
'

&

$

%

Financial Computing on GPUs

Lecture 1: CPUs and GPUs

Mike Giles
mike.giles@maths.ox.ac.uk

Oxford-Man Institute for Quantitative Finance
Oxford University Mathematical Institute

Lecture 1 1

'

&

$

%

Economics

Money drives computing, as much as technology.

If there’s a big enough market, someone will
develop the product.

Need economies of scale to make chips cheaply,
so very few companies and competing products.

To anticipate computing trends, look at market
drivers, key applications.

Lecture 1 2

'

&

$

%

CPUs

• chip size/speed continues to doubles every
18-24 months (Moore’s Law)
• similar growth in other hardware aspects, but

memory bandwidth struggles to keep up
• safe to assume that this will continue for at

least the next 10 years, driven by:
– multimedia applications

(e.g. streaming video, HD)
– image processing
– “intelligent” software

Lecture 1 3

'

&

$

%

Multilevel Parallelism

• instruction parallelism (e.g. addition)
• pipeline parallelism, overlapping different

instructions
• multiple pipelines, each with own capabilities
• multiple cores (CPUs) within a single chip
• multiple chips within a single shared-memory

computer
• multiple computers within a

distributed-memory system
• multiple systems within an organisation

Lecture 1 4

'

&

$

%

Ideal Von Neumann Processor

• each cycle, CPU takes data from registers,
does an operation, and puts the result back
• load/store operations (memory←→ registers)

also take one cycle
• CPU can do different operations each cycle
• output of one operation can be input to next

-

timeop1-
- -

op2-
- -

op3-
- -

CPU’s haven’t been this simple for a long time!

Lecture 1 5

'

&

$

%

Pipelining

Pipelining is a technique in which multiple
instructions are overlapped in execution.

-

time1 2 3 4 5-
- -

1 2 3 4 5-
- -

1 2 3 4 5-
- -

• 1 result per cycle after pipeline fills up
• improved utilisation of hardware
• major complication – an output can only be

used as input for an operation starting later

Lecture 1 6

'

&

$

%

Superscalar Processors

Most processors have multiple pipelines for
different tasks, and can start a number of
different operations each cycle.

Example: each core in an Intel Core 2 Duo chip
• 14-stage pipeline
• 3 integer units (ALU)
• 1 floating-point addition unit (FPU)
• 1 floating-point multiplication unit (FPU)
• 2 load/store units
• in principle, capable of producing 3 integer

and 2 FP results per cycle
• FP division is very slow

Lecture 1 7

'

&

$

%

Intel Core Architecture

Lecture 1 8

'

&

$

%

Technical Challenges

• compiler to extract best performance,
reordering instructions if necessary
• out-of-order CPU execution to avoid delays

waiting for read/write or earlier operations
• branch prediction to minimise delays due to

conditional branching (loops, if-then-else)
• memory hierarchy to deliver data to registers

fast enough to feed the processor

These all limit the number of pipelines that can
be used, and increase the chip complexity;
90% of Intel chip devoted to control and data?

Lecture 1 9

'

&

$

%

Current Trends

• clock cycle no longer reducing, due to
problems with power consumption
(up to 130W per chip)
• gates/chip still doubling every 24 months
⇒ more on-chip memory and MMU

(memory management units)
⇒ specialised hardware (e.g. multimedia,

encryption)
⇒ multi-core (multiple CPU’s on one chip)
• peak performance of chip still doubling every

12-18 months

Lecture 1 10

'

&

$

%

Intel chips

Core 2 Quad:
• four cores, up to 2.4GHz
• dynamic power-down of unused cores

Core i7 (Nehalem):
• four cores, up to 3.06GHz in standard models
• each core can run 2 threads
• integrated memory-management unit

(QuickPath Interconnect)

Future:
• “Westmere” – 6-10 cores in 2010
• 4-way SMP system (40 cores, 80 threads)

Lecture 1 11

'

&

$

%

Intel chips

All current chips support SSE vector instructions
• added for graphics on systems without a GPU
• mini-vector of 4 floats or 2 doubles

The next generation will support AVX vector
instructions:
• mini-vector of 8 floats or 4 doubles

and later products may increase the vector length.

Code vectorisation will become essential for good
performance

Lecture 1 12

'

&

$

%

Memory Hierarchy

?

faster
more expensive

smaller

2 – 8 GB
800MHz DDR3Main memory

1 – 4 MB
2GHz SRAML3 Cache

L1/L2 Cache
256KB
3GHz SRAM

registers

100+ cycle access, 5GB/s

12 cycle access, 100GB/s

2 cycle access

?

6

??
66

???
666

Lecture 1 13

'

&

$

%

Memory Hierarchy

Execution speed relies on exploiting data locality
• temporal locality: a data item just accessed

is likely to be used again in the near future,
so keep it in the cache
• spatial locality: neighbouring data is also

likely to be used soon, so load them into the
cache at the same time using a ‘wide’ bus
(like a multi-lane motorway)
• from a programmer point of view, all handled

automatically – good for simplicity but maybe
not for best performance

Lecture 1 14

'

&

$

%

GPUs – the big development

Economics is again the key:
• produced in vast numbers for computer

graphics
• increasingly being used for

– computer games “physics”
– video (e.g. HD video decoding)
– audio (e.g. MP3 encoding)
– multimedia (e.g. Adobe software)

– computational finance
– oil and gas
– medical imaging
– computational science

Lecture 1 15

'

&

$

%

GPUs – the big development

4 major vendors:
• NVIDIA

– turnover about 10% of Intel’s
• AMD

– bought ATI several years ago
• IBM

– co-developed Cell processor with Sony
and Toshiba for Sony Playstation

• Intel
– developing “Larrabee” GPU, due to ship

in early 2010

Lecture 1 16

'

&

$

%

CPUs and GPUs

Copyright NVIDIA 2006/7

Lecture 1 17

'

&

$

%

GPUs

The GPU sits on a PCIe graphics card inside a
standard PC/server with one or two multicore
CPUs:

DDR2 GDDR3

motherboard graphics card

Lecture 1 18

'

&

$

%

GPUs

• up to 240 cores on a single chip
• simplified logic (minimal caching, no out-of-order

execution, no branch prediction) means most of
the chip is devoted to floating-point computation
• usually arranged as multiple units with each unit

being effectively a vector unit
• very high bandwidth (up to 140GB/s) to graphics

memory (up to 4GB)
• not general purpose – for parallel applications

like graphics, and Monte Carlo simulations

Lecture 1 19

'

&

$

%

GPUs

Can also build big clusters out of GPUs:
• NVIDIA S1070 1U server holds four GPUs

which can be connected to a 1U twin-node
Intel server
• Supermicro produces a 1U server which is a

dual-CPU single node plus two GPUs
• similar products coming from other vendors
• cluster management software still evolving to

support such servers

Lecture 1 20

'

&

$

%

High-end HPC

• RoadRunner system at Los Alamos in US
– first Petaflop supercomputer
– IBM system based on Cell processors

• TSUBAME system at Tokyo Institute of
Technology
– 170 NVIDIA Tesla servers, each with 4 GPUs

• GENCI / CEA in France
– Bull system with 48 NVIDIA Tesla servers

• within UK
– Cambridge is getting a cluster with 32 Teslas
– other universities are getting smaller clusters

Lecture 1 21

'

&

$

%

GPUs in computational finance

• BNP Paribas has announced production use of a
small cluster
– 8 NVIDIA GPUs, each with 240 cores
– replacing 250 dual-core CPUs
– factor 10x savings in power (2kW vs. 25kW)

• lots of other banks doing proof-of-concept
studies
– I think IT groups are keen, but quants

are concerned about effort involved
• I’m working with NAG to provide a random

number generation library to simplify the task

Lecture 1 22

'

&

$

%

GPUs in computational finance

Several ISV’s now offer software based on NVIDIA’s
CUDA development environment:
• SciComp
• Quant Catalyst
• UnRisk
• Hanweck Associates
• Level 3 Finance
• others listed on NVIDIA CUDA website

Many of these are small, but it indicates the rapid
take-up of this new technology

Lecture 1 23

'

&

$

%

Chip Comparison

Intel Core 2 / Xeon / i7
• 4 MIMD cores
• few registers, multilevel caches
• 5-10 GB/s bandwidth to main memory

NVIDIA GTX280:
• 240 cores, arranged as 30 units each

with 8 SIMD cores
• lots of registers, almost no cache
• 5 GB/s bandwidth to host processor

(PCIe x16 gen 2)
• 140 GB/s bandwidth to graphics memory

Lecture 1 24

'

&

$

%

Chip Comparison

MIMD (Multiple Instruction / Multiple Data)
• each core operates independently
• each can be working with a different code,

performing different operations with entirely
different data

SIMD (Single Instruction / Multiple Data)
• all cores executing the same instruction at

the same time, but working on different data
• only one instruction de-coder needed to

control all cores
• functions like a vector unit

Lecture 1 25

'

&

$

%

Chip Comparison

One issue with SIMD / vector execution: what
happens with if-then-else branches?

Standard vector treatment: execute both
branches but only store the results for the correct
branch.

NVIDIA treatment: works with sub-vectors (called
warps) of length 32. If a particular warp only
goes one way, then that is all that is executed.

Lecture 1 26

'

&

$

%

Chip Comparison

How do NVIDIA GPUs deal with same
architectural challenges as CPUs?

Very heavily multi-threaded, with at least 8
threads per core, and I often use 40 or more:
• solves pipeline problem, because output of

one calculation can be used an input for next
calculation for same thread
• switch from one set of threads to another

when waiting for data from graphics memory

Lecture 1 27

'

&

$

%

GPU Programming

Big breakthrough in GPU computing has been
NVIDIA’s development of CUDA programming
environment
• initially driven by needs of computer games

developers
• now being driven by new markets

(e.g. HD video decoding)
• C plus some extensions and some

C++ features (e.g. templates)

Lecture 1 28

'

&

$

%

GPU Programming

• host code runs on CPU,
CUDA code runs on GPU
• explicit movement of data across the PCIe

connection
• very straightforward for Monte Carlo

applications, once you have a random
number generator
• significantly harder for finite difference

applications

Lecture 1 29

'

&

$

%

GPU Programming

Next major step is development of OpenCL
standard
• pushed strongly by Apple, which now has

NVIDIA GPUs in its entire product range, but
doesn’t want to be tied to them forever
• drivers are computer games physics, MP3

encoding, HD video decoding and other
multimedia applications
• multi-platform standard will encourage 3rd

party developers (including ISVs and banks)

Lecture 1 30

'

&

$

%

GPU Programming

• based on CUDA and supported by NVIDIA,
AMD, Intel, IBM and others, so developers
can write their code once for all platforms
• Imagination Technologies (which developed

chip for iPhone) is also assembling an
OpenCL compiler team
• Microsoft is the one big name not involved
• first OpenCL compilers likely later this year
• will need to re-compile on each new

platform, and also re-optimise the code
– auto-tuning is another of the big trends in
scientific computing

Lecture 1 31

'

&

$

%

My experience

• Random number generation
(mrg32k3a/Normal):
– 2000M values/sec on GTX 280
– 70M values/sec on Xeon using Intel’s

VSL library

• LIBOR Monte Carlo testcase:
– 180x speedup on GTX 280 compared to

single thread on Xeon

Lecture 1 32

'

&

$

%

My experience

• 3D PDE application:
– factor 50x speedup on GTX 280

compared to single thread on Xeon
– factor 10x speedup compared to two

quad-core Xeons

GPU results are all single precision – double
precision is up to 4 times slower, probably factor
2 in future.

Lecture 1 33

'

&

$

%

Why GPUs will stay ahead

Technical reasons:
• SIMD cores (instead of MIMD cores) means

larger proportion of chip devoted to floating
point computation
• tightly-coupled fast graphics memory means

much higher bandwidth

Lecture 1 34

'

&

$

%

Why GPUs will stay ahead

Economic reasons:
• CPUs driven by price-sensitive office/home

computing; not clear these need vastly more
speed
• CPU direction may be towards low cost, low

power chips for mobile and embedded
applications
• GPUs driven by high-end applications

– prepared to pay a premium for high
performance

Lecture 1 35

'

&

$

%

Will GPUs have impact in finance?

• I think they’re the most exciting development
in last 10 years
• Have generated a lot of interest/excitement

in academia, being used by application
scientists,not just computer scientists
• Gives at least 10× improvement in energy

efficiency and price / performance compared
to 2× quad-core Intel Xeons.
• Effectively a personal cluster in a PC under

your desk

Lecture 1 36

'

&

$

%

Will GPUs have an impact in finance?

What’s needed to break through in finance?
• random number generation library from NAG

(and others?)
• even more financial example codes
• work on tools and libraries to simplify

development effort – especially for banks
where quants have enough to do without
having to think about CUDA programming
• training to educate potential users

Lecture 1 37

'

&

$

%

More information

Wikipedia overviews of GeForce cards:
en.wikipedia.org/wiki/GeForce 9 Series

en.wikipedia.org/wiki/GeForce 200 Series

NVIDIA’s CUDA homepage:
www.nvidia.com/object/cuda home.html

Microprocessor Report article:

www.nvidia.com/docs/IO/47906/220401 Reprint.pdf

My webpages:
www.maths.ox.ac.uk/∼gilesm/

www.maths.ox.ac.uk/∼gilesm/hpc.html

Lecture 1 38

39

40

'

&

$

%

Computational Finance on GPUs

Lecture 2: CUDA programming
and Monte Carlo applications

Mike Giles
mike.giles@maths.ox.ac.uk

Oxford-Man Institute for Quantitative Finance
Oxford University Mathematical Institute

Lecture 2 41

'

&

$

%

Hardware view

At the top-level, there is a PCIe graphics card
with a many-core GPU sitting inside a standard
PC/server with one or two multicore CPUs:

DDR2 GDDR3

motherboard graphics card

Lecture 2 42

'

&

$

%

Hardware view

At the GPU level:
• basic building block is a “multiprocessor” with

– 8 cores
– 16384 registers (on newest chips)
– 16KB of shared memory
– 8KB cache for constants held in graphics

memory
– 8KB cache for textures held in graphics

memory

Lecture 2 43

'

&

$

%

Hardware view

• different GPUs have different numbers of
these:

product multiprocs bandwidth cost
9800 GT 14 58GB/s 100 e
GTX 260 27 112GB/s 200 e
GTX 295 2×30 2×112GB/s 400 e

Lecture 2 44

'

&

$

%

Hardware view

Key hardware feature is that the 8 cores in a
multiprocessor are SIMD (Single Instruction
Multiple Data) cores:
• all cores execute the same instructions

simultaneously, but with different data
• similar to vector computing on CRAY

supercomputers
• minimum of 4 threads per core, so end up

with a minimum of 32 threads all doing the
same thing at (almost) the same time
• natural for graphics processing and much

scientific computing

Lecture 2 45

'

&

$

%

Software view

At the top level, we have a master process which
runs on the CPU and performs the following
steps:

1. initialises card
2. allocates memory in host and on device
3. copies data from host to device memory
4. launches multiple copies of execution kernel

on device
5. copies data from device memory to host
6. repeats 2-4 as needed
7. de-allocates all memory and terminates

Lecture 2 46

'

&

$

%

Software view

At a lower level, within the GPU:
• each copy of the execution kernel executes

on one of the “multiprocessors”
• if the number of copies exceeds the number

of multiprocessors, then more than one will
run at a time on each multiprocessor if there
are enough registers and shared memory
• other copies will wait in a queue and execute

later

Lecture 2 47

'

&

$

%

Software view

• all threads within one copy can access local
shared memory but can’t see what the other
copies are doing (even if they are on the
same multiprocessor)
• there are no guarantees on the order in

which the copies will execute

Lecture 2 48

'

&

$

%

CUDA programming

CUDA is NVIDIA’s program development
environment:
• based on C with some extensions
• SDK has lots of example code and good

documentation – 2-4 week learning curve for
those with experience of OpenMP and MPI
programming
• software freely available
• well integrated into Visual Studio for

Windows users
• large user community active on NVIDIA

forums

Lecture 2 49

'

&

$

%

CUDA programming

At the host code level, there are library routines
for:
• memory allocation on graphics card
• data transfer to/from graphics memory

– constants
– texture arrays (useful for lookup tables)
– ordinary data

• error-checking
• timing

There is also a special syntax for launching
multiple copies of the kernel process on the GPU.

Lecture 2 50

'

&

$

%

CUDA programming

In its simplest form it looks like:

routine <<<gridDim,blockDim>>>(args);

• gridDim is the number of copies of the
kernel (the “grid” size”)
• blockDim is the number of threads within

each copy (the “block” size)
• args is a limited number of arguments,

usually mainly pointers to arrays in graphics
memory

More general form allows gridDim, blockDim

to be 2D or 3D to simplify application programs

Lecture 2 51

'

&

$

%

CUDA programming

At the lower level, when one copy of the kernel is
started on a multiprocessor it is executed by a
number of threads, each of which knows about:
• some variables passed as arguments
• pointers to arrays in device memory (also

arguments)
• constants held in device memory
• uninitialised shared memory
• local variables in private registers

Lecture 2 52

'

&

$

%

CUDA programming

• some special variables:
– gridDim

size (or dimensions) of grid of blocks
– blockIdx

index (or 2D/3D indices) of block
– blockDim

size (or dimensions) of each block
– threadIdx

index (or 2D/3D indices) of thread

Lecture 2 53

'

&

$

%

CUDA programming

The kernel code involves operations such as:
• read from/write to arrays in device memory
• write to/read from arrays in shared memory
• read constants
• use a texture array for a lookup table
• perform integer and floating point operations

on data held in registers

The reading and writing is done implicitly – data
is automatically read into a register when needed
for an operation, and is automatically written
when there is an assignment.

Lecture 2 54

'

&

$

%

CUDA programming

First example: prac4 1.cu

Has elements above plus:
• memory allocation
cudaMalloc((void **)&d x,

nbytes);

• data copying
cudaMemcpy(h x,d x,nbytes,

cudaMemcpyDeviceToHost);

Notice how kernel routine is declared by
global prefix, and is written from point of

view of a single thread.

Lecture 2 55

'

&

$

%

CUDA programming

Second example: prac4 2.cu

Very similar to first, but using CUDA SDK toolkit
for various safety checks – gives useful feedback
in the event of errors.
• check for error return codes:
cutilSafeCall(...);

• check for failure messages:
cutilCheckMsg(...);

Lecture 2 56

'

&

$

%

CUDA programming

Third example: prac4 3.cu

A very simple Monte Carlo example:
• two asset, geometric Brownian motion
• European digital option
• pathcalc does the path calculation and

evaluates the payoff
• main host code copies the results back and

averages the payoff

Lecture 2 57

'

&

$

%

CUDA programming

Third example: prac4 3.cu

New CUDA bits:
• declaration of constant data for kernels

constant int N;

• initialisation of constant data by host code
cudaMemcpyToSymbol("N",&N,

sizeof(N));

first "N" refers to constant data on GPU;
second &N referes to value in main code

Lecture 2 58

'

&

$

%

CUDA programming

Third example: prac4 3.cu

Also demonstrates use of random number
generation library developed with NAG:
• gpu mrg32k3a init(V1, V2, 0);

initialises seeds (without an offset)
• gpu mrg32k3a normal(NPATH/64, 64,

2*N, d z);

each block has 64 threads, and each thread
generates 2N Normals for a single path on
the GPU and puts them into the graphics
memory

Lecture 2 59

'

&

$

%

CUDA programming

Final example: Monte Carlo LIBOR application
• timings in seconds for 96,000 paths, with

1500 blocks each with 64 threads, so one
thread per path
• executed 5 blocks at a time on each

multiprocessor, so 40 active threads per core
• CUDA results are for single precision

time
original code (VS C++) 26.9
CUDA code (8800GTX) 0.2

Lecture 2 60

'

&

$

%

NVIDIA multithreading

Lots of active threads is the key to high
performance:
• no “context switching”; each thread has its

own registers, which limits the number of
active threads
• threads execute in “warps” of 32 threads per

multiprocessor (4 per core) – execution
alternates between “active” warps, with
warps becoming temporarily “inactive” when
waiting for data

Lecture 2 61

'

&

$

%

NVIDIA multithreading

• for each thread, one operation completes
long before the next starts – avoids the
complexity of pipeline overlaps which can
limit the performance of modern processors

-

time1 2 3 4 5-
- -

1 2 3 4 5-
- -

1 2 3 4 5-
- -

• memory access from device memory has a
delay of 400-600 cycles; with 40 threads this
is equivalent to 10-15 operations and can be
managed by the compiler

Lecture 2 62

'

&

$

%

Random number generation

Main challenge with Monte Carlo is parallel
random number generation
• want to generate same random numbers as

in sequential single-thread implementation
• two key steps:

– generation of [0,1] uniform random
number

– conversion to other output distributions
(e.g. unit Normal)

• many of these problems are already faced
with multi-core CPUs and cluster computing
• NVIDIA does not provide a RNG library, so

I’m developing one with NAG

Lecture 2 63

'

&

$

%

Random number generation

Key issue in uniform random number generation:
• when generating 10M random numbers,

might have 5000 threads and want each one
to compute 2000 random numbers
• need a “skip-ahead” capability so that thread

n can jump to the start of its “block”
efficiently
(usually logN cost to jump N elements)

Lecture 2 64

'

&

$

%

Random number generation

mrg32k3a (Pierre l’Ecuyer, ’99, ’02)
• popular generator in Intel MKL and ACML

libraries
• pseudo-uniform output is (xn,1−xn,2

mod m1) / m1 where integers xn,1, xn,2

are defined by

xn,1 = a1 xn−2,1 − b1 xn−3,1 mod m1

xn,2 = a2 xn−1,2 − b2 xn−3,2 mod m2

a1=1403580, b1=810728,
m1=232

−209,
a2=527612, b2=1370589,
m2=232

− 22853.

Lecture 2 65

'

&

$

%

Random number generation

• Both recurrences are of the form

yn = A yn−1 mod m

where yn is a vector
yn = (xn, xn−1, xn−2)

T and A is a 3×3

matrix. Hence

yn+2k = A2k
yn mod m = Ak yn mod m

where Ak is defined by repeated squaring as

Ak+1 = Ak Ak mod m, A0 ≡ A.

Can generalise this to jump N places in
O(logN) operations.

Lecture 2 66

'

&

$

%

Random number generation

• mrg32k3a speed-up is 100× on 216-core
GTX260 compared to a single Athlon core
• have also implemented a Sobol generator to

produce quasi-random numbers
• output distributions:

– uniform
– exponential: trivial
– Normal: Box-Muller or inverse CDF
– Gamma: using “rejection” methods which

require a varying number of uniforms and
Normals to generate 1 Gamma variable

Lecture 2 67

68

'

&

$

%

Computational Finance on GPUs

Lecture 3: more CUDA programming
and finite difference application

Mike Giles
mike.giles@maths.ox.ac.uk

Oxford-Man Institute for Quantitative Finance
Oxford University Mathematical Institute

Lecture 3 69

'

&

$

%

CUDA programming

Coalesced memory transfers are one of the
trickiest aspects of CUDA programing

The bandwidth from graphics memory to GPU is
100+GB/s, but only if data is accessed correctly

Key point: when reading (or writing), 32 threads
of a warp should address a block of 32 elements
of an array in graphics memory

(Minor point: the starting point should be a
multiple of 32 from the beginning of the array)

Lecture 3 70

'

&

$

%

CUDA programming

Example: prac4 3.cu
global void pathcalc(float *d z,

float *d v)

d z = d z + threadIdx.x

+ 2*N*blockIdx.x*blockDim.x;

d v = d v + threadIdx.x

+ blockIdx.x*blockDim.x;

• starting addresses for the threads in each
block are sequential.
• offset for each block corresponds to total

data for each block

Lecture 3 71

'

&

$

%

CUDA programming

Example: prac4 3.cu

After each reference to random number array,
shift pointer by number of threads in the block
to next element for that thread:

y1 = (*d z);

d z += blockDim.x;

y2 = rho*y1 + alpha*(*d z);

d z += blockDim.x;

Lecture 3 72

'

&

$

%

CUDA programming

We haven’t yet discussed shared memory.

Each multiprocessor has 16kB of shared memory
which can be accessed by any thread in the block

Very useful whenever a thread needs to share
data with another thread in same block – no
sharing with threads in other blocks

It’s declared in a device routine like this:

shared float u[100];

then used in the usual way

Lecture 3 73

'

&

$

%

CUDA programming

There is also read-only texture memory which
has a local cache.

I won’t give any examples of this, but it is useful
for random-access lookup tables (e.g. when
computing a local volatility σ(S, t) defined by a
spline function)

Finally, there is local memory, which is poorly
named – it’s really part of the graphics memory
which holds local variables when there are too
many to go in registers

Lecture 3 74

'

&

$

%

Finite Difference Model Problem

The Black-Scholes PDE for a two-asset model
problem is

Vt + rS1VS1
+ rS2VS2

+

σ2
(

1
2S2

1VS1S1
+ ρS1S2VS1S2

+ 1
2S2

2VS2S2

)

= rV

This is solved backwards in time from the final
value equal to the payoff function, to get the
value at the initial time t = 0.

Lecture 3 75

'

&

$

%

Finite Difference Model Problem

Switching to new variables η = logS, τ = 1− t,
and defining

r∗ = r − 1
2σ2,

the equation becomes

Vτ = r∗
(

Vη1 + Vη2

)

+ σ2
(

1
2Vη1η1 + ρVη1η2 + 1

2Vη2η2

)

− rV

which is solved forward in time from τ = 0 to
τ = 1.

Lecture 3 76

'

&

$

%

Finite Difference Model Problem

A simple Explicit Euler central space
discretisation on a uniform Cartesian grid is

V n+1 = (1− r∆t)V n +
r∗∆t

2∆η

(

δ2η1
+ δ2η2

)

V n

+
σ2∆t

2∆η2

(

(1−ρ) δ2η1
+ ρ δ2η1η2

+ (1−ρ) δ2η2

)

V n

where

δ2η1
Vi,j ≡ Vi+1,j − Vi−1,j

δ2η2
Vi,j ≡ Vi,j+1 − Vi,j−1

and . . .

Lecture 3 77

'

&

$

%

Finite Difference Model Problem

} }

} } }

} }

δ2η1
Vi,j ≡ Vi+1,j − 2Vi,j + Vi−1,j

δ2η1η2
Vi,j ≡ Vi+1,j+1 − 2Vi,j + Vi−1,j−1

δ2η2
Vi,j ≡ Vi,j+1 − 2Vi,j + Vi,j−1

making it a 7-point stencil:

Lecture 3 78

'

&

$

%

Finite Difference Model Problem

} } }

}

}

}

Even simpler model problem: Jacobi iteration
to solve discretisation of Laplace equation

V n+1
i,j = 1

4

(

V n
i+1,j + V n

i−1,j + V n
i,j+1 + V n

i,j−1

)

Lecture 3 79

'

&

$

%

Finite Difference Model Problem

How should this be programmed?

First idea: each thread does one grid point,
reading in directly from graphics memory the old
values at the 4 neighbours (6 in 3D).

Performance would be awful:
• each old value read in 4 times (6 in 3D)
• although reads would be contiguous (all read

from the left, then right, etc.) they wouldn’t
have the correct alignment (factor 2× penalty
on new hardware, even worse on old)
• overall a factor 10× reduction in effective

bandwidth (or 10× increase in read time)
Lecture 3 80

'

&

$

%

Finite Difference Model Problem

@@
��

Second idea: take ideas from distributed-memory
parallel computing and partition grid into pieces

Lecture 3 81

'

&

$

%

Finite Difference Model Problem

qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q

qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q

qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q

qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q
qq
qq
qq
qq

qq
qq
qq
qq

q q q q q q q q

q q q q q q q q

Lecture 3 82

'

&

$

%

Finite Difference Model Problem

ss
ss
ss
ss

ss
ss
ss
ss

s s s s s s s s

s s s s s s s s

Each block of threads will work with one of these
grid blocks, reading in old values (including the
“halo nodes” from adjacent partitions) then
computing and writing out new values

Lecture 3 83

'

&

$

%

Finite Difference Model Problem

Key point: old data is loaded into shared
memory:
• each thread loads in the data for its grid

point (coalesced) and maybe one halo point
(only partially coalesced)
• need a syncthreads(); instruction

to ensure all threads have completed this
before any of them access the data
• each thread computed its new value and

writes it to graphics memory

Lecture 3 84

'

&

$

%

Finite Difference Model Problem

2D finite difference implementation:
• good news: 30× speedup relative to Xeon

single core, compared to 4.5× speedup
using OpenMP with 8 cores
• bad news: grid size has to be 10242 to have

enough parallel work to do to get this
performance
• in a real financial application, more sensible

to do several 2D calculations at the same
time, perhaps with different payoffs

Lecture 3 85

'

&

$

%

Finite Difference Model Problem

3D finite difference implementation:
• insufficient shared memory for whole 3D

block, so hold 3 working planes at a time
• key steps in kernel code:

– load in k=0 z-plane (inc x and y-halos)
– loop over all z-planes
∗ load k+1 z-plane
∗ process k z-plane
∗ store new k z-plane

• 50× speedup relative to Xeon single core,
compared to 5× speedup using OpenMP
with 8 cores.

Lecture 3 86

'

&

$

%

Finite Difference Model Problem

Third idea: use texture memory
• basic approach is the same
• difference is in loading of “old” data using

texture mapping
• local texture cache means values are only

transferred from graphics memory once (?)
• “cache line” transfer is coalesced as far as

possible (?)
• not as fast as hand-coded version but much

simpler
• no documentation on cache management,

so hard to predict/understand performance

Lecture 3 87

'

&

$

%

Finite Difference Model Problem

ADI implicit time-marching:
• each thread handles tri-diagonal solution

along a line in one direction
• easy to get coalescence in y and z

directions, but not in x-direction
• again roughly 10× speedup compared to

two quad-core Xeons

Lecture 3 88

'

&

$

%

Finite Difference Model Problem

Implicit time-marching with iterative solvers:
• BiCGStab: each iteration similar to Jacobi

iteration except for need for global
dot-product
• See “reduction” example and documentation

in CUDA SDK for how shared memory is
used to compute partial sum within each
block, and then these are combined at a
higher level to get the global sum
• ILU preconditioning could be tougher

Lecture 3 89

'

&

$

%

Finite Difference Model Problem

Generic 3D financial PDE solver:
• available on my webpages
• development funded by TCS/CRL (leading

Indian IT company)
• uses ADI time-marching
• designed for user to specify drift and volatility

functions as C code – no need for user to
know anything about CUDA programming
• an example of what I think is needed to hide

complexities of GPU programing

Lecture 3 90

'

&

$

%

Final Words

• GPUs offer 10× improvements in energy
efficiency and price / performance compared
to standard CPUs
• biggest development in HPC for 10 years,

will be important for next 10 years
• (also watch increase in SSE vector length

within standard CPUs)
• Monte Carlo applications are fairly

straightforward, given a random number
generator
• PDE applications are possible but require

more effort

Lecture 3 91

