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Monte Carlo simulation

In many applications want to estimate E[P (ω)] where ω ∈ Ω
is an infinite-dimensional random variable.

computational finance:
ω represents Wt, the Brownian motion in an SDE
P is the financial payoff function

simulation of oil reservoirs & nuclear waste repositories:
ω represents k(x), the permeability in an elliptic
SPDE

− ∇ ·
(
k(x)∇p

)
= 0

P might be the flux of oil or contaminants across
some boundary
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Monte Carlo simulation

In MC simulation we estimate the expectation using

Ŷ = N−1
N∑

n=1

P̂ (ω(n))

where ω(n) are N independent samples

Note there are two sources of error here:

sampling error due to the finite number of samples

bias because P̂ (ω) is an approximation to P (ω) due to
discretisation error (finite timesteps, finite grid size)
finite dimensional approximation to ω
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Monte Carlo simulation

The mean square error is

E

[(
Ŷ − E[P ]

)2]
= E

[(
Ŷ −E[Ŷ ] + E[Ŷ ]−E[P ]

)2]

= E

[
(Ŷ −E[Ŷ ])2

]
+
(
E[Ŷ ]−E[P ]

)2

= V[Ŷ ] +
(
E[Ŷ ]−E[P ]

)2

= N−1
V[P̂ ] +

(
E[P̂ ]−E[P ]

)2

first term is due to sampling error

second term is due to bias
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Monte Carlo simulation

To achieve RMS accuracy of ε requires:

N = O(ε−2)

bias = O(ε)

The bias is due to the accuracy of the numerical
approximation – using smaller timesteps or a finer grid
reduces the bias, but increases the computational cost C.

If the cost per sample to achieve an O(ε) bias is O(ε−1/α)

then the total cost is O(ε−2−1/α).

The aim with multilevel is to reduce this to O(ε−2),
corresponding to an O(1) cost per sample, on average.
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Multilevel Monte Carlo

How can this be achieved?

Use the same philosophy as multigrid for iterative solution
of large linear/nonlinear systems of equations:

fine grid accuracy at coarse grid cost

geometric sequence of grids

However, there’s no iteration in Monte Carlo simulation,
so in detail the method is quite different from traditional
multigrid.

(Achi Brandt did some work in statistical physics which has
some strong similarities to this work.)
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Multilevel Monte Carlo

Consider Monte Carlo simulations with different levels of
refinement, ℓ = 0, 1, . . . , L, with level L being the finest.

If P̂ℓ is the approximation of P on level ℓ, then

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1].

Idea is to independently estimate each of the terms on the
r.h.s., in a way which minimises the overall variance for a
fixed computational cost.

Finest level is still the same, but will use very few samples
at that level.
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Multilevel Monte Carlo

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂

(n)
ℓ −P̂

(n)
ℓ−1

)

using same stochastic sample ω(n) for both levels

Variance is N−1
ℓ Vℓ where Vℓ = V[P̂ℓ−P̂ℓ−1]

Key point: Vℓ gets progressively smaller as ℓ increases
because P̂ℓ, P̂ℓ−1 both accurately approximate P for same ω
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Multilevel Monte Carlo

If Cℓ is cost of one sample on level ℓ, the variance of the

combined estimator is
L∑

ℓ=0

N−1
ℓ Vℓ and its computational

cost is
L∑

ℓ=0

Nℓ Cℓ so the variance is minimised for fixed cost

by choosing Nℓ ∝
√

Vℓ/Cℓ , and then the cost on level ℓ is

proportional to NℓCℓ ∝
√

VℓCℓ

To make RMS error ε

choose constant of proportionality so variance is 1
2 ε

2

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε
2
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MLMC Theorem

If there exist independent estimators Ŷℓ based on Nℓ Monte
Carlo samples, each costing Cℓ, and positive constants
α, β, γ, c1, c2, c3 such that α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =

{
E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2N
−1
ℓ 2−β ℓ

iv) Cℓ ≤ c3 2
γ ℓ

Multilevel Monte Carlo – p. 11



MLMC Theorem

then there exists a positive constant c4 such that for any
ε<1 there exist L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with a computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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Papers

Initial motivation was SDE applications in finance:

first paper (Operations Research, 2006 – 2008)
applied idea to SDE path simulation, and proved slightly
less general form of the theorem

second paper (MCQMC 2006) improved multilevel
variance convergence using Milstein discretisation

third paper with Higham & Mao (Finance and
Stochastics, 2009) performed numerical analysis of
discretisation in first paper

new paper with Debrabant and Rößler analyses
discretisation in second paper

new paper with Szpruch uses antithetic treatment to
avoid computing Lévy areas for Milstein discretisation
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Other work

Xia – jump-diffusion models

Burgos – Greeks (sensitivities)

Hoel, von Schwerin, Szepessy, Tempone
– adaptive discretisations

Dereich, Heidenreich – Lévy processes

Hickernell, Müller-Gronbach, Niu, Ritter
– complexity analysis

Belomestny, Schoenmakers – American options

For more see:
people.maths.ox.ac.uk/gilesm/mlmc community.html
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SDEs

For the Milstein discretisation of the scalar SDE

dS(t) = a(S, t) dt+ b(S, t) dW (t),

we have
E[(ŜN − S(T ))2] = O(h2ℓ)

and hence for a Lipschitz European payoff

V[P̂ℓ−P ] = O(h2ℓ) =⇒ V[P̂ℓ−P̂ℓ−1] = O(h2ℓ)

The optimal Nℓ is O(ε−2 h
3/2
ℓ ) and we obtain an O(ε2) MSE

for an O(ε−2) computational cost.

Multilevel Monte Carlo – p. 15



Call Option

Geometric Brownian motion:

dS = r S dt+ σ S dW, 0 < t < T,

T =1, S(0)=100, r=0.05, σ=0.2

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with K=100.
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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Digital Option

What if we don’t have the Lipschitz property?

A digital call payoff has the form

f(S(T )) =

{
1, S(T ) > K

0, S(T ) ≤ K

Using the Milstein discretisation

in most cases, fine and coarse paths are on same side
of K, so P̂ℓ − P̂ℓ−1 = 0

for O(hℓ) of the paths, fine and coarse paths end up on
different sides of K so P̂ℓ − P̂ℓ−1 = ±1

Hence E[(P̂ℓ−P̂ℓ−1)
2] and V[P̂ℓ−P̂ℓ−1] are both O(hℓ).
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Digital Option

Instead, can stop the simulation one timestep before the
end and use a conditional expectation for the final value.

P̂ℓ = EZ [f(ŜN ) | ŜN−1]

where, for the scalar SDE

ŜN = ŜN−1 + aN−1 h+ bN−1

√
h Z

The key is that we know that

EZ [f(ŜN )|ŜN−1] = Φ

(
ŜN−1 + aN−1h−K

bN−1

√
h

)

where Φ() is the cumulative Normal distribution function.

This leads to an O(h
3/2
ℓ ) variance.
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MLMC Results

GBM: digital call K exp(−rT )1{S(T ) > K}
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MLMC Results

GBM: digital call K exp(−rT )1{S(T ) > K}

0 2 4 6 8
10

2

10
4

10
6

10
8

level l

N
l

 

 

10
−2

10
−1

10
2

10
3

10
4

10
5

10
6

accuracy ε

ε2  C
os

t

 

 
Std MC
MLMC

ε=0.01
ε=0.02
ε=0.05
ε=0.1
ε=0.2

Multilevel Monte Carlo – p. 22



Basket Option

The techniques extend naturally to multivariate cases.

For example, the analytic conditional expectation can be
used for a basket option in which the payoff is based on a
weighted average of several stocks.

Basket of 5 underlying assets, each GBM with

r = 0.05, T = 1, Si(0) = 100, σ = (0.2, 0.25, 0.3, 0.35, 0.4),

and correlation ρ = 0.25 between each of the driving
Brownian motions.
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Basket Option

GBM: digital call on basket of 5 assets
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Basket Option

GBM: digital call on basket of 5 assets
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Elliptic SPDE

We consider the elliptic PDE

−∇. (k(x, ω)∇p(x, ω)) = 0, x ∈ D,

with random coefficient k(x, ω).

We model k as a lognormal random field , i.e. log k is a
Gaussian field with mean 0 and covariance function

R(x,y) = σ2 exp
(
− ‖x−y‖1/λ

)

Numerical experiments use σ=1 and

in 1D, λ = 0.1 on unit interval [0, 1]

in 2D, λ = 0.2 on unit square [0, 1]2
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève
expansion:

log k(x, ω) =

∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the
correlation function:

∫
R(x,y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.
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Elliptic SPDE

Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos
approach, but it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform
grid – for rough coefficients we need to make grid
spacing very small on finest grid

each level of refinement has twice as many grid points
in each direction

current numerical experiments use a direct solver for
simplicity, but in the future will use an efficient multigrid
solver and so “computational cost” is defined to be
proportional to the total number of grid points
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1D Results

Numerical results for unit interval [0, 1].

Boundary conditions – fixed pressure: p(0)=1, p(1)=0

Output quantity – mass flux: −k
dp

dx

Correlation length: λ = 0.1

Coarsest grid: h = 1/16 (comparable to λ)

Finest grid: h = 1/256

Karhunen-Loève truncation: mKL = 800

Cost taken to be proportional to number of nodes
Multilevel Monte Carlo – p. 30



1D Results
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V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ , E[P̂ℓ−P̂ℓ−1] ∼ h2ℓ
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1D Results
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2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost still taken to be proportional to number of nodes
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2D Results
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2D Results
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Greater savings because of greater cost on finer grids
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Conclusions

multilevel greatly reduces the cost of Monte Carlo
simulation

uses lots of cheap approximate simulations, and
relatively few expensive accurate simulations

makes Monte Carlo estimation a feasible technique for
uncertainty quantification in engineering applications

numerical analysis can be tough, but good progress is
being made by various researchers
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