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Objectives

In presenting the multilevel Monte Carlo method, | hope to emphasise:

@ the simplicity of the idea
@ its flexibility — it's not prescriptive, more an approach

@ there are lots of people working on a variety of applications

In doing this, | will focus on ideas rather than lots of numerical results.
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Monte Carlo method

In stochastic models, we often have

w — S — P
random input intermediate variables scalar output

The Monte Carlo estimate for E[P] is an average of N independent
samples P(w(M):

N
Y =N Pw).
n=1

This is unbiased, E[Y]=E[P], and the Central Limit Theorem proves that
as N — 0o the error becomes Normally distributed with variance N=1V[P]
so need N = O(£72) samples to achieve ¢ RMS accuracy.
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Monte Carlo method

In many cases, this is modified to

~ ~

w — S — P
random input intermediate variables scalar output

where §, P are approximations to S, P, in which case the MC estimate

~ N —~

Y=nN! Z P(w(™)

n=1
is biased, and the Mean Square Error is
~ ) L s ~ 2
E[(Y-E[P])?] = N"'VIP]+ (E[P] - E[P])

Greater accuracy requires larger N and smaller weak error E[P]—E[P].
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SDE Path Simulation

My original interest was in SDEs (stochastic differential equations) for
finance, which in a simple scalar case has the form

dSt = a(St, t) dt + b(St, t) th

where dW; is the increment of a Brownian motion — Normally distributed
with variance dt.

This is usually approximated by the simple Euler-Maruyama method
§tn+1 = §tn + 3(§t,,’ tn) h+ b(§tn, th) AW,
with uniform timestep h, and increments AW, with variance h.
In simple applications, the output of interest is a function of the final value:
P= f(gr)
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SDE Path Simulation

Geometric Brownian Motion: dS; = r S;dt + o S; AW,
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SDE Path Simulation

Two kinds of discretisation error:

Weak error:
E[P] — E[P] = O(h)

Strong error:
ST\ 12
(IE [sup (st—5t> D = O(h'/?)
[0,7]
For reasons which will become clear, | prefer to use the Milstein

discretisation for which the weak and strong errors are both O(h).
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SDE Path Simulation

The Mean Square Error is
) ) 2 1 2
N-1VI[P] + (IE[P] - IE[P]) ~ aN“l4bh
If we want this to be €2, then we need

N=0(2), h=0()

so the total computational cost is O(¢73).

To improve this cost we need to

@ reduce N — variance reduction or Quasi-Monte Carlo methods
@ reduce the cost of each path (on average) — MLMC
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Two-level Monte Carlo

If we want to estimate E[ﬁl] but it is much cheaper to simulate Py ~ Py,
then since

E[P1] = E[Po] + E[P; — Po]

we can use the estimator

No Ny
No—l Z Péo’”) 4 N1_1 Z <P£1,n)_ P(gl,n))
n=1 n=1

Benefit: if 131—50 is small, its variance will be small, so won't need many
samples to accurately estimate E[P; — Py, so cost will be reduced greatly.
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Multilevel Monte Carlo

Natural generalisation: given a sequence 130, 131, ey ﬁL
o~ ~ L ~ ~
E[P] = E[Po] + Y E[P,—P; 1]
(=1

we can use the estimator

i H(0 ‘ e e ¢4 p
w3 e S S (- ) |
n=1 =1 n=1

with independent estimation for each level of correction
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Multilevel Monte Carlo

If we define
o (p, V) to be cost and variance of ﬁo
o (Cp, V) to be cost and variance of ﬁg—ﬁg_l
L L

then the total cost is Z Ny Cy and the variance is Z N[l V,.
£=0 ¢=0

Using a Lagrange multiplier 12 to minimise the cost for a fixed variance
5 L
— Nk Gk + 12NV ) =0
N, kz_;)( k Ck 4= p= Ny k)

gives
Ne=p V)G = NeCG=p/VeG
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Multilevel Monte Carlo

Setting the total variance equal to €2 gives
L
P (Z JVG cg>
(=0
and hence, the total cost is

L L 2
Z Ng Cg = 6_2 (Z vV VgCg)
=0 =0

in contrast to the standard cost which is approximately =2 V, C;.

The MLMC cost savings are therefore approximately:
o Vi / Vo, if VViCy increases with level
o Co/Cy, if \/V,;C; decreases with level
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Multilevel Path Simulation

With SDEs, level ¢ corresponds to approximation using M¢ timesteps,
giving approximate payoff Py at cost C; = O(h, .

Simplest estimator for E[ﬁg—ﬁg 1] for £>0is

12 (P(" n))

using same driving Brownian path for both levels.

L ~ 2
Analysis gives MSE = > N, 1V, + (E[PL]—E[P])
/=0

To make RMS error less than ¢
@ choose Ny ox /V;/C; so total variance is less than %52

@ choose L so that (E[PL] E[PD 1 g2
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Multilevel Path Simulation
For Lipschitz payoff functions P = f(S71), we have
Vi=V [ﬁg_lsgq] < E [(ﬁe—ﬁE—ﬂz}
< K’°E [(§T,Z_§T,Z—1)2}

O(hy), Euler-Maruyama
Oo(h?), Milstein

and hence
O(1), Euler-Maruyama
Vi G =
O(hy), Milstein
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MLMC Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators \74 based on Ny Monte Carlo samples,

each costing Cy, and positive constants «;, 3,7, c1, ¢, c3 such that
a>1min(3,7) and

o‘m@—Pﬂngﬂf
E[Pg], (=0
E[P;—Py_4], £>0
i) V[Y)] < o N 12704

i) E[Yi] =

iv) E[C] < c327°
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MLMC Theorem

then there exists a positive constant ¢4 such that for any e <1 there exist

L and N, for which the multilevel estimator
L

Y = Yy,
=0

~

~ 2
has a mean-square-error with bound E [(Y — E[P]) ] <&

with an expected computational cost C with bound

cae?, B>,

C << ae?(loge)?, B=r,

cae 2B/ 0< B <A,

Mike Giles (Oxford) Multilevel Monte Carlo

16 / 36



MLMC Theorem

Two observations of optimality:

@ MC simulation needs O(c~2) samples to achieve RMS accuracy «.
When > ~, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

@ When 8 < +, another interesting case is when 8 = 2a, which
corresponds to E[Y{] and \/IE[?Z] being of the same order as ¢ — cc.

In this case, the total cost is O(¢~7/), which is the cost of a single
sample on the finest level — again optimal.
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MLMC generalisation

The theorem is for scalar outputs P, but it can be generalised to
multi-dimensional (or infinite-dimensional) outputs with

) HE[@—P]H < 2ot

R E[Po], (=0
i) E[Ye] = S
E[Pg—Pg_l], />0

~ ~ —~ 12
i) V[V] = E [HYZ—E[Yg]H ] < o N2

Original multilevel research by Heinrich in 1999 did this for parametric
integration, estimating g(\) = E[f(x, \)] for a finite-dimensional r.v. x.
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MLMC work on SDEs

@ Milstein discretisation for path-dependent options — G (2008)

@ numerical analysis — G, Higham, Mao (2009), Avikainen (2009),
G, Debrabant, RoBler (2012)

financial sensitivities (“Greeks") — Burgos (2011)

jump-diffusion models — Xia (2011)

Lévy processes — Dereich (2010), Marxen (2010), Dereich &
Heidenreich (2011), Xia (2013), Kyprianou (2014)

American options — Belomestny & Schoenmakers (2011)

Milstein in higher dimensions without Lévy areas — G, Szpruch (2014)

adaptive timesteps — Hoel, von Schwerin, Szepessy, Tempone (2012),
G, Lester, Whittle (2014)
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SPDEs

@ quite natural application, with better cost savings than SDEs
due to higher dimensionality

@ range of applications
> Graubner & Ritter (Darmstadt) — parabolic
» G, Reisinger (Oxford) — parabolic (credit derivative application)

1
dp_—ugpdtjt—@dtjt\f—dw
with absorbing boundary p(0,t) =0
» Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) — elliptic

& (/‘{/(OJ,X) Vp) =0

where log k(w, x) is a Gaussian field — Normally distributed at each
point, and with a certain spatial correlation

» Barth, Jenny, Lang, Meyer, Mishra, Miiller, Schwab, Sukys, Zollinger
(ETH Ziirich) — elliptic, parabolic, hyperbolic

» Harbrecht, Peters (Basel) — elliptic

» Efendiev (Texas A&M) — numerical homogenization

» Heitzinger (TU Vienna) — elliptic drift-diffusion-Poisson system
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Engineering Uncertainty Quantification

Simplest possible example:
3D elliptic PDE, with uncertain boundary data

(]

@ grid spacing proportional to 2~ on level ¢
o cost is O(213), if using an efficient multigrid solver
°

2nd order accuracy means that
Pw) — Pw) ~ c(w)2%

= ﬁg_l(w) - I/D\g(w) ~ 3c(w)27%

(]

hence, =2, =4, v=3
cost is O(7?) to obtain ¢ RMS accuracy

(]

this compares to O(¢~3/2) cost for one sample on finest level,
so O(e~7/2) for standard Monte Carlo

(]
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ¢ to level £+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with
@ increasing accuracy
@ increasing cost

@ increasingly small difference between outputs on successive levels
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Reduced Basis PDE approximation
Vidal-Codina, Nguyen, G, Peraire (2014) take a fine FE discretisation:

Aw)u = f(w)

and use a reduced basis approximation

K
u= E Vi U

k=1

to obtain a low-dimensional reduced system

Ar(w) v = f(w)

@ larger K = greater accuracy at greater cost
@ in multilevel treatment, K, varies with level

@ brute force optimisation determines the optimal number of levels,
and reduced basis size on each level
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Stochastic chemical reactions

In stochastic simulations, each reaction is a Poisson process with a rate
which depends on the current concentrations.

X(t) = X(0) + Y Yi(Sk(1)) ¢
k

where
@ X is a vector of population counts of various species
@ Y are independent unit rate Poisson processes

@ (y is the vector of changes due to reaction k

t
e Si(t) = / Ak(X(s))ds is an internal time for reaction k
0
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Stochastic chemical reactions

The SSA algorithm (and other equivalent methods) computes each
reaction one by one — exact but very costly

“Tau-leaping” is equivalent to the Euler-Maruyama method for SDEs
— the rates Ay are frozen at the start of the timestep, so for each timestep

just need a sample from a Poisson process Y (\x At) to determine the
number of reactions

Anderson & Higham (2011) developed a very elegant and efficient
multilevel version of this algorithm — big savings because finest level
usually has 1000's of timesteps.

Key challenge: how to couple coarse and fine path simulations?
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Stochastic chemical reactions
Crucial observation: Y(t1) + Y(t2) 4 Y(ti+1t2) for t1,t2 >0

Solution:

@ simulate the Poisson variable on the coarse timestep as the sum of
two fine timestep Poisson variables

@ couple the fine path and coarse path Poisson variables by using
common variable based on smaller of two rates

MeAt2  AGAE)2

th th
MNoAtj2 Ny, At)2

If A < S, use Y(ASAL/2) ~ Y(MAL/2) + Y((NS—M)At/2)
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Nested simulation

Nested simulation is interested in the estimation of
E[ g (EIf(X,Y)|X])]
for independent random variables X, Y.

If each individual f(X,Y’) can be sampled at unit cost then an MLMC
treatment can use 2¢ samples on level ¢.

For given sample X, a good “antithetic” estimator is

= = —(b
z, = g(f) - 3 (™) +g(F"))
where
° 7(3) is an average of (X, Y) over 2~1 independent samples for Y;

—=(b) . . _
o 7l is an average over a second independent set of 2~1 samples;
@ f is an average over the combined set of 2¢ inner samples.
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Nested simulation

Note that

(7(8) i F(b)) ’

— 7 = T3 (F-FY),
7o) _ 7 % <?(a) _ ?(b)) ‘

7 o=

NI

Doing a Taylor series expansion about f then gives

&) (F-7)" = o)

Mll—‘

Zg ~
which gives a = 1,3 = 2,7 = 1, and hence an O(¢~2) complexity.

This has been used for pedestrian “flow” by Haji-Ali (2012) and
credit modelling by Bujok, Hambly & Reisinger (2015).
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Mixed precision computing

As more examples of the flexibility of the MLMC approach, the levels
can correspond to different levels of computing precision

@ 2/+2 bits of precision on level £ when using FPGAs (Korn, Ritter,
Wehn, 2014)

@ |EEE half-precision on level 0, IEEE single precision on levell, etc.,
when computing on CPUs or GPUs

or the different levels can use different random number generators

@ level 0: 10-bit uniform random numbers, with table lookup to convert
to approximate Normals

@ level 1: 32-bit uniform random numbers, and more complex
calculation of ®~1(U) to obtain Normals
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Other MLMC applications

@ parametric integration, integral equations (Heinrich, 1998)

(]

multilevel QMC (G, Waterhouse 2009, Dick, Kuo, Scheichl, Schwab,
Sloan, 2014-18)

@ MLMC for MCMC (Schwab & Stuart, 2013; Scheichl & Teckentrup,
2015)

@ Coulomb collisions in plasma (Caflisch et al, 2013)

(]

invariant distribution of contractive Markov process (Glynn & Rhee)

invariant distribution of contractive SDEs (G, Lester & Whittle)

MLMC for rare events and reliability calculations (Ullmann,
Papaioannou, 2015; Aslett, Nagapetyan, Vollmer, 2017)
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Three MLMC extensions

@ unbiased estimation — Rhee & Glynn (2015)

» randomly selects the level for each sample
» no bias, and finite expected cost and variance if > ~

@ Richardson-Romberg extrapolation — Lemaire & Pages (2017)

» reduces the weak error, and hence the number of levels required
» particularly helpful when g < ~

@ Multi-Index Monte Carlo — Haji-Ali, Nobile, Tempone (2015)

» important extension to MLMC approach, combining MLMC with
sparse grid methods (combination technique)
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Randomised Multilevel Monte Carlo

Rhee & Glynn (2015) started from

[e.e] [ee]
E[P] = Y E[AP] = > p E[AP/pd],
(=0 =0
to develop an unbiased single-term estimator

Y =APy /[ pe,

where ¢/ is a random index which takes value ¢ with probability py.

B > v is required to simultaneously obtain finite variance and finite

eXpeCted cost Using

The complexity is then O(c72).
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Multi-Index Monte Carlo

Standard “1D” MLMC truncates the telescoping sum
o0 o~
E[P] =) E[AP]
(=0

where A,Bg = :Bg — /3@_1, with ﬁ_l =0.

In “2D", MIMC truncates the telescoping sum
E[P] = Z Z E[APr ¢,]
=0 lr=

where A’Dfl,fz = (P£17g2 - Pfl—lyfz) - (Pf1,52—1 - ’Dfl—l,fz—l)

Different aspects of the discretisation vary in each “dimension” — for a 2D
PDE, could use grid spacing 2~ in direction 1, 2= in direction 2
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Multi-Index Monte Carlo

%

four evaluations for
cross-difference AP(3 )

141

MIMC truncates the summation in a way which minimises the cost to
achieve a target MSE — quite similar to sparse grids.

Can achieve O(c72) complexity for a wider range of SPDE and other
applications than plain MLMC.
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Conclusions
@ multilevel idea is very simple; key question is how to apply it in
new situations, and how to carry out the numerical analysis

@ discontinuous output functions can cause problems, but there is
a lot of experience now in coping with this

@ there are also “tricks” which can be used in situations with poor
strong convergence

@ being used for an increasingly wide range of applications;
biggest computational savings when coarsest (reasonable)
approximation is much cheaper than finest

@ currently, getting at least 100x savings for SPDEs and stochastic
chemical reaction simulations
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