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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

In many applications, we want to compute the expected
value of an option dependent on the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn)h + b(Ŝn, tn) ∆Wn

Simplest estimator for expected payoff is an average of N

independent path simulations:

Ŷ = N−1
N∑

i=1

f(Ŝ
(i)
T/h

)

weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual path
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Standard MC Approach

Mean Square Error is O
(
N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−2(log ε)2

)
, by combining

simulations with different numbers of timesteps – same
accuracy as finest calculations, but at a much lower
computational cost.
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Other Research

In Dec. 2005, Ahmed Kebaier published an article in
Annals of Applied Probability describing a two-level method
which reduces the cost to O

(
ε−2.5

)
.

Also in Dec. 2005, Adam Speight wrote a working
paper describing a similar multilevel use of control
variates, but without an analysis of its complexity.

There are also close similarities to a multilevel
technique developed by Stefan Heinrich for parametric
integration (Journal of Complexity, 1998)
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Multilevel MC Approach

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡ V [P̂l−P̂l−1],

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l .

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

The constant of proportionality can be chosen so that the
combined variance is O(ε2).
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Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V [P̂l−P ] = O(hl) =⇒ V [P̂l−P̂l−1] = O(hl)

and the optimal Nl is asymptotically proportional to hl.

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost
which is O(ε−2L2) = O(ε−2(log ε)2).
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < T,

T =1, S(0)=1, r=0.05, σ=0.2

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with K =1.
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Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V [Ŷl] ≤ c2 N−1
l h

β
l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multi-level estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Milstein Scheme

Generic scalar SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T.

Milstein scheme:

Ŝn+1 = Ŝn + a h + b∆Wn + 1
2 b′ b

(
(∆Wn)2 − h

)
.
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Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs – trivial

O(ε−2) complexity for Asian, lookback, barrier and
digital options using carefully constructed estimators,
based on Brownian interpolation

key idea: within each timestep, model the behaviour as
simple Brownian motion conditional on the two
end-points – analytic results exist for distribution of
min/max/average
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Results

GBM: European call, exp(−rT ) max(S(T ) − K, 0)
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Results

GBM: European call, exp(−rT ) max(S(T ) − K, 0)
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Results

GBM: lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))
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Results

GBM: lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))
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Results

GBM: barrier option, exp(−rT )1min S(t)>B max(S(T ) − K, 0)
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Results

GBM: barrier option, exp(−rT )1minS(t)>B max(S(T ) − K, 0)
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Milstein Scheme

Generic vector SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T,

with correlation matrix Ω(S, t) between elements of dW (t).

Milstein scheme:

Ŝi,n+1 = Ŝi,n + ai h + bij ∆Wj,n

+1
2

∂bij

∂Sl
blk

(
∆Wj,n ∆Wk,n − hΩjk − Ajk,n

)

with implied summation, and Lévy areas defined as

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk − (Wk(t)−Wk(tn)) dWj .
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Milstein Scheme

In vector case:

O(h) strong convergence if Lévy areas are simulated
correctly – expensive

O(h1/2) strong convergence in general if Lévy areas are
omitted, except if a certain commutativity condition is
satisfied (useful for a number of real cases)

Lipschitz payoffs can be handled well using antithetic
variables

Other cases may require approximate simulation of
Lévy areas
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Milstein Scheme

If Ŝc
n satisfies

Ŝc
n+1 = R(Ŝc

n),

and Ŝ
f
n satisfies

Ŝ
f
n+1 = R(Ŝf

n) + gn.

then if gn�1, putting Ŝ
f
n = Ŝc

n+D̂n and linearising gives

D̂n+1 =
∂R

∂S
D̂n + gn.

Ŝc
n represents calculation using timestep 2h

Ŝ
f
n represents calculation using two timesteps of size h
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Milstein Scheme

To leading order, error analysis gives

gi,n =
h

2

∂bij

∂Sl
blk

(
Yj,nZk,n − Yk,nZj,n

)
.

where

∆W f
n = 1

2

√
2h (Yn+Zn), ∆W

f

n+ 1

2

= 1
2

√
2h (Yn−Zn).

i.e. Yn is standard N(0, 1) variable used to construct coarse
path, and Zn is N(0, 1) variable for Brownian Bridge
construction of fine path.

Note: independence implies that

E[gn] = 0 =⇒ E[D̂n] = 0.
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Milstein Scheme

Option 1: use control variate

Define

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1 −

∂f

∂S
D̂

(i)
T/2h

)
,

The control variate has zero mean and cancels out the
leading order variation so that

V

[
P̂l − P̂l−1 −

∂f

∂S
D̂T/2h

]
= O(h2)

for twice differentiable payoffs (and O(h3/2) for usual
Lipschitz payoffs?)
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Milstein Scheme

Option 2: use antithetic variables

Define

Ŷl = N−1
l

Nl∑

i=1

(
1
2

(
P̂

(i)
l +P̂

(i)∗
l

)
− P̂

(i)
l−1

)
,

where P̂
(i)∗
l is based on the same coarse path with Zn

replaced by −Zn, which leads to cancellation of leading
order error proportional to Zn.

Very simple to implement (but slightly more costly?)
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Results

Heston model:

dS = r S dt +
√

V S dW1, 0 < t < T

dV = λ (σ2−V ) dt + ξ
√

V dW2,

T =1, S(0)=1, V (0)=0.04, r=0.05,

σ=0.2, λ=5, ξ=0.25, ρ=−0.5

Multilevel Monte Carlo – p. 29/34



Results

Heston model: European call
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Results

Heston model: European call
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Conclusions

Results so far:

(much) improved order of complexity

(fairly) easy to implement

significant benefits for model problems

However:

lots of scope for further improvement

need to test ideas on “real” finance applications
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Future Work

multi-dimensional SDEs with barrier and digital options

quasi-Monte Carlo integration
(F. Kuo, I. Sloan – UNSW)

Greeks and calibration
(P. Glasserman – Columbia Business School)

numerical analysis
(D. Higham, X. Mao – Strathclyde)

real finance applications

parallel implementation on hyper-core chips
(ClearSpeed, nVidia – 96-128 cores)
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Working Papers

M.B. Giles, “Multilevel Monte Carlo path simulation”,
Numerical Analysis Report NA-06/03

M.B. Giles, “Improved multilevel convergence using the
Milstein scheme”, Numerical Analysis Report NA-06/22

www.comlab.ox.ac.uk/mike.giles/finance.html

Email: giles@comlab.ox.ac.uk
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