Multilevel Monte Carlo Analysis

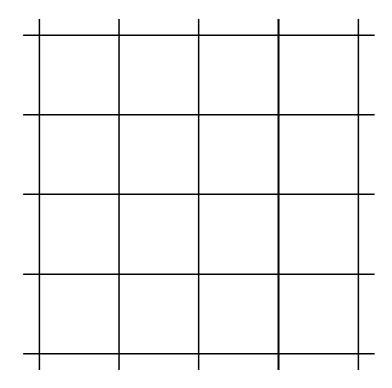
Mike Giles

giles@comlab.ox.ac.uk

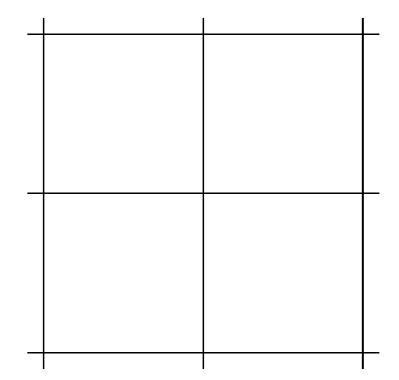
Oxford University Computing Laboratory

Multigrid

Multigrid is a technique which is often used in solving PDE discretisations:



Fine grid more accurate more expensive



Coarse grid
less accurate
less expensive

Multigrid

Multigrid combines calculations on a sequence of grids, each twice as fine as the previous, to get the accuracy of the finest grid at a much lower computational cost.

We will now apply the same concept to Monte Carlo path calculations.

Generic Problem

Stochastic ODE with general drift and volatility terms:

$$dS(t) = a(S, t) dt + b(S, t) dW(t)$$

(W(t)) is a Wiener variable with the properties that for any q < r < s < t, W(t) - W(s) is Normally distributed with mean 0 and variance t-s, independent of W(r) - W(q).)

In many finance applications, we want to compute the expected value of an option dependent on the terminal state

$$P = f(S(T))$$

with a uniform Lipschitz bound,

$$|f(U) - f(V)| \le c \|U - V\|, \quad \forall U, V.$$

Standard MC Approach

Euler discretisation with timestep *h*:

$$\widehat{S}_{n+1} = \widehat{S}_n + a(\widehat{S}_n, t_n) h + b(\widehat{S}_n, t_n) \Delta W_n$$

where ΔW_n are Normal with mean 0, variance Δt .

Simplest estimator for expected payoff is an average of N independent path simulations:

$$\widehat{Y} = N^{-1} \sum_{i=1}^{N} f(\widehat{S}_{T/h}^{(i)}).$$

- weak convergence O(h) error in expected payoff
- strong convergence $O(h^{1/2})$ error in individual path

Standard MC Approach

Mean Square Error is $O(N^{-1} + h^2)$

- first term comes from variance of estimator
- second term comes from bias due to weak convergence

To make this $O(\varepsilon^2)$ requires

$$N = O(\varepsilon^{-2}), \quad h = O(\varepsilon) \implies \cos t = O(N h^{-1}) = O(\varepsilon^{-3})$$

Aim is to improve this cost to $O\left(\varepsilon^{-2}(\log \varepsilon)^2\right)$

(In 2005, Ahmed Kebaier published a two-level method which reduces the cost to $O(\varepsilon^{-2.5})$, equivalent to a single application of Richardson extrapolation.)

Consider multiple sets of simulations with different timesteps $h_l = 2^{-l} T$, l = 0, 1, ..., L, and payoff \widehat{P}_l

$$E[\widehat{P}_{L}] = E[\widehat{P}_{0}] + \sum_{l=1}^{L} E[\widehat{P}_{l} - \widehat{P}_{l-1}]$$

Expected value is same – aim is to reduce variance of estimator for a fixed computational cost.

Key point: approximate $E[\widehat{P}_l - \widehat{P}_{l-1}]$ using N_l simulations with \widehat{P}_l and \widehat{P}_{l-1} obtained using <u>same</u> Brownian path.

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} \right)$$

Using independent paths for each level, the variance of the combined estimator is

$$V\left[\sum_{l=0}^{L} \widehat{Y}_{l}\right] = \sum_{l=0}^{L} N_{l}^{-1} V_{l}, \qquad V_{l} \equiv V[\widehat{P}_{l} - \widehat{P}_{l-1}],$$

and the computational cost is proportional to $\sum_{l=0}^{L} N_l h_l^{-1}$.

Hence, the variance is minimised for a fixed computational cost by choosing N_l to be proportional to $\sqrt{V_l h_l}$.

For the Euler discretisation and the Lipschitz payoff function

$$V[\widehat{P}_l - P] = O(h_l) \implies V[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l)$$

and the optimal N_l is asymptotically proportional to h_l .

To make the combined variance $O(\varepsilon^2)$ requires

$$N_l = O(\varepsilon^{-2} L h_l).$$

To make the bias $O(\varepsilon)$ requires

$$L = \log_2 \varepsilon^{-1} + O(1) \implies h_L = O(\varepsilon).$$

Hence, we obtain an $O(\varepsilon^2)$ MSE for a computational cost which is $O(\varepsilon^{-2}L^2) = O(\varepsilon^{-2}(\log \varepsilon)^2)$.

Theorem: Let P be a functional of the solution of a stochastic o.d.e., and \widehat{P}_l the discrete approximation using a timestep $h_l = M^{-l} T$.

If there exist independent estimators \widehat{Y}_l based on N_l Monte Carlo samples, and positive constants $\alpha \geq \frac{1}{2}, \beta, c_1, c_2, c_3$ such that

i)
$$E[\widehat{P}_l - P] \le c_1 h_l^{\alpha}$$

ii)
$$E[\widehat{Y}_l] = \begin{cases} E[\widehat{P}_0], & l = 0 \\ E[\widehat{P}_l - \widehat{P}_{l-1}], & l > 0 \end{cases}$$

iii)
$$V[\widehat{Y}_l] \le c_2 N_l^{-1} h_l^{\beta}$$

iv) C_l , the computational complexity of \widehat{Y}_l , is bounded by

$$C_l \le c_3 \, N_l \, h_l^{-1}$$

then there exists a positive constant c_4 such that for any $\varepsilon < e^{-1}$ there are values L and N_L for which the multi-level estimator

$$\widehat{Y} = \sum_{l=0}^{L} \widehat{Y}_l,$$

has Mean Square Error
$$MSE \equiv E\left[\left(\widehat{Y} - E[P]\right)^2\right] < \varepsilon^2$$

with a computational complexity C with bound

$$C \le \begin{cases} c_4 \varepsilon^{-2}, & \beta > 1, \\ c_4 \varepsilon^{-2} (\log \varepsilon)^2, & \beta = 1, \\ c_4 \varepsilon^{-2 - (1 - \beta)/\alpha}, & 0 < \beta < 1. \end{cases}$$

Geometric Brownian motion:

$$dS = r S dt + \sigma S dW, \qquad 0 < t < 1,$$

$$S(0) = 1$$
, $r = 0.05$, $\sigma = 0.2$

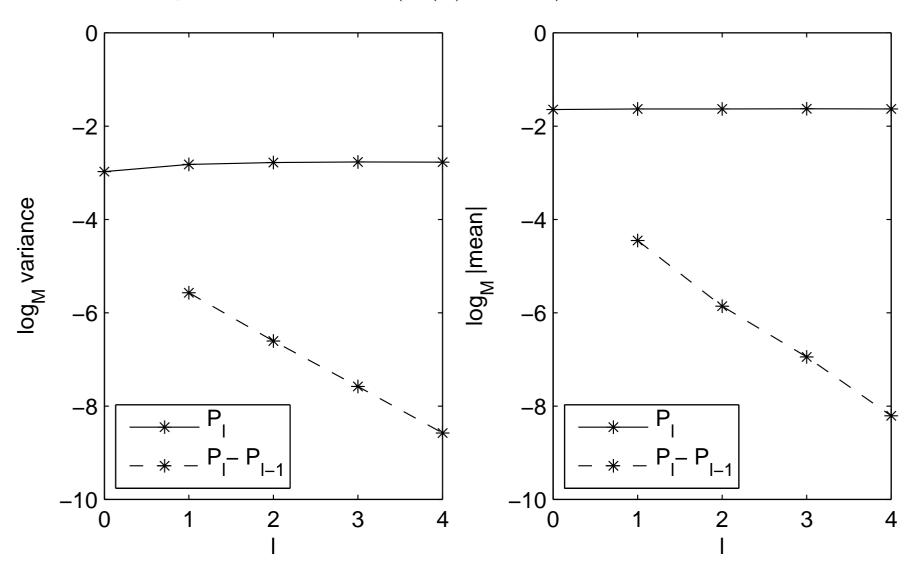
Heston model:

$$dS = r S dt + \sqrt{V} S dW_1, \qquad 0 < t < 1$$

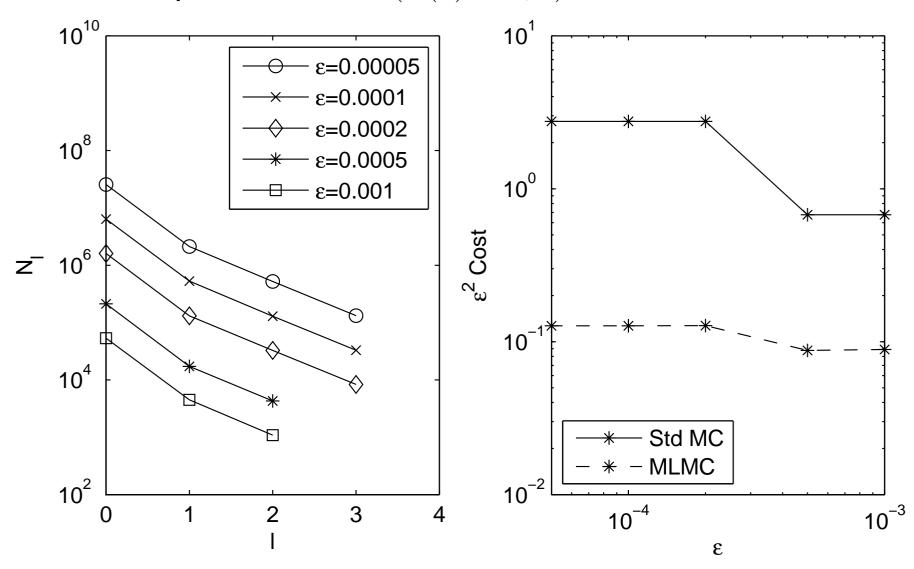
$$dV = \lambda (\sigma^2 - V) dt + \xi \sqrt{V} dW_2,$$

$$S(0) = 1$$
, $V(0) = 0.04$, $r = 0.05$, $\sigma = 0.2$, $\lambda = 5$, $\xi = 0.25$ and correlation $\rho = -0.5$ between $\mathrm{d}W_1$ and $\mathrm{d}W_2$

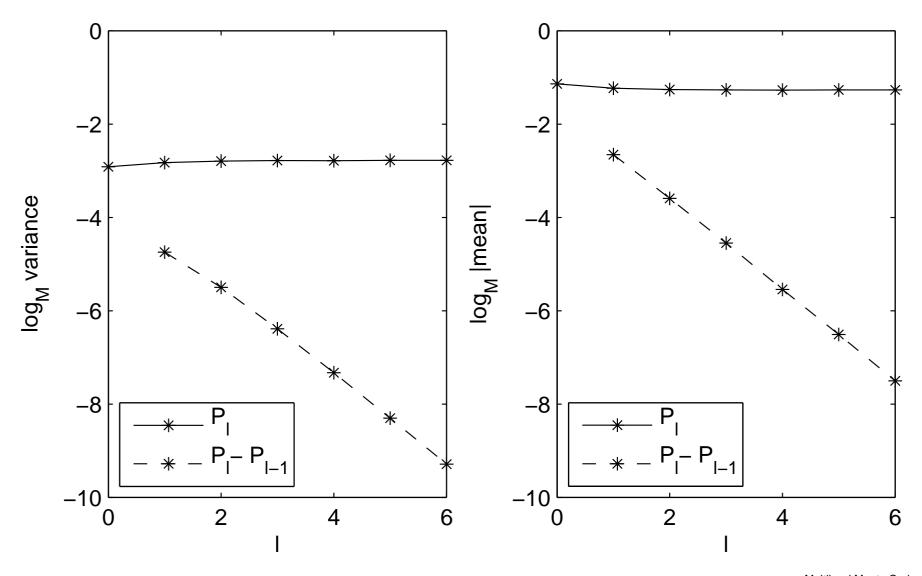
GBM: European call, max(S(1) - 1, 0)



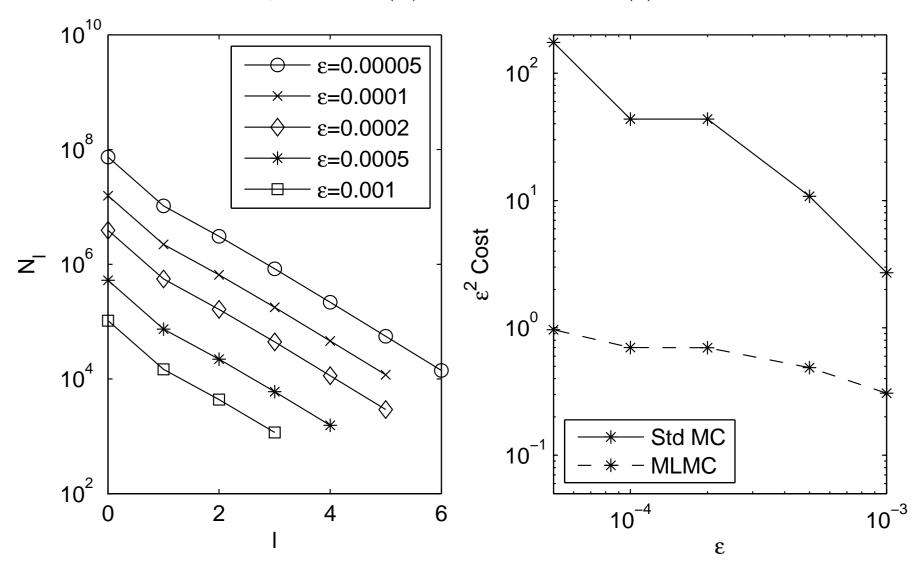
GBM: European call, max(S(1) - 1, 0)



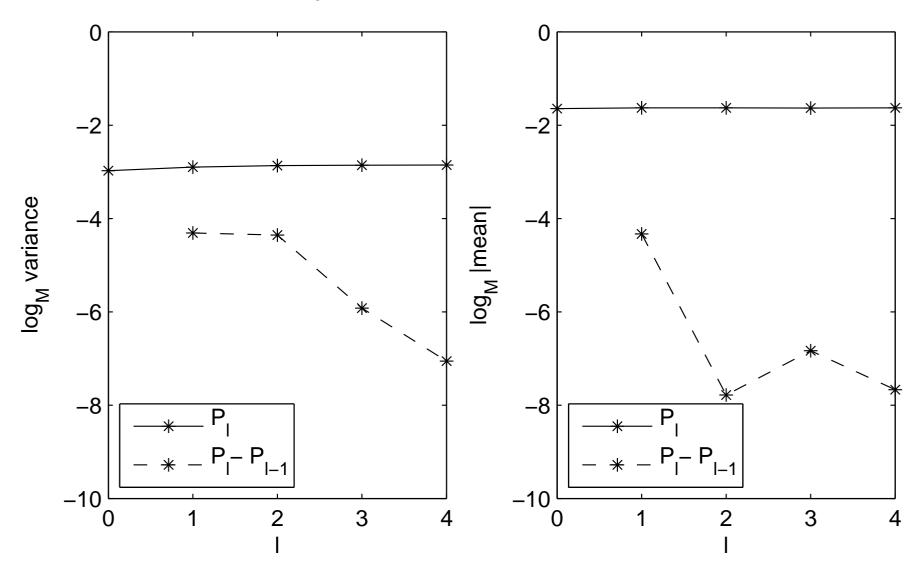
GBM: lookback option, $S(1) - \min_{0 < t < 1} S(t)$



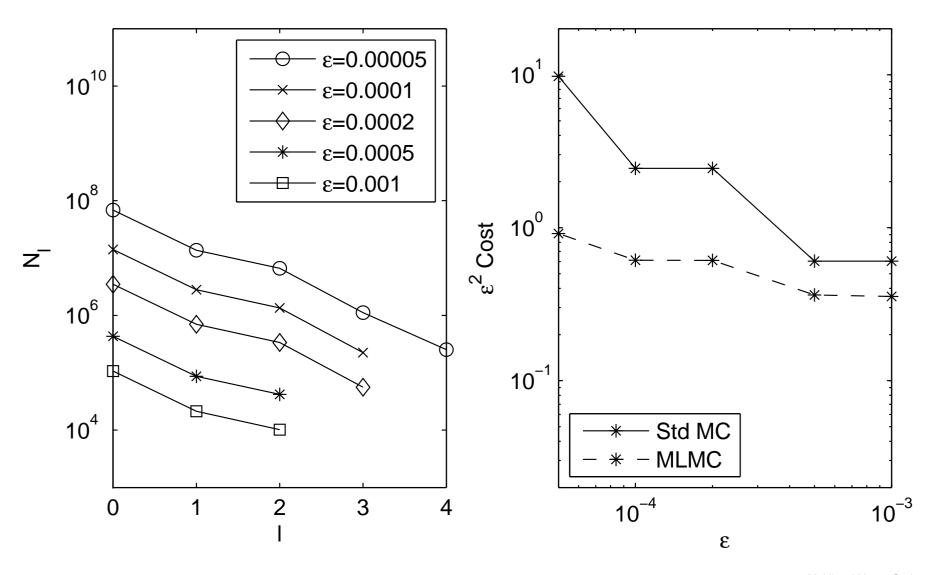
GBM: lookback option, $S(1) - \min_{0 < t < 1} S(t)$



Heston model: European call



Heston model: European call



Final words

Conclusions:

- improved order of complexity
- easy to implement
- significant benefits in practice

Future work:

- use of Milstein method and a control variate or antithetic variables to reduce complexity to $O(\varepsilon^{-2})$
- adaptive sampling to treat discontinuous payoffs and pathwise derivatives for Greeks
- use of quasi-Monte Carlo methods
- use of other variance reduction techniques