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Outline

The first hour covered the basics of the Multilevel Monte Carlo method.

These slides cover several important extensions:

MLQMC (G, Waterhouse, 2009)

Multi-Index Monte Carlo (Haji-Ali, Nobile & Tempone, 2016)

randomised MLMC (Rhee & Glynn, 2015)

Richardson-Romberg extrapolation (Lemaire & Pagès, 2017)

Relevant papers are on my MLMC Community webpage
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MLQMC

One important way to improve the computational efficiency is to switch
from Monte Carlo samples (based on iid random numbers) to
Quasi-Monte Carlo samples (based on quasi-random numbers).

First paper on this was in 2009 with Ben Waterhouse, one of Ian Sloan’s
postdocs, as a result of a visit to UNSW in 2007 – complexity reduced
from O(ε−2) to roughly O(ε−1) in the best cases.

Ian and Frances Kuo have contributed hugely to MLQMC for
SPDE applications, including comprehensive numerical analysis.
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MLQMC

Numerical algorithm (G, Waterhouse):

1 start with L=0

2 get an initial estimate for VL using 32 random offsets and NL = 1

3 while
L∑

ℓ=0

Vℓ > ε2/2, try to maximise variance reduction per unit cost

by doubling Nℓ on the level with largest Vℓ / (Cℓ Nℓ)

4 if L<2 or the bias estimate is greater than ε/
√
2, set L := L+1

and go back to step 2
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Three other MLMC extensions

Multi-Index Monte Carlo – Haji-Ali, Nobile, Tempone (2016)
▶ important extension to MLMC approach, combining MLMC with

sparse grid methods

unbiased estimation – Rhee & Glynn (2015)
▶ randomly selects the level for each sample
▶ no bias, and finite expected cost and variance if β > γ

Richardson-Romberg extrapolation – Lemaire & Pagès (2017)
▶ reduces the weak error, and hence the number of levels required
▶ particularly helpful when β < γ
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MIMC – Multi-Index Monte Carlo

Standard “1D” MLMC truncates the telescoping sum

E[P] =
∞∑
ℓ=0

E[∆P̂ℓ]

where ∆P̂ℓ ≡ P̂ℓ − P̂ℓ−1, with P̂−1≡0.

In “2D”, Haji-Ali, Nobile & Tempone (2016) truncate the telescoping sum

E[P] =
∞∑

ℓ1=0

∞∑
ℓ2=0

E[∆P̂ℓ1,ℓ2 ]

where ∆P̂ℓ1,ℓ2 ≡ (P̂ℓ1,ℓ2 − P̂ℓ1−1,ℓ2)− (P̂ℓ1,ℓ2−1 − P̂ℓ1−1,ℓ2−1)

Different aspects of the discretisation vary in each “dimension” – for a 2D
PDE, could use grid spacing 2−ℓ1 in direction 1, 2−ℓ2 in direction 2
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MIMC – Multi-Index Monte Carlo
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MIMC truncates the summation in a way which minimises the cost to
achieve a target MSE – quite similar to sparse grids.

Can achieve O(ε−2) complexity for a wider range of SPDE and other
applications than plain MLMC.
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Randomised MLMC

Rhee & Glynn (2015) start from

E[P] =
∞∑
ℓ=0

E[∆Pℓ] =
∞∑
ℓ=0

pℓ E[∆Pℓ/pℓ],

to develop an unbiased single-term estimator

Y = ∆Pℓ′ / pℓ′ ,

where ℓ′ is a random index which takes value ℓ with probability pℓ.

β > γ in the usual MLMC sense is required to simultaneously get
finite variance and finite expected cost using

pℓ ∝ 2−(β+γ)ℓ/2.

The complexity is then O(ε−2).
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ML2R – Multilevel Richardson-Romberg

Lemaire & Pagès (2017) observed that if the weak error has expansion

E[Yℓ−Y ] =
∞∑
j=1

cj 2
−αjℓ

then can choose weights wℓ so that

L∑
ℓ=0

wℓ E[Yℓ] = E[Y ] + RL,

where |RL| = O(2−αL(L+1)/2), much smaller than the usual MLMC bias
which is O(2−αL).

Mike Giles (Oxford) Multilevel Monte Carlo 9 / 11



ML2R – Multilevel Richardson-Romberg

To complete the ML2R formulation we need to set

L∑
ℓ=0

wℓ E[Yℓ] = W0 E[Y0] +
L∑

ℓ=1

Wℓ E[∆Yℓ],

where

Wℓ =
L∑

ℓ′=ℓ

wℓ′ = 1−
ℓ−1∑
ℓ′=0

wℓ′ .

Overall, very similar to MLMC but with weights for each level.
Asymptotically,

LML2R = O(
√
| log ε| ),

instead of the usual
LMLMC = O( | log ε| ),

which gives big savings when β < γ.
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Webpages

research papers and talks:
people.maths.ox.ac.uk/gilesm/mlmc.html

people.maths.ox.ac.uk/gilesm/slides.html

70-page 2015 Acta Numerica review and MATLAB test codes:
people.maths.ox.ac.uk/gilesm/acta/

MATLAB and C++ software for lots of applications:
people.maths.ox.ac.uk/gilesm/mlmc/

community webpage listing groups and research papers using MLMC:
people.maths.ox.ac.uk/gilesm/mlmc community.html
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