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Objectives

In presenting the multilevel Monte Carlo method, I want to emphasise:

the simplicity of the idea

its flexibility – it’s not prescriptive, more an approach

there are lots of people working on a variety of applications

In doing this, I will focus on ideas rather than lots of numerical results.
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Monte Carlo method

In stochastic models, we often have

ω −→ S −→ P
random input intermediate variables scalar output

The Monte Carlo estimate for E[P] is an average of N independent
samples ω(n):

Y = N−1
N∑

n=1

P(ω(n)).

This is unbiased, E[Y ]=E[P], and the Central Limit Theorem proves that
as N → ∞ the error becomes Normally distributed with variance N−1V[P].
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Monte Carlo method

In many cases, this is modified to

ω −→ Ŝ −→ P̂
random input intermediate variables scalar output

where Ŝ , P̂ are approximations to S ,P, in which case the MC estimate

Ŷ = N−1
N∑

n=1

P̂(ω(n))

is biased, and the Mean Square Error is

E[ (Ŷ−E[P])2] = N−1V[P̂] +
(
E[P̂]− E[P]

)2
Greater accuracy requires larger N and smaller weak error E[P̂]−E[P].
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SDE Path Simulation
My interest was in SDEs (stochastic differential equations) for finance,
which in a simple one-dimensional case has the form

dSt = a(St , t) dt + b(St , t) dWt

Here dWt is the increment of a Brownian motion – Normally distributed
with variance dt.

This is usually approximated by the simple Euler-Maruyama method

Ŝtn+1 = Ŝtn + a(Ŝtn , tn) h + b(Ŝtn , tn)∆Wn

with uniform timestep h, and increments ∆Wn with variance h.

In simple applications, the output of interest is a function of the final value:

P̂ ≡ f (ŜT )
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SDE Path Simulation

Geometric Brownian Motion: dSt = r St dt + σ St dWt
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SDE Path Simulation

Two kinds of discretisation error:

Weak error:
E[P̂]− E[P] = O(h)

Strong error: (
E

[
sup
[0,T ]

(
Ŝt−St

)2])1/2

= O(h1/2)

For reasons which will become clear, I prefer to use the Milstein
discretisation for which the weak and strong errors are both O(h).

Mike Giles (Oxford) Multilevel Monte Carlo 7 / 36



SDE Path Simulation

The Mean Square Error is

N−1V[P̂] +
(
E[P̂]− E[P]

)2
≈ aN−1 + b h2

If we want this to be ε2, then we need

N = O(ε−2), h = O(ε)

so the total computational cost is O(ε−3).

To improve this cost we need to

reduce N – variance reduction or Quasi-Monte Carlo methods

reduce the cost of each path (on average) – MLMC
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Two-level Monte Carlo

If we want to estimate E[P̂1] but it is much cheaper to simulate P̂0 ≈ P̂1,
then since

E[P̂1] = E[P̂0] + E[P̂1−P̂0]

we can use the estimator

N−1
0

N0∑
n=1

P̂
(0,n)
0 + N−1

1

N1∑
n=1

(
P̂
(1,n)
1 − P̂

(1,n)
0

)

Benefit: if P̂1−P̂0 is small, its variance will be small, so won’t need many
samples to accurately estimate E[P̂1−P̂0], so cost will be reduced greatly.
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Two-level Monte Carlo

Very similar to control variate variance reduction in which

we want to estimate E[f ]
there’s some other output g for which we know E[g ]
we use E[f ] = E[f−λg ] + λE[g ] and choose λ to minimise the
variance V[f−λg ] and hence the number of MC samples needed
to estimate E[f−λg ]

The difference with two-level MLMC is

we use λ = 1 because g ≈ f

we use MC to estimate E[g ], but it doesn’t cost much

Mike Giles (Oxford) Multilevel Monte Carlo 10 / 36



Two-level Monte Carlo

Three examples of using two-level Monte Carlo:

1) let P̂1 be simulation using 32-bit floating point precision, and
let P̂0 be 16-bit calculation with same random numbers
– potentially factor 2× performance benefit on latest CPUs

2) let P̂1 be simulation using expensive random numbers from a “nasty”
distribution (e.g. non-central chi-squared distribution for CIR interest
rate and Heston stochastic volatility models), and P̂0 be calculation
using cheap random numbers from a similar distribution

https://en.wikipedia.org/wiki/Noncentral chi-squared distribution

3) let P̂1 be based on an expensive Navier-Stokes simulation, and P̂0 on
a much cheaper Euler simulation – this approach is usually referred to
as Multi-Fidelity Monte Carlo
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Multilevel Monte Carlo

Natural generalisation: given a sequence P̂0, P̂1, . . . , P̂L

E[P̂L] = E[P̂0] +
L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

we can use the estimator

N−1
0

N0∑
n=1

P̂
(0,n)
0 +

L∑
ℓ=1

{
N−1
ℓ

Nℓ∑
n=1

(
P̂
(ℓ,n)
ℓ − P̂

(ℓ,n)
ℓ−1

)}

with independent estimation for each level of correction
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of P̂0

Cℓ,Vℓ to be cost and variance of P̂ℓ−P̂ℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂Nℓ

L∑
k=0

(
Nk Ck + µ2N−1

k Vk

)
= 0

gives
Nℓ = µ

√
Vℓ/Cℓ =⇒ Nℓ Cℓ = µ

√
Vℓ Cℓ
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Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)

and hence, the total cost is

L∑
ℓ=0

Nℓ Cℓ = ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore approximately:

VL/V0, if
√
VℓCℓ increases with level

C0/CL, if
√
VℓCℓ decreases with level
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Multilevel Path Simulation
With SDEs, level ℓ corresponds to approximation using Mℓ timesteps,
giving approximate payoff P̂ℓ at cost Cℓ = O(h−1

ℓ ).

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑
n=1

(
P̂
(n)
ℓ −P̂

(n)
ℓ−1

)
using same driving Brownian path for both levels.

Analysis gives MSE =
L∑

ℓ=0

N−1
ℓ Vℓ +

(
E[P̂L]−E[P]

)2
To make RMS error less than ε

choose Nℓ ∝
√

Vℓ/Cℓ so total variance is less than 1
2 ε

2

choose L so that
(
E[P̂L]−E[P]

)2
< 1

2 ε
2
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Multilevel Path Simulation

For Lipschitz payoff functions P ≡ f (ST ), we have

Vℓ ≡ V
[
P̂ℓ−P̂ℓ−1

]
≤ E

[
(P̂ℓ−P̂ℓ−1)

2
]

≤ K 2 E
[
(ŜT ,ℓ−ŜT ,ℓ−1)

2
]

=

{
O(hℓ), Euler-Maruyama

O(h2ℓ ), Milstein

and hence

Vℓ Cℓ =

{
O(1), Euler-Maruyama

O(hℓ), Milstein
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MLMC Meta Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =

 E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =
L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2]

< ε2

with an expected computational cost C with bound

C ≤


c4 ε

−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Two observations of optimality:

MC simulation needs O(ε−2) samples to achieve RMS accuracy ε.
When β > γ, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷℓ] and
√
E[Ŷ 2

ℓ ] being of the same order as ℓ → ∞.

In this case, the total cost is O(ε−γ/α), which is the cost of a single
sample on the finest level — again optimal.
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Financial application

basket of 5 underlying assets, modelled by Geometric Brownian
Motion

dSi = r Si dt + σi Si dWi

with correlation between 5 driving Brownian motions

Milstein numerical approximation

call option is piecewise linear function of average at final time T
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Financial application

Basket call option:
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Financial application

Basket call option:
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MLMC

Numerical algorithm:

1 start with L=0

2 if L < 2, get an initial estimate for VL using NL = 1000 samples,
otherwise extrapolate from earlier levels

3 for ℓ ≤ L, determine optimal Nℓ to achieve
L∑

ℓ=0

Vℓ/Nℓ ≤ ε2/2

4 perform extra calculations as needed, updating estimates of Vℓ

5 if L<2 or the bias estimate is greater than ε/
√
2, set L := L+1

and go back to step 2
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MLMC generalisation

The theorem is for scalar outputs P, but it can be generalised to
multi-dimensional (or infinite-dimensional) outputs with

i)
∥∥∥E[P̂ℓ−P]

∥∥∥ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =

 E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≡ E
[∥∥∥Ŷℓ − E[Ŷℓ]

∥∥∥2] ≤ c2N
−1
ℓ 2−β ℓ

Original multilevel research by Heinrich in 1999 did this for parametric
integration, estimating f (λ) ≡ E[g(x , λ)] for a finite-dimensional r.v. x .
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MLMC work on SDEs

Milstein discretisation for path-dependent options – G (2008)

numerical analysis – G, Higham, Mao (2009), Avikainen (2009),
G, Debrabant, Rößler (2012)

financial sensitivities (“Greeks”) – Burgos (2011)

jump-diffusion models – Xia (2011)

Lévy processes – Dereich (2010), Marxen (2010), Dereich &
Heidenreich (2011), Xia (2013), Kyprianou (2014)

American options – Belomestny & Schoenmakers (2011)

Milstein in higher dimensions without Lévy areas – G, Szpruch (2014)

adaptive timesteps – Hoel, von Schwerin, Szepessy, Tempone (2012),
G, Lester, Whittle (2014)
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SPDEs

quite natural application, with better cost savings than SDEs
due to higher dimensionality

range of applications
▶ Graubner & Ritter (Darmstadt) – parabolic
▶ G, Farrell, Reisinger (Oxford) – parabolic, elliptic
▶ Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) – elliptic
▶ Jenny, Mishra, Schwab (ETH Zürich) – elliptic, parabolic, hyperbolic
▶ Barth (Stuttgart) – elliptic
▶ Lang (Chalmers) – parabolic
▶ Dick, Kuo, Sloan (UNSW) – MLQMC for elliptic
▶ Nuyens, Vandewalle (Leuven) – elliptic, engineering applications
▶ Harbrecht, Peters (Basel) – elliptic
▶ Haji-Ali, Nobile, Tempone (EPFL, KAUST) – elliptic
▶ Chernov (Oldenberg) – elliptic
▶ Ullmann (Munich) – elliptic
▶ Efendiev (Texas A&M) – numerical homogenization
▶ Heitzinger (Vienna) – PDEs in nanotechnology
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Engineering Uncertainty Quantification

Simplest possible example:

3D elliptic PDE, with uncertain boundary data

grid spacing proportional to 2−ℓ on level ℓ

cost is O(2+3ℓ), if using an efficient multigrid solver

2nd order accuracy means that

P̂ℓ(ω)− P(ω) ≈ c(ω) 2−2ℓ

=⇒ P̂ℓ−1(ω)− P̂ℓ(ω) ≈ 3 c(ω) 2−2ℓ

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy

this compares to O(ε−3/2) cost for one sample on finest level,
so O(ε−7/2) for standard Monte Carlo
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PDEs with Uncertainty

I worked with Rob Scheichl (then Bath, now Heidelberg) and Andrew
Cliffe (Nottingham) on multilevel Monte Carlo for the modelling of oil
reservoirs and groundwater contamination in nuclear waste repositories.

Here we have an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain, and log κ(x) is often modelled as
being Normally distributed with a spatial covariance such as

cov(log κ(x1), log κ(x2)) = σ2 exp(−∥x1−x2∥/λ)

Ian Sloan, Frances Kuo and Josef Dick have subsequently worked with
Christoph Schwab on Multilevel QMC for this application.
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ℓ to level ℓ+1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

increasing accuracy

increasing cost

increasingly small difference between outputs on successive levels

(Have already mentioned Multi-fidelity Monte Carlo which is one class of
non-geometric MLMC, but usually with very few levels)
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Reduced Basis PDE approximation
Vidal-Codina, Nguyen, G, Peraire (2014) take a fine FE discretisation:

A(ω) u = f (ω)

and use a reduced basis approximation

u ≈
K∑

k=1

vkuk

to obtain a low-dimensional reduced system

Ar (ω) v = fr (ω)

larger K =⇒ greater accuracy at greater cost

in multilevel treatment, Kℓ varies with level

brute force optimisation determines the optimal number of levels,
and reduced basis size on each level
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Nested expectation

Another class of MLMC applications is for nested expectations
of the form E

[
f (E[Z |X ])

]
– this arises in risk estimation (finance)

and decision-making under uncertainty (EVPPI/EVSI).

A standard Monte Carlo approach would use N outer samples of X ,
and, for each one, M inner samples of Z so the combined estimator is

1

N

N∑
n=1

f

(
1

M

M∑
m=1

Zm,n

)
To achieve ε RMS accuracy requires N = O(ε−2) and M = O(ε−1),
so the total cost is O(ε−3).
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Nested expectation

A simple MLMC treatment uses Mℓ = 2ℓM0 inner samples on level ℓ,
so the cost Cℓ is O(Mℓ) and the estimator for a given outer sample X is

Ŷℓ = f

(
1

Mℓ

Mℓ∑
m=1

Z (m)

)
− f

 1

Mℓ−1

Mℓ−1∑
m=1

Z (m+Mℓ)


with the Z (m) all generated independently conditional on X .

If V[Z |X ] is finite and uniformly bounded, and f is Lipschitz, then

Ŷℓ = O(M
−1/2
ℓ ) so Vℓ = O(M−1

ℓ ) and the complexity is O(ε−2| log ε|2).
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Nested expectation

An improved “antithetic” MLMC estimator uses

Ŷℓ = f

(
1

Mℓ

Mℓ∑
m=1

Z (m)

)
− 1

2
f

 1

Mℓ−1

Mℓ−1∑
m=1

Z (m)

− 1
2
f

 1

Mℓ−1

Mℓ−1∑
m=1

Z (m+Mℓ−1)


with the Z (m) generated independently conditional on X .

Ŷℓ = 0 if f is linear, and more generally if f has a bounded second
derivative then Vℓ = O(M−2

ℓ ) and the complexity is O(ε−2).

(This is a good example of the “tricks” which have been developed to
improve the MLMC variance – other techniques are needed if f is
discontinuous)
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Other MLMC applications

parametric integration, integral equations (Heinrich)

multilevel QMC (Dick, G, Kuo, Scheichl, Schwab, Sloan)

stochastic chemical reactions (Anderson & Higham, Tempone)

mixed precision computation on FPGAs (Korn, Ritter, Wehn)

MLMC for MCMC (Scheichl, Schwab, Stuart, Teckentrup)

nested simulation (G, Goda, Haji-Ali/Tempone, Hambly/Reisinger)

invariant distribution of contractive Markov process (Glynn & Rhee)

invariant distribution of ergodic SDEs (Fang, G)

McKean-Vlasov equations (Haji-Ali, Szpruch)

stochastic approximation (Frikha, Dereich)

machine learning (Gerstner)

numerical linear algebra (Acebron, Wu, Frommer)
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Conclusions

multilevel idea is very simple; key questions are how to apply it in
new situations, and how to perform the numerical analysis

discontinuous output functions can cause problems, but there is
a lot of experience now in coping with this

there are also “tricks” which can be used in some situations with
poor strong convergence

being used for an increasingly wide range of applications;
biggest computational savings when coarsest (reasonable)
approximation is much cheaper than finest

currently, getting at least 100× savings for SPDEs and stochastic
chemical reaction simulations
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Webpages

research papers and talks:
people.maths.ox.ac.uk/gilesm/mlmc.html

people.maths.ox.ac.uk/gilesm/slides.html

70-page 2015 Acta Numerica review and MATLAB test codes:
people.maths.ox.ac.uk/gilesm/acta/

MATLAB and C++ software for lots of applications:
people.maths.ox.ac.uk/gilesm/mlmc/

community webpage listing groups and research papers using MLMC:
people.maths.ox.ac.uk/gilesm/mlmc community.html
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