Multilevel Monte Carlo Path Simulation

Mike Giles

giles@comlab.ox.ac.uk

Oxford University Computing Laboratory

First IMA Conference on Computational Finance

Generic Problem

Stochastic differential equation with general drift and volatility terms:

$$dS(t) = a(S, t) dt + b(S, t) dW(t)$$

In many applications, we want to compute the expected value of an option dependent on the terminal state

$$P = f(S(T))$$

with a uniform Lipschitz bound,

$$|f(U) - f(V)| \le c \|U - V\|, \quad \forall U, V.$$

Standard MC Approach

Euler discretisation with timestep *h*:

$$\widehat{S}_{n+1} = \widehat{S}_n + a(\widehat{S}_n, t_n) h + b(\widehat{S}_n, t_n) \Delta W_n$$

Simplest estimator for expected payoff is an average of N independent path simulations:

$$\widehat{Y} = N^{-1} \sum_{i=1}^{N} f(\widehat{S}_{T/h}^{(i)})$$

- weak convergence O(h) error in expected payoff
- strong convergence $O(h^{1/2})$ error in individual path

Standard MC Approach

Mean Square Error is $O(N^{-1} + h^2)$

- first term comes from variance of estimator
- second term comes from bias due to weak convergence

To make this $O(\varepsilon^2)$ requires

$$N = O(\varepsilon^{-2}), \quad h = O(\varepsilon) \implies \cos t = O(N h^{-1}) = O(\varepsilon^{-3})$$

Aim is to improve this cost to $O\left(\varepsilon^{-2}(\log \varepsilon)^2\right)$, by combining simulations with different numbers of timesteps – same accuracy as finest calculations, but at a much lower computational cost.

Other Research

- In Dec. 2005, Ahmed Kebaier published an article in Annals of Applied Probability describing a two-level method which reduces the cost to $O(\varepsilon^{-2.5})$.
- Also in Dec. 2005, Adam Speight wrote a working paper describing a similar multilevel use of control variates, but without an analysis of its complexity.
- There are also close similarities to a multilevel technique developed by Stefan Heinrich for parametric integration (Journal of Complexity, 1998)

Consider multiple sets of simulations with different timesteps $h_l = 2^{-l} T$, l = 0, 1, ..., L, and payoff \widehat{P}_l

$$E[\widehat{P}_{L}] = E[\widehat{P}_{0}] + \sum_{l=1}^{L} E[\widehat{P}_{l} - \widehat{P}_{l-1}]$$

Expected value is same – aim is to reduce variance of estimator for a fixed computational cost.

Key point: approximate $E[\widehat{P}_l - \widehat{P}_{l-1}]$ using N_l simulations with \widehat{P}_l and \widehat{P}_{l-1} obtained using <u>same</u> Brownian path.

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} \right)$$

Discrete Brownian path at different levels

Using independent paths for each level, the variance of the combined estimator is

$$V\left[\sum_{l=0}^{L} \widehat{Y}_{l}\right] = \sum_{l=0}^{L} N_{l}^{-1} V_{l}, \qquad V_{l} \equiv V[\widehat{P}_{l} - \widehat{P}_{l-1}],$$

and the computational cost is proportional to $\sum_{l=0}^{L} N_l h_l^{-1}$.

Hence, the variance is minimised for a fixed computational cost by choosing N_l to be proportional to $\sqrt{V_l h_l}$.

The constant of proportionality can be chosen so that the combined variance is $O(\varepsilon^2)$.

For the Euler discretisation and the Lipschitz payoff function

$$V[\widehat{P}_l - P] = O(h_l) \implies V[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l)$$

and the optimal N_l is asymptotically proportional to h_l .

To make the combined variance $O(\varepsilon^2)$ requires

$$N_l = O(\varepsilon^{-2}L\,h_l).$$

To make the bias $O(\varepsilon)$ requires

$$L = \log_2 \varepsilon^{-1} + O(1) \implies h_L = O(\varepsilon).$$

Hence, we obtain an $O(\varepsilon^2)$ MSE for a computational cost which is $O(\varepsilon^{-2}L^2) = O(\varepsilon^{-2}(\log \varepsilon)^2)$.

Geometric Brownian motion:

$$dS = r S dt + \sigma S dW, \qquad 0 < t < T,$$

$$T=1$$
, $S(0)=1$, $r=0.05$, $\sigma=0.2$

European call option with discounted payoff

$$\exp(-rT) \max(S(T)-K,0)$$

with K=1.

GBM: European call, $\exp(-rT) \max(S(T)-K,0)$

GBM: European call, $\exp(-rT) \max(S(T)-K,0)$

Theorem: Let P be a functional of the solution of a stochastic o.d.e., and \widehat{P}_l the discrete approximation using a timestep $h_l = M^{-l} T$.

If there exist independent estimators \widehat{Y}_l based on N_l Monte Carlo samples, and positive constants $\alpha \geq \frac{1}{2}, \beta, c_1, c_2, c_3$ such that

$$i) E[\widehat{P}_l - P] \le c_1 h_l^{\alpha}$$

ii)
$$E[\widehat{Y}_l] = \begin{cases} E[\widehat{P}_0], & l = 0 \\ E[\widehat{P}_l - \widehat{P}_{l-1}], & l > 0 \end{cases}$$

iii)
$$V[\widehat{Y}_l] \le c_2 N_l^{-1} h_l^{\beta}$$

iv) C_l , the computational complexity of \widehat{Y}_l , is bounded by

$$C_l \le c_3 \, N_l \, h_l^{-1}$$

then there exists a positive constant c_4 such that for any $\varepsilon < e^{-1}$ there are values L and N_l for which the multi-level estimator

$$\widehat{Y} = \sum_{l=0}^{L} \widehat{Y}_l,$$

has Mean Square Error
$$MSE \equiv E\left[\left(\widehat{Y} - E[P]\right)^2\right] < \varepsilon^2$$

with a computational complexity C with bound

$$C \le \begin{cases} c_4 \varepsilon^{-2}, & \beta > 1, \\ c_4 \varepsilon^{-2} (\log \varepsilon)^2, & \beta = 1, \\ c_4 \varepsilon^{-2 - (1 - \beta)/\alpha}, & 0 < \beta < 1. \end{cases}$$

Generic scalar SDE:

$$dS(t) = a(S, t) dt + b(S, t) dW(t), 0 < t < T.$$

Milstein scheme:

$$\widehat{S}_{n+1} = \widehat{S}_n + ah + b\Delta W_n + \frac{1}{2}b'b\left((\Delta W_n)^2 - h\right).$$

In scalar case:

- O(h) strong convergence
- $O(\varepsilon^{-2})$ complexity for Lipschitz payoffs trivial
- $O(\varepsilon^{-2})$ complexity for Asian, lookback, barrier and digital options using carefully constructed estimators, based on Brownian interpolation
- key idea: within each timestep, model the behaviour as simple Brownian motion conditional on the two end-points – analytic results exist for distribution of min/max/average

GBM: European call, $\exp(-rT) \max(S(T) - K, 0)$

GBM: European call, $\exp(-rT) \max(S(T) - K, 0)$

GBM: lookback option, $\exp(-rT) \left(S(T) - \min_{0 < t < T} S(t) \right)$

GBM: lookback option, $\exp(-rT) \left(S(T) - \min_{0 < t < T} S(t) \right)$

GBM: barrier option, $\exp(-rT) \mathbf{1}_{\min S(t)>B} \max(S(T)-K,0)$

GBM: barrier option, $\exp(-rT) \mathbf{1}_{\min S(t)>B} \max(S(T)-K,0)$

Generic vector SDE:

$$dS(t) = a(S,t) dt + b(S,t) dW(t), \quad 0 < t < T,$$

with correlation matrix $\Omega(S,t)$ between elements of $\mathrm{d}W(t)$.

Milstein scheme:

$$\widehat{S}_{i,n+1} = \widehat{S}_{i,n} + a_i h + b_{ij} \Delta W_{j,n}$$

$$+ \frac{1}{2} \frac{\partial b_{ij}}{\partial S_l} b_{lk} \left(\Delta W_{j,n} \Delta W_{k,n} - h \Omega_{jk} - A_{jk,n} \right)$$

with implied summation, and Lévy areas defined as

$$A_{jk,n} = \int_{t_n}^{t_{n+1}} \left(W_j(t) - W_j(t_n) \right) \, \mathrm{d}W_k - \left(W_k(t) - W_k(t_n) \right) \, \mathrm{d}W_j.$$
 Multilevel Monte Carlo – p. 23/34

In vector case:

- O(h) strong convergence if Lévy areas are simulated correctly – expensive
- $O(h^{1/2})$ strong convergence in general if Lévy areas are omitted, except if a certain commutativity condition is satisfied (useful for a number of real cases)
- Lipschitz payoffs can be handled well using antithetic variables
- Other cases may require approximate simulation of Lévy areas

If \widehat{S}_n^c satisfies

$$\widehat{S}_{n+1}^c = R(\widehat{S}_n^c),$$

and \widehat{S}_n^f satisfies

$$\widehat{S}_{n+1}^f = R(\widehat{S}_n^f) + g_n.$$

then if $g_n \ll 1$, putting $\widehat{S}_n^f = \widehat{S}_n^c + \widehat{D}_n$ and linearising gives

$$\widehat{D}_{n+1} = \frac{\partial R}{\partial S} \, \widehat{D}_n + g_n.$$

- \widehat{S}_n^c represents calculation using timestep 2h
- $oldsymbol{\circ} \widehat{S}_n^f$ represents calculation using two timesteps of size h

To leading order, error analysis gives

$$g_{i,n} = \frac{h}{2} \frac{\partial b_{ij}}{\partial S_l} b_{lk} \left(Y_{j,n} Z_{k,n} - Y_{k,n} Z_{j,n} \right).$$

where

$$\Delta W_n^f = \frac{1}{2}\sqrt{2h}(Y_n + Z_n), \quad \Delta W_{n+\frac{1}{2}}^f = \frac{1}{2}\sqrt{2h}(Y_n - Z_n).$$

i.e. Y_n is standard N(0,1) variable used to construct coarse path, and Z_n is N(0,1) variable for Brownian Bridge construction of fine path.

Note: independence implies that

$$E[g_n] = 0 \quad \Longrightarrow \quad E[\widehat{D}_n] = 0.$$

Option 1: use control variate

Define

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} - \frac{\partial f}{\partial S} \, \widehat{D}_{T/2h}^{(i)} \right),$$

The control variate has zero mean and cancels out the leading order variation so that

$$V\left[\widehat{P}_l - \widehat{P}_{l-1} - \frac{\partial f}{\partial S}\,\widehat{D}_{T/2h}\right] = O(h^2)$$

for twice differentiable payoffs (and $O(h^{3/2})$ for usual Lipschitz payoffs?)

Option 2: use antithetic variables

Define

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\frac{1}{2} \left(\widehat{P}_{l}^{(i)} + \widehat{P}_{l}^{(i)*} \right) - \widehat{P}_{l-1}^{(i)} \right),$$

where $\widehat{P}_l^{(i)*}$ is based on the same coarse path with Z_n replaced by $-Z_n$, which leads to cancellation of leading order error proportional to Z_n .

Very simple to implement (but slightly more costly?)

Heston model:

$$dS = r S dt + \sqrt{V} S dW_1, \qquad 0 < t < T$$

$$dV = \lambda (\sigma^2 - V) dt + \xi \sqrt{V} dW_2,$$

$$T=1, S(0)=1, V(0)=0.04, r=0.05,$$

 $\sigma=0.2, \lambda=5, \xi=0.25, \rho=-0.5$

Heston model: European call

Heston model: European call

Conclusions

Results so far:

- (much) improved order of complexity
- (fairly) easy to implement
- significant benefits for model problems

However:

- lots of scope for further improvement
- need to test ideas on "real" finance applications

Future Work

- multi-dimensional SDEs with barrier and digital options
- quasi-Monte Carlo integration (F. Kuo, I. Sloan – UNSW)
- Greeks and calibration
 (P. Glasserman Columbia Business School)
- numerical analysis
 (D. Higham, X. Mao Strathclyde)
- real finance applications
- parallel implementation on hyper-core chips (ClearSpeed, nVidia – 96-128 cores)

Working Papers

M.B. Giles, "Multilevel Monte Carlo path simulation", Numerical Analysis Report NA-06/03

M.B. Giles, "Improved multilevel convergence using the Milstein scheme", Numerical Analysis Report NA-06/22

www.comlab.ox.ac.uk/mike.giles/finance.html

Email: giles@comlab.ox.ac.uk

Acknowledgements:

- Paul Glasserman and Mark Broadie for early feedback
- Microsoft for current research funding