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Feynman-Kac formula

Suppose that u(x , t) satisfies the parabolic PDE

∂u

∂t
+
∑

j

aj
∂u

∂xj
+ 1

2

∑

j ,k,l

bjkbkl
∂2u

∂xj∂xl
− V (x , t) u(x , t) + f (x , t) = 0

in bounded domain D, subject to u(x , t) = g(x , t) on the boundary ∂D.

It will be assumed that f (x , t), g(x , t),V (x , t), a(x , t), b(x , t) are all
Lipschitz continuous.
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Feynman-Kac formula

Feynman and Kac proved that u(x , t) can also be expressed as

u(x , t) = E

[∫ τ

t

E (t, s) f (Xs , s)ds + E (t, τ) g(Xτ , τ) | Xt = x

]

where Xt satisfies the SDE

dXt = a(Xt , t)dt + b(Xt , t)dWt ,

with Wt being a Brownian motion with independent components,
τ is the first time at which Xt leaves D, and

E (t0, t1) = exp

(
−

∫ t1

t0

V (Xt , t)dt

)
.

Note: in the special case in which f (x , t)=0, g(x , t)= t, V (x , t)=0
u(x , t) is the expected exit time.
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Feynman-Kac formula

Why is this alternative form useful?

In high dimensions, approximating the parabolic PDE can be expensive
because the cost increases exponentially – curse of dimensionality

The cost of Monte Carlo simulation for the SDE scales linearly with
dimension
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Numerical approximation

An Euler-Maruyama discretisation with uniform timestep h gives

X̂n+1 = X̂n + a(X̂n, t) h + b(X̂n, t)∆Wn,

with initial data X̂0=x at time t.

If X̂ (t) is the piecewise-constant interpolant, we then have

û(x , t) = E

[∫ τ̂

t

Ê (t, s) f (X̂ (s), s)ds + Ê (t, τ̂) g(X̂ (τ), τ̂ )

]
.

with τ̂ being the exit time, and

Ê (t0, t1) = exp

(
−

∫ t1

t0

V (X̂t , t)dt

)
.

Mike Giles, Francisco Bernal (Oxford) Multilevel Feynman-Kac March 16, 2015 6 / 16



Prior work – Gobet & Menozzi

The Euler-Maruyama method has strong accuracy O(h1/2),

(
E

[
sup

[0,min(τ,τ̂)]
‖Xt − X̂ (t)‖2

])1/2

= O(h1/2),

and Gobet & Menozzi (2007) proved that the weak error is also O(h1/2),

u(x , t)− û(x , t) = O(h1/2).

For standard Monte Carlo method, ε RMS accuracy needs O(ε−2) paths,
each with h = O(ε2), so total cost is O(ε−4)

Gobet & Menozzi (2010) reduced this to O(ε−3) by shifting the boundary
by O(h1/2) to improve the weak error to O(h).
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Multilevel Monte Carlo

Introduced in 2006 for SDE simulations, this uses the identity

E[P̂L] = E[P̂0] +
L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

where P̂ℓ represents the approximation using timestep hℓ = 2−ℓ h0,
and independently estimates each of the expectations on the r.h.s. using

the same Brownian path for the differences P̂
(ℓ,n)
ℓ −P̂

(ℓ,n)
ℓ−1 :

N−1
0

N0∑

n=1

P̂
(0,n)
0 +

L∑

ℓ=1

{
N−1
ℓ

Nℓ∑

n=1

(
P̂
(ℓ,n)
ℓ − P̂

(ℓ,n)
ℓ−1

)}

Small variance as hℓ → 0 means few samples used on finer levels.

Finest level L depends on weak error, as before.
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MLMC Theorem

(Slight generalisation of original 2006 version.)

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with an expected computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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Prior work – Higham

Higham et al (2013) developed a MLMC treatment of the exit time
problem:

Euler-Maruyama discretisation

O(h
1/2
ℓ ) weak convergence =⇒ α = 1/2

V[P̂ℓ−P̂ℓ−1] ≈ O(h
1/2
ℓ ) (ignoring log terms) =⇒ β ≈ 1/2

O(h−1
ℓ ) cost per path =⇒ γ = 1

Hence, overall cost is approximately O(ε−3).

Gobet & Menozzi’s boundary treatment would improve this to O(ε−2.5).

G & Primozic (2011) developed O(ε−2) treatment using Milstein
discretisation for SDEs with special commutativity property.
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MLMC challenge
When coarse or fine path exits the domain, the other is within O(h1/2).

However, there is a O(h1/2) probability that it will not exit the domain
until much later =⇒ Vℓ = O(h1/2).
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MLMC challenge

How can we do better?

Similar to previous work on digital options, split second path into multiple
copies, and average their outputs to approximate the conditional
expectation.

O(h1/2) expected time to exit for second path, so can afford to use
O(h−1/2) copies of second path.

This gives an approximation to the conditional expectation resulting in
P̂ℓ − P̂ℓ−1 ≈ O(h1/2), so Vℓ ≈ O(h).

Numerical results confirm this – numerical analysis is underway.
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Numerical results

The test case comes from Gobet & Menozzi (2009)

dXt = a(Xt)dt + σ(Xt)dWt

in the domain ‖x‖ ≤ 2, 0≤ t≤1 with

b(x) =




x2
x3
x1


, σ=




(1+|x3|)
1
2 0 0

1
2(1+|x1|)

1
2 (34 )

1
2 (1+|x1|)

1
2 0

0 1
2(1+|x2|)

1
2 (34)

1
2 (1+|x2|)

1
2




V (x , t) ≡ 0, and f (x , t), g(x , t) are chosen so that the PDE solution is
u(x , t)=x1x2x3.

X0=(0.56, 0.52, 0.33)T , so we are estimating u(X0, 0).

Timestep comes down by factor 4 on each level – better than factor 2
when Vℓ=O(hℓ). Gobet-Menozzi boundary shift used on each level.
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Numerical results
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Vℓ = O(hℓ) E[P̂ℓ−P̂ℓ−1] = O(hℓ)
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Conclusions

multilevel Monte Carlo method is very simple

key in Feynmac-Kac application is use of splitting to approximate
a conditional expectation – greatly reduces the variance

resulting computational complexity is approximately O(ε−2)

Webpages:
people.maths.ox.ac.uk/gilesm/mlmc.html

people.maths.ox.ac.uk/gilesm/mlmc community.html

people.maths.ox.ac.uk/gilesm/acta/
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