Multilevel Simulation of Mean Exit Times

Mike Giles, Francisco Bernal

Mathematical Institute, University of Oxford, UK
Instituto Superior Tecnico, Portugal

SIAM CSE Conference March 16, 2015

Outline

- Feynman-Kac formula
- prior work Gobet & Menozzi
- multilevel Monte Carlo
- prior work Higham et al
- new idea approximating a conditional expectation
- outline analysis
- numerical results

Feynman-Kac formula

Suppose that u(x, t) satisfies the parabolic PDE

$$\frac{\partial u}{\partial t} + \sum_{j} a_{j} \frac{\partial u}{\partial x_{j}} + \frac{1}{2} \sum_{i,k,l} b_{jk} b_{kl} \frac{\partial^{2} u}{\partial x_{j} \partial x_{l}} - V(x,t) u(x,t) + f(x,t) = 0$$

in bounded domain D, subject to u(x,t) = g(x,t) on the boundary ∂D .

It will be assumed that f(x, t), g(x, t), V(x, t), a(x, t), b(x, t) are all Lipschitz continuous.

Feynman-Kac formula

Feynman and Kac proved that u(x,t) can also be expressed as

$$u(x,t) = \mathbb{E}\left[\int_t^{\tau} E(t,s) f(X_s,s) ds + E(t,\tau) g(X_{\tau},\tau) \mid X_t = x\right]$$

where X_t satisfies the SDE

$$\mathrm{d}X_t = a(X_t,t)\,\mathrm{d}t + b(X_t,t)\,\mathrm{d}W_t,$$

with W_t being a Brownian motion with independent components, τ is the first time at which X_t leaves D, and

$$E(t_0,t_1)=\exp\left(-\int_{t_0}^{t_1}V(X_t,t)\,\mathrm{d}t\right).$$

Note: in the special case in which f(x,t)=0, g(x,t)=t, V(x,t)=0 u(x,t) is the expected exit time.

◆□▶ ◆圖▶ ◆臺▶ ★臺▶ 臺 めぬぐ

Feynman-Kac formula

Why is this alternative form useful?

In high dimensions, approximating the parabolic PDE can be expensive because the cost increases exponentially – *curse of dimensionality*

The cost of Monte Carlo simulation for the SDE scales linearly with dimension

Numerical approximation

An Euler-Maruyama discretisation with uniform timestep h gives

$$\widehat{X}_{n+1} = \widehat{X}_n + a(\widehat{X}_n, t) h + b(\widehat{X}_n, t) \Delta W_n,$$

with initial data $\widehat{X}_0 = x$ at time t.

If $\widehat{X}(t)$ is the piecewise-constant interpolant, we then have

$$\widehat{u}(x,t) = \mathbb{E}\left[\int_t^{\widehat{\tau}} \widehat{E}(t,s) f(\widehat{X}(s),s) ds + \widehat{E}(t,\widehat{\tau}) g(\widehat{X}(\tau),\widehat{\tau})\right].$$

with $\hat{\tau}$ being the exit time, and

$$\widehat{E}(t_0,t_1) = \exp\left(-\int_{t_0}^{t_1} V(\widehat{X}_t,t) dt\right).$$

Prior work – Gobet & Menozzi

The Euler-Maruyama method has strong accuracy $O(h^{1/2})$,

$$\left(\mathbb{E}\left[\sup_{[0,\min(\tau,\widehat{\tau})]}\|X_t-\widehat{X}(t)\|^2\right]\right)^{1/2}=O(h^{1/2}),$$

and Gobet & Menozzi (2007) proved that the weak error is also $O(h^{1/2})$,

$$u(x,t)-\widehat{u}(x,t)=O(h^{1/2}).$$

For standard Monte Carlo method, ε RMS accuracy needs $O(\varepsilon^{-2})$ paths, each with $h=O(\varepsilon^2)$, so total cost is $O(\varepsilon^{-4})$

Gobet & Menozzi (2010) reduced this to $O(\varepsilon^{-3})$ by shifting the boundary by $O(h^{1/2})$ to improve the weak error to O(h).

Multilevel Monte Carlo

Introduced in 2006 for SDE simulations, this uses the identity

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$$

where \widehat{P}_ℓ represents the approximation using timestep $h_\ell=2^{-\ell}\,h_0$, and independently estimates each of the expectations on the r.h.s. using the <u>same</u> Brownian path for the differences $\widehat{P}_\ell^{(\ell,n)}-\widehat{P}_{\ell-1}^{(\ell,n)}$:

$$N_0^{-1} \sum_{n=1}^{N_0} \widehat{P}_0^{(0,n)} + \sum_{\ell=1}^{L} \left\{ N_\ell^{-1} \sum_{n=1}^{N_\ell} \left(\widehat{P}_\ell^{(\ell,n)} - \widehat{P}_{\ell-1}^{(\ell,n)} \right) \right\}$$

Small variance as $h_\ell \to 0$ means few samples used on finer levels.

Finest level L depends on weak error, as before.

MLMC Theorem

(Slight generalisation of original 2006 version.)

If there exist independent estimators \widehat{Y}_ℓ based on N_ℓ Monte Carlo samples, each costing C_ℓ , and positive constants $\alpha, \beta, \gamma, c_1, c_2, c_3$ such that $\alpha \geq \frac{1}{2} \min(\beta, \gamma)$ and

$$\begin{aligned} &\text{i)} \ \left| \mathbb{E}[\widehat{P}_{\ell} - P] \right| \leq c_1 \, 2^{-\alpha \, \ell} \\ &\text{ii)} \ \mathbb{E}[\widehat{Y}_{\ell}] = \left\{ \begin{array}{ll} \mathbb{E}[\widehat{P}_0], & \ell = 0 \\ \\ \mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}], & \ell > 0 \end{array} \right. \end{aligned}$$

iii)
$$\mathbb{V}[\widehat{Y}_{\ell}] \leq c_2 N_{\ell}^{-1} 2^{-\beta \ell}$$

iv)
$$\mathbb{E}[C_\ell] \leq c_3 2^{\gamma \ell}$$

MLMC Theorem

then there exists a positive constant c_4 such that for any $\varepsilon < 1$ there exist L and N_ℓ for which the multilevel estimator

$$\widehat{Y} = \sum_{\ell=0}^{L} \widehat{Y}_{\ell},$$

has a mean-square-error with bound $\mathbb{E}\left[\left(\widehat{Y}-\mathbb{E}[P]\right)^2\right]<\varepsilon^2$

with an expected computational cost C with bound

$$C \leq \begin{cases} c_4 \, \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \, \varepsilon^{-2} (\log \varepsilon)^2, & \beta = \gamma, \\ c_4 \, \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & 0 < \beta < \gamma. \end{cases}$$

Prior work – Higham

Higham $\it{et~al}$ (2013) developed a MLMC treatment of the exit time problem:

- Euler-Maruyama discretisation
- $O(h_\ell^{1/2})$ weak convergence $\implies \alpha = 1/2$
- $\mathbb{V}[\widehat{P}_{\ell} \widehat{P}_{\ell-1}] \approx O(h_{\ell}^{1/2})$ (ignoring log terms) $\Longrightarrow \ \beta \approx 1/2$
- ullet $O(h_\ell^{-1})$ cost per path $\Longrightarrow \ \gamma=1$

Hence, overall cost is approximately $O(\varepsilon^{-3})$.

Gobet & Menozzi's boundary treatment would improve this to $O(\varepsilon^{-2.5})$.

G & Primozic (2011) developed $O(\varepsilon^{-2})$ treatment using Milstein discretisation for SDEs with special commutativity property.

MLMC challenge

When coarse or fine path exits the domain, the other is within $O(h^{1/2})$.

However, there is a $O(h^{1/2})$ probability that it will not exit the domain until much later $\Longrightarrow V_\ell = O(h^{1/2})$.

MLMC challenge

How can we do better?

Similar to previous work on digital options, split second path into multiple copies, and average their outputs to approximate the conditional expectation.

 $O(h^{1/2})$ expected time to exit for second path, so can afford to use $O(h^{-1/2})$ copies of second path.

This gives an approximation to the conditional expectation resulting in $\widehat{P}_\ell - \widehat{P}_{\ell-1} \approx O(h^{1/2})$, so $V_\ell \approx O(h)$.

Numerical results confirm this – numerical analysis is underway.

Numerical results

The test case comes from Gobet & Menozzi (2009)

$$\mathrm{d}X_t = a(X_t)\,\mathrm{d}t + \sigma(X_t)\,\mathrm{d}W_t$$

in the domain $||x|| \le 2$, $0 \le t \le 1$ with

$$b(x) = \begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix}, \quad \sigma = \begin{pmatrix} (1+|x_3|)^{\frac{1}{2}} & 0 & 0 \\ \frac{1}{2}(1+|x_1|)^{\frac{1}{2}} & (\frac{3}{4})^{\frac{1}{2}}(1+|x_1|)^{\frac{1}{2}} & 0 \\ 0 & \frac{1}{2}(1+|x_2|)^{\frac{1}{2}} & (\frac{3}{4})^{\frac{1}{2}}(1+|x_2|)^{\frac{1}{2}} \end{pmatrix}$$

 $V(x,t) \equiv 0$, and f(x,t), g(x,t) are chosen so that the PDE solution is $u(x,t) = x_1x_2x_3$.

 $X_0 = (0.56, 0.52, 0.33)^T$, so we are estimating $u(X_0, 0)$.

Timestep comes down by factor 4 on each level – better than factor 2 when $V_{\ell} = O(h_{\ell})$. Gobet-Menozzi boundary shift used on each level.

Numerical results

Conclusions

- multilevel Monte Carlo method is very simple
- key in Feynmac-Kac application is use of splitting to approximate a conditional expectation – greatly reduces the variance
- resulting computational complexity is approximately $O(\varepsilon^{-2})$

Webpages:

```
people.maths.ox.ac.uk/gilesm/mlmc.html
people.maths.ox.ac.uk/gilesm/mlmc_community.html
people.maths.ox.ac.uk/gilesm/acta/
```