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Computational Engineering

Initially, focus was on improving its analysis capability.

In CFD this meant:

1D → 2D → 3D

steady → unsteady

inviscid → inviscid+losses → viscous+turbulence modelling
→ large edge simulation → direct Navier-Stokes

simple geometry → complex geometry (CAD, unstructured grids)

coupling to combustion, heat transfer, aeroelastic effects

From an HPC perspective, this usually meant one big calculation using
all of a supercomputer / cluster.
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Computational Engineering

Next, the focus moved to design optimisation.

In CFD this meant:

lots of calculations for optimisation based on genetic algorithms

new adjoint techniques to reduce the cost for gradient-based
optimisation when there are lots of design variables

In other areas there was also a move to multi-scale modelling – big
applications with different parts interacting on different length scales

In HPC, this still usually meant one big calculation – genetic algorithms
were used mainly on small problems
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Computational Engineering

Now, I think the focus is on

multi-physics coupling – linking together multiple big application
codes in a way which remains scalable on big systems

uncertainty quantification (UQ) – accounting for the uncertainty in
I geometry (e.g. manufacturing tolerances)
I model parameters (e.g. material properties)
I initial conditions (e.g. weather prediction)

robust multi-point design – changing the design process to account
for uncertainty and use under different conditions

In HPC, this is increasingly meaning multiple calculations – means that
individual applications don’t have to scale to use the whole system
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Uncertainty Quantification

Methods vary depending on:

level of uncertainty
I small, almost linear
I large, definitely nonlinear

dimensionality (number of uncertain parameters)

Main classes of method:

moment methods – very effective for small uncertainties

PDE methods (polynomial chaos, stochastic Galerkin, stochastic
collocation) – very effective for low dimensions

Monte Carlo methods – good for nonlinear high-dimensional problems
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Monte Carlo

Monte Carlo is a very simple “brute force” method.

If we want to estimate the expected value (or average) E[f (ω)]
where ω comes from some input probability distribution, then use

Ŷ =
1

N

N∑
n=1

f (ω(n))

where ω(n) are independent random samples

This is unbiased, E[Ŷ ] = E[f ], and has variance

V[Ŷ ] ≡ E[(Ŷ − E[f ])2] = N−1V[f ]

so the r.m.s. error is O(N−1/2).
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Monte Carlo

The cost is proportional to N, so r.m.s. error = O(cost−1/2)

good news: independent of “dimension” of uncertainty

bad news: O(cost−1/2) is a poor rate of decay – can need
1000’s of calculations for reasonable accuracy

General perception – good simple method when calculations are cheap,
but not when each calculation is expensive (e.g. needs a PDE solution)

Opinion is now changing:

petascale/exascale computing offers more compute capability

multilevel Monte Carlo reduces the cost significantly, especially
for PDE applications
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Objectives of talk

In presenting the multilevel Monte Carlo method, I hope to emphasise:

the simplicity of the idea

its flexibility

that it’s not prescriptive, more an approach

lots of people working on a variety of applications

I will focus on ideas rather than lots of numerical results.
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Control variate

There are lots of techniques to reduce the variance in Monte Carlo
simulation, so fewer samples are needed for good accuracy.

One classic approach: approximate E[f ] using

N−1
N∑

n=1

{
f (n) − λ

(
g (n) − E[g ]

)}
where

control variate g has known expectation E[g ]

g is well correlated with f

Using the optimal value for λ (which can be estimated) reduces the
variance by factor 1−ρ2, where ρ is the correlation between f and g .
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Two-level Monte Carlo

If we want to estimate E[f1] but it is much cheaper to simulate f0 ≈ f1,
then since

E[f1] = E[f0] + E[f1−f0]

we can use the estimator

N−1
0

N0∑
n=1

f
(n)

0 + N−1
1

N1∑
n=1

(
f

(n)
1 − f

(n)
0

)

Two differences from standard control variate method:

E[f0] is not known, so has to be estimated

λ = 1
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Two-level Monte Carlo

If we define

C0,V0 to be cost and variance of f0

C1,V1 to be cost and variance of f1−f0
then the total cost is

N0 C0 + N1 C1

and the variance (assuming independent estimators) is

N−1
0 V0 + N−1

1 V1

so for a fixed variance the cost is minimised by choosing

N1

N0
=

√
V1/C1√
V0/C0
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Trivial example

f1 comes from double precision calculation

f0 comes from single precision calculation
(often twice as fast on latest CPUs/GPUs)

use the same random number generator for both calculations

estimating V0 and V1 will give an optimal allocation of computational
effort between single precision and double precision computations
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Less trivial example

f1 comes from simulation of Navier-Stokes equations with a
turbulence model

f0 comes from simulation of Euler equations

uncertainty in aircraft geometry due to manufacturing tolerances

likely to work well at cruise conditions when Euler model is a
reasonable approximation

unlikely to work well under high-lift conditions when there are
big flow separations
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Multilevel Monte Carlo

Natural generalisation: given a sequence f0, f1, . . . , fL

E[fL] = E[f0] +
L∑
`=1

E[f`−f`−1]

we can use the estimator

N−1
0

N0∑
n=1

f
(n)

0 +
L∑
`=1

{
N−1
`

N∑̀
n=1

(
f

(n)
` − f

(n)
`−1

)}

with independent estimation for each level
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of f0

C`,V` to be cost and variance of f`−f`−1

then the total cost is
L∑
`=0

N` C` and the variance is
L∑
`=0

N−1
` V`.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂N`

L∑
k=0

(
Nk Ck + µ2N−1

k Vk

)
= 0

gives
N` = µ

√
V`/C` =⇒ N` C` = µ

√
V` C`
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Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑
`=0

√
V` C`

)

and hence, the total cost is

L∑
`=0

N` C` = ε−2

(
L∑
`=0

√
V`C`

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore:

VL/V0, if
√
V`C` increases with level

C0/CL, if
√
V`C` decreases with level
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Parametric Integration

Stefan Heinrich introduced multilevel ideas in 1999 for parametric
integration, in which x is a finite-dimensional random variable, and want
to estimate E[f (x , λ)] for a range of values of the parameter λ.

In the simplest case, suppose λ is a scalar, and the parameter range is
0 ≤ λ ≤ 1.

If we have already estimated E[f (x , 0)] and E[f (x , 1)] then

E[f (x , 1
2 )] = 1

2

(
E[f (x , 0)] + E[f (x , 1)]

)
+ E

[
f (x , 1

2 )− 1
2 (f (x , 0) + f (x , 1))

]
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Parametric Integration

This can be repeated on multiple levels (perhaps using higher order
interpolation if f (x , λ) is sufficiently smooth)

r r
r r r
r r r r r
r r r r r r r r r
r r r r r r r r r r r r r r r r r?

`

-
λ

This doesn’t quite fit into the multilevel framework I’ve described, but the
complexity analysis is very similar.
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Multilevel Path Simulation

In 2006, I introduced the multilevel approach for infinite-dimensional
integration arising from SDEs driven by Brownian diffusion.

dSt = a(St , t) dt + b(St , t) dWt

Here Wt is a Brownian path – increments dWt are Normally distributed
with zero mean and variance dt.

Simple Euler-Maruyama approximation is

Ŝn+1 = Ŝn + a(Ŝn, tn) ∆t + b(Ŝn, tn) ∆Wn

where ∆Wn is Normally-distributed with zero mean and variance ∆t.

Used extensively in computational finance – often interested in E[P(ST )].
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Multilevel Path Simulation

Multilevel decomposition gives

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

Level ` corresponds to approximation using 2` timesteps, giving
approximate payoff P̂`.

Using same driving Brownian path for P̂`, P̂`−1 – this means summing the
Brownian increments for pairs of fine path timesteps to get the Brownian
increment for the coarse timestep

Choice of finest level L depends on weak error (bias).
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Multilevel Monte Carlo

Simplest estimator for E[P̂`−P̂`−1] for `>0 is

Ŷ` = N−1
`

N∑̀
n=1

(
P̂

(n)
` −P̂

(n)
`−1

)
with same driving Brownian path for both levels.

Variance is N−1
` V` where V` = V[P̂`−P̂`−1] gets smaller as ` increases

because P̂`, P̂`−1 both approximate same P (strong convergence)

To make RMS error less than ε

choose L so that
(
E[P̂L]−E[P]

)2
< 1

2 ε
2

choose N` ∝
√

V`/C` so total variance is less than 1
2 ε

2

Mike Giles (Oxford) Multilevel Monte Carlo SPPEXA Workshop 21 / 36



MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators Ŷ` based on N` Monte Carlo samples,
each costing C`, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂`−P]

∣∣∣ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], ` = 0

E[P̂`−P̂`−1], ` > 0

iii) V[Ŷ`] ≤ c2 N
−1
` 2−β `

iv) E[C`] ≤ c3 2γ `
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2
]
< ε2

with an expected computational cost C with bound

C ≤


c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Two observations of optimality:

MC simulation needs O(ε−2) samples to achieve RMS accuracy ε.
When β > γ, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷ`] and
√
E[Ŷ 2

` ] being of the same order as `→∞.

In this case, the total cost is O(ε−γ/α), which is the cost of a single
sample on the finest level — again optimal.
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MLMC Challenges

not always obvious how to couple coarse and fine levels
i.e. what does P̂`(ω

(n))−P̂`−1(ω(n)) mean?

discontinuous output functionals are a problem, since a small
difference between the coarse and fine solutions can produce a large
difference in the output – needs some creative tricks

numerical analysis – proving the rate at which V` decays can be tough
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SPDEs

very natural straightforward application, with better savings than
SDEs due to higher dimensionality

big challenge is in numerical analysis – noteworthy contribution by
Charrier, Scheichl & Teckentrup (2010)

range of applications
I Graubner & Ritter (2008) – parabolic
I G, Reisinger (2009-11) – parabolic
I Cliffe, G, Scheichl, Teckentrup (2010/11) – elliptic
I Barth, Lang, Mishra, Schwab, Sukys, Zollinger (2010/11)

– elliptic, parabolic, hyperbolic
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Engineering Uncertainty Quantification

consider 3D elliptic PDE, with uncertain boundary data

use grid spacing proportional to 2−` on level `

cost is O(2−3`), if using an efficient multigrid solver

2nd order accuracy means that

P̂`(ω)− P̂(ω) ≈ c(ω) 2−2`

=⇒ P̂`−1(ω)− P̂`(ω) ≈ 3 c(ω) 2−2`

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy
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Elliptic SPDE

Elliptic PDE with random coefficient k(x, ω):

−∇. (k(x, ω)∇p(x, ω)) = 0, x ∈ D,

Model k as a lognormal random field, i.e. log k is a Gaussian field with
mean 0 and covariance function

R(x, y) = σ2 exp
(
− ‖x−y‖1/λ

)
Samples of log k are provided by a Karhunen-Loève expansion:

log k(x, ω) =
∞∑
n=0

√
θn ξn(ω) fn(x),

where ξn are iid unit Normal random variables.
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Elliptic SPDE

In multilevel treatment:

different spatial grid resolution on each level

truncate KL-expansion at different cutoffs K`

log k`(x, ω) =

K∑̀
n=0

√
θn ξn(ω) fn(x),

(more efficient ways of generating log k` use technique known as
circulant embedding)
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Reduced Basis PDE approximation

Vidal-Codina, Nguyen, G, Peraire (2014) take a very fine PDE
discretisation:

A(ω) u = f (ω)

and use a reduced basis approximation

u ≈
K∑

k=1

vkuk

to generate a reduced system

Ar (ω) v = fr (ω)

larger K =⇒ greater accuracy at greater cost

in multilevel treatment, K` varies with level

Mike Giles (Oxford) Multilevel Monte Carlo SPPEXA Workshop 30 / 36



Iterative convergence

Most PDE solvers involve iterative solvers.

So far, have implicitly assumed we are converging the solution until
the remaining error is negligible.

Alternatively, different levels in the multilevel formulation could use
different numbers of iterations, or different convergence criteria.

No-one has tried this yet (as far as I know) – point here is that MLMC
approach is very general and flexible, just need some hierarchy of
approximations, with cost and accuracy increasing together
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Stochastic chemical reactions

In stochastic simulations, each reaction is a Poisson process with a rate
which depends on the current concentrations.

In the “tau-leaping” method (Euler-Maruyama method)
the reaction rates are frozen at the start of the timestep, so for each
reaction sample from a Poisson process

P(λ∆t)

to determine the number of reactions in that timestep.

(As λ∆t →∞, the standard deviation becomes smaller relative to the
mean, and it approaches the deterministic limit.)
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Stochastic chemical reactions

Anderson & Higham (2011) have developed a very efficient multilevel
version of this algorithm – big savings because finest level usually has
1000’s of timesteps.

Key challenge: how to couple coarse and fine path simulations?

Crucial observation: P(t1) + P(t2)
d
= P(t1+t2)

Only requirement: t1, t2 ≥ 0

They used this to combine Poisson variates from two fine path timesteps
to form a Poisson variate for a coarse timestep.
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MLQMC

To further improve the multilevel complexity, can use randomised QMC
in place of MC.

G & Waterhouse (2008-9) used rank-1 lattice rules for scalar SDE
applications

far fewer samples required on coarsest levels

almost no difference on finest levels

in best case (GBM with European option) complexity was
approximately O(ε−1.5)
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Conclusions

multilevel Monte Carlo idea is very simple

being used for an increasingly wide range of applications;
biggest computational savings when coarsest (helpful)
approximation is much cheaper than finest

currently, getting at least 100× savings for SPDEs and
stochastic chemical reaction simulations

webpage for my research/papers:
people.maths.ox.ac.uk/gilesm/mlmc.html

new Acta Numerica review article and codes:
people.maths.ox.ac.uk/gilesm/acta.html
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MLMC Community

Webpage: people.maths.ox.ac.uk/gilesm/mlmc community.html

Abo Academi (Avikainen) – numerical analysis
Basel (Harbrecht) – elliptic SPDEs, sparse grid links
Bath (Kyprianou, Scheichl, Shardlow) – elliptic SPDEs, MCMC, Lévy-driven SDEs
Chalmers (Lang) – SPDEs
Christian-Albrechts University (Gnewuch) – multilevel QMC
Duisburg (Belomestny) – Bermudan and American options
Edinburgh (Davie, Szpruch) – SDEs, numerical analysis
ETH Zürich (Jenny, Jentzen, Schwab) – numerical analysis, SPDEs
Frankfurt (Gerstner, Kloeden) – numerical analysis, sparse grid links
Fraunhofer ITWM (Iliev) – SPDEs in engineering
Hong Kong (Chen) – Brownian meanders, nested simulation in finance
IIT Chicago (Hickernell) – SDEs, infinite-dimensional integration, complexity analysis
Kaiserslautern (Heinrich, Korn, Ritter) – finance, SDEs, complexity analysis, parametric integration
KAUST (Tempone) – adaptive time-stepping
Kiel (Gnewuch) – randomized multilevel QMC
Mannheim (Neuenkirch) – numerical analysis, fractional Brownian motion
Marburg (Dereich) – Lévy-driven SDEs
Munich (Hutzenthaler) – numerical analysis
Oxford (Giles, Hambly, Reisinger) – SDEs, jump-diffusion, SPDEs, numerical analysis
Passau (Müller-Gronbach) – infinite-dimensional integration, complexity analysis
Purdue (Gittelson) – SDPEs
Stanford (Glynn) – numerical analysis
Strathclyde (Higham, Mao) – numerical analysis, exit times, stochastic chemical modelling
Stuttgart (Barth) – SPDEs
Texas A&M (Efendiev) – SPDEs in engineering
UCLA (Caflisch) – Coulomb collisions in physics
UNSW (Dick, Kuo, Sloan) – multilevel QMC
WIAS (Schoenmakers) – Bermudan and American options
Wisconsin (Anderson) – numerical analysis, stochastic chemical modelling
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