
{
h

1−δ
2

− 1
qE[ |Z̃−Z |q]

2
q , hE[ |Z̃−Z |q]

1−δ
q+1

}
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Numerical results
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Numerical results
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Reduced precision arithmetic

Further computational savings can be achieved by using reduced precision
arithmetic.

Previous research at TU Kaiserslautern (Korn, Ritter, Wehn and others)
and Imperial College (Luk and others) has used FPGAs with complete
control over the precision, but we prefer GPUs.

In the latest NVIDIA GPUs, half-precision fp16 is twice as fast as single
precision fp32 (which is 2-8 times faster than double precision fp64).

In most cases, single precision is perfectly sufficient for calculating P̂;
half precision can be used for P̃.

MC averaging should probably be done in double precision in both cases.

Mike Giles (Oxford) MLMC with approximate distributions Sept 13, 2022 19 / 22



Reduced precision arithmetic

Very important: to ensure the telescoping sum is respected, must
ensure that exactly the same computations are performed for P̃
whether on its own or in calculating P̂ − P̃.

The effect of half-precision arithmetic can be modelled as

X̃tm+1 = X̃tm + a(X̃tm)h + b(X̃tm)
√
h Z̃m + δ X̃tmVm

where δ ≈ 10−3 and the Vm are iid unit variance random variables.

Overall, this leads to an O(δ2/h) increase in the variance; if this
increases it too much, the reduced precision should not be used.
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Conclusions / future work

nested MLMC is similar to MIMC, but more general

helpful in using approximate distributions and reduced precision

offers significant computational savings in some situations

in future, perform experiments with reduced precision, and
extend to other distributions:

I Poisson
I binomial
I non-central chi-squared (CIR process)

also want to extend to MLQMC using quasi-uniform random numbers
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