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Multilevel Monte Carlo

MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +
L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

where P̂ℓ represents an approximation of some output P on level ℓ.

In SDE applications with uniform timestep hℓ = 2−ℓ h0, if the
weak convergence is

E[P̂ℓ − P ] = O(2−α ℓ),

and Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1], based on Nℓ samples,
with variance

V[Ŷℓ] = O(N−1
ℓ 2−β ℓ),

and expected cost
E[Cℓ] = O(Nℓ 2

γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =





O
(
ε−2
)
, β > γ,

O
(
ε−2(log ε)2

)
, β = γ,

O
(
ε−2−(γ−β)/α

)
, 0 < β < γ.
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Multilevel Monte Carlo

The standard estimator for SDE applications is

Ŷℓ = N−1
ℓ

Nℓ∑

n=0

(
P̂ℓ(W

(n))− P̂ℓ−1(W
(n))

)

using the same Brownian motion W (n) for the nth sample on the fine
and coarse levels.

Uniform timestepping is not required – it is fairly straightforward to
implement MLMC using non-nested adaptive timestepping.

(G, Lester, Whittle: MCQMC14 proceedings)
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Standard SDE analysis

Given the SDE
dXt = f (Xt)dt + g(Xt)dWt

the “standard assumptions” are that f and g are both globally Lipschitz:

∃L : ‖f (u)−f (v)‖+ ‖g(u)−g(v)‖ ≤ L ‖u−v‖

Under these conditions, the SDE is well-posed, has finite moments for all
time, and the Euler-Maruyama method

X̂tn+1 = X̂tn + f (X̂tn) h + g(X̂tn)∆Wn

has O(h1/2) strong convergence, using an appropriate interpolant:

(
E

[
sup
[0,T ]

‖X̂t−Xt‖2
])1/2

≤ c h1/2
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Standard SDE analysis

If the scalar output P is a Lipschitz function of the path Xt , then

V[P̂−P ] ≤ E[(P̂−P)2] ≤ L2 E

[
sup
[0,T ]

‖X̂t−Xt‖2
]

≤ c2 L2 h

A triangle inequality for the standard deviation then gives

V[P̂ℓ−P̂ℓ−1] ≤ 4 c2L2 hℓ−1

and so we get β=1, γ=1 in the MLMC theorem.

However, what happens if the “standard assumptions” are not satisfied?
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Motivation: long-chain molecules in a fluid

(Endre Süli & Shenghan Ye)

modelled as ball-and-spring systems, subject to random forcing

K bonds, K+1 “balls”, separation qi will be key variable
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Motivation: long-chain molecules in a fluid

motion of “balls” given by force balance:

elastic force + random force + viscous drag = 0

− ∇V + R − k (ṙi − v(ri )) = 0

where

V (r) =

K∑

i=1

Ui(‖qi‖2/2)

is the elastic potential, and v is the velocity of the fluid

shifting to a moving frame of reference, a local Taylor series
expansion gives

v(x) ≈ κ x

where κ is the local rate-of-strain tensor ∂v/∂x
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Motivation: long-chain molecules in a fluid

This leads to a Langevin system of coupled SDEs

dqi =
(
κ qi + U ′

i+1qi+1 − 2U ′

i qi + U ′

i−1qi−1

)
dt +

√
2 (dWi+1 − dWi)

which can be written collectively as

dq = (K q − D∇V )dt +
√
2 L dW

where V (q) ≡∑i Ui(‖qi‖2/2), and K , L and D are of the form

K =




κ
κ

κ


 , L =




−I I

−I I

−I I


 ,

D =




2I −I

−I 2I −I

−I 2I


 = L LT .
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Motivation: long-chain molecules in a fluid

Modelling problem: with the standard quadratic potential Ui = β ‖qi‖2,
large κ leads to ‖qi‖ → ∞, as t → ∞.

To avoid this, use stiffening potentials such as the FENE (Finitely
Extensible Nonlinear Elastic) model

Ui(s) = −β log(1− ‖qi‖2).

Numerical approximation of this naturally uses adaptive timestepping to
try to avoid crossing ‖qi‖ = 1.

Could also use potentials such as

Ui(s) = β ‖qi‖2 + γ ‖qi‖4

– key point is that ∇Ui is not globally Lipschitz.
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Simple example

Cubic drift:
dXt = −X 3

t dt + σ dWt

Euler-Maruyama approximation with timestep h:

X̂tn+1 = X̂tn − X̂ 3
tn
h+ σ∆Wn

If σ=0, ODE solution converges monotonically – needs h ≤ X̂ −2
tn for

similar monotonic behaviour for approximation, and get wild oscillatory
growth if h > 2 X̂ −2

tn .

If σ>0, X̂t1 can take any value – always a small probability of strongly
nonlinear blow-up. Hence,

E[ |X̂t |p] → ∞, as h → 0

even though E[ |Xt |p] is finite for all p.
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Assumptions

Generic SDE:
dXt = f (Xt)dt + g(Xt)dWt

We are interested in two situations:

finite time interval [0,T ]
◮ want to establish stability and strong convergence

infinite time interval [0,∞)
◮ again want to establish stability and strong convergence
◮ interested in applications in which there is convergence to an invariant

measure, and we want expectations with respect to it

In both cases, we will always assume locally Lipschitz, differentiable f ,
and globally Lipschitz g =⇒ g also satisfies linear growth bound

Mike Giles, Wei Fang (Oxford) Non-globally Lipschitz drifts June 1-3, 2016 13 / 25



Assumptions

For the finite time interval, will also assume

one-sided linear growth condition:

〈x , f (x)〉 ≤ α ‖x‖2 + β for some α, β>0, all x

=⇒ finite E[ ‖Xt‖p] for all p≥2.

global one-sided Lipschitz condition:

〈x−y , f (x)−f (y)〉 ≤ L ‖x−y‖2 for some L>0, all x , y

⇐⇒ 〈e, e ·∇f (x)〉 ≤ L ‖e‖2 for some L>0, all e, x

polynomially-bounded derivative:

‖∇f (x)‖ ≤ γ ‖x‖q + µ for some γ, µ, q>0, all x

Last two needed for strong convergence analysis.
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Existing literature

D.J. Higham, X. Mao, and A.M. Stuart. Strong convergence of
Euler-type methods for nonlinear stochastic differential equations.
SINUM, 2002.

◮ one-sided Lipschitz assumption
◮ implicit Euler methods such as

X̂tn+1 = X̂tn + f (X̂tn+1) h + g(X̂tn)∆Wn

◮ emphasises importance of stability – strong convergence then follows

M. Hutzenthaler, A. Jentzen and P. Kloeden. Strong convergence of
an explicit numerical method for SDEs with nonglobally Lipschitz
continuous coefficients. AAP, 2012.

◮ one-sided Lipschitz, polynomially-bounded derivative
◮ “tamed” explicit Euler method:

X̂tn+1 = X̂tn +
f (X̂tn) h

1 + ‖f (X̂tn)‖ h
+ g(X̂tn)∆Wn
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New analysis – finite time interval

We start by reviewing SDE stability:

dXt = f (Xt)dt + g(Xt)dWt

=⇒ d
(
1
2‖Xt‖2

)
=
(
〈Xt , f (Xt)〉+ 1

2‖g(Xt)‖2
)
dt + 〈Xt , g(Xt)〉dWt

Hence
d
(
1
2E[ ‖Xt‖2]

)
≤
(
αE[ ‖Xt‖2] + β

)
dt

and therefore Grönwall’s inequality gives finite E[ ‖Xt‖2] for any t.

The stability analysis for the numerical approximation X̂t follows a
similar approach, aiming towards the use of Grönwall’s inequality, and
along the way using the Burkholder-Davis-Gundy (BDG) inequality.
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New analysis – finite time interval

Theorem (stability)

If the SDE satisfies the finite-time assumptions, and the continuous

adaptive timestep function h(x) satisfies the constraints

〈x , f (x)〉 + 1
2 h(x) ‖f (x)‖

2 ≤ α ‖x‖2 + β

h(x) ≥ (ξ‖x‖q + ζ)−1

for some α, β, ξ, ζ, q > 0, then for all finite T > 0, and all p≥2,

E

[
sup
[0,T ]

‖X̂t‖p
]
< ∞, E

[
n
p

T

]
< ∞

Two simple examples:

scalar, f (x) = −x3: can use h(x) = 2 max(1, |x |) /max(1, |f |)
vector, 〈x , f (x)〉 = 0: can use h(x) = 2α max(1, ‖x‖2) /max(1, ‖f ‖2)
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New analysis – finite time interval

Timestep based on current state: tn+1 = tn + h(X̂tn)

Convenient to define t = supn{tn : tn ≤ t}, nt = supn{n : tn ≤ t}

Standard Euler-Maruyama algorithm:

X̂t = X̂0 +

∫ t

0
f (X̂s)ds +

∫ t

0
g(X̂s)dWs

K -truncated Euler-Maruyama algorithm:

X̂K
t = PK

(
X̂0 +

∫ t

0
f (X̂K

s )ds +

∫ t

0
g(X̂K

s )dWs

)

where PK (Y ) ≡ min(1,K/‖Y ‖)Y so ‖X̂K
t ‖ ≤ K . This is used as a

technical tool in the proof – it ends by taking K → ∞.
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New analysis – finite time interval
Looking at one timestep,

X̂tn+1 = X̂tn + f (X̂tn) hn + g(X̂tn)∆Wn

so

‖X̂tn+1‖2 = ‖X̂tn‖2 + 2 hn

(
〈X̂tn , f (X̂tn)〉+ 1

2hn‖f (X̂tn)‖2
)

+ 2 〈(X̂tn+f (X̂tn) hn), g(X̂tn )∆Wn〉+ ‖g(X̂tn )∆Wn‖2

≤ ‖X̂tn‖2 + 2 hn(α‖X̂tn‖2 + β) +
(
α‖X̂tn‖2+β

)
‖∆Wn‖2

+ 2 〈X̂tn+f (X̂tn) hn, g(X̂tn)∆Wn〉
and hence

‖X̂tn‖2 ≤ ‖X̂0‖2 +
∫ tn

0
2
(
α‖X̂t‖2 + β

)
dt +

∑

m<n

(
α‖X̂tm‖2+β

)
‖∆Wm‖2

+ 2

∫ tn

0
〈X̂t+f (X̂t) h(X̂t), g(X̂t)dWt〉
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New analysis – finite time interval

‖X̂t‖2 ≤ ‖X̂0‖2 +
∫ t

0
2
(
α‖X̂s‖2 + β

)
ds

+
∑

m<nt

(
α‖X̂tm‖2+β

)
‖∆Wm‖2 +

(
α‖X̂t‖2+β

)
‖Wt−Wt‖2

+ 2

∫ t

0
〈X̂s+f (X̂s) min

{
h(X̂s), t−s

}
, g(X̂s)dWs〉

Can raise to the power p/2, use Jensen inequality, take sup over [0, t],
then take expectation, and use BDG inequality. Eventually leads to

E[Ŝp
t ] ≤ ‖X̂0‖p +

∫ t

0
(c1 E[Ŝ

p
s ] + c2)ds

where Ŝt = sup[0,t] ‖X̂s‖. Then Grönwall inequality gives the result.
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New analysis – finite time interval

Theorem (strong convergence)

If the SDE satisfies the finite-time assumptions, and the adaptive timestep

is

hδ(x) = δ h(x), 0 < δ < 1

where h(x) satisfies the constraints of the previous theorem, then

E

[
sup
[0,T ]

‖X̂t−Xt‖p
]
= O(δp/2), E

[
n
p

T

]
= O(δ−p).

Comments:

this is equivalent to the standard O(h1/2) strong convergence.

proof is relatively straightforward, given stability result

if g is identity matrix, the strong error is first order
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Infinite time interval – assumptions

For the infinite time interval will additionally assume

g is globally bounded

dissipative condition:

〈x , f (x)〉 ≤ −α ‖x‖2 + β for some α, β > 0, all x

This ensures convergence to an invariant distribution, so for all p≥2
E[ ‖Xt‖p] is uniformly bounded in t.

contraction property: for some α>0, p≥2, and any x , y , e,

〈x−y , f (x)−f (y)〉+ 1
2p (p−1) ‖g(x)−g(y)‖2 ≤ −α ‖x−y‖2

⇔ 〈e, e ·∇f (x)〉+ 1
2p (p−1) ‖e ·∇g(x)‖2 ≤ −α ‖e‖2 for some α>0

This ensures that X
(2)
t −X

(1)
t → 0 if starting from different initial data

but driven by same Wt — needed for Lp strong convergence
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New analysis – infinite time interval

Theorem (stability)

If the SDE satisfies the infinite-time assumptions, and the adaptive

timestep satisfies the constraint

〈x , f (x)〉 + 1
2 h(x) ‖f (x)‖2 ≤ −α ‖x‖2 + β

for some α, β > 0, then for all p≥2, there exist constants Cp, cp such that

for all T >0
E

[
‖X̂T‖p

]
≤ Cp, E

[
n
p

T

]
≤ cp T

p

analysis is similar to before

key change is to use St = sup
[0,t]

{
e
−γ(t−s)‖Xs‖

}
for a suitable γ
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New analysis – infinite time interval

Theorem (strong convergence)

If the SDE satisfies the infinite-time assumptions, and the adaptive

timestep is again

hδ(x) = δ h(x), 0 < δ < 1

where h(x) satisfies the timestep constraints, then there exist constants

Cp, cp such that for all T >0

E

[
‖X̂T−XT‖p

]
≤ Cp δ

p/2, E
[
n
p

T

]
≤ cp δ

−pT p.

Comments:

this is again equivalent to the standard O(h1/2) strong convergence

proof is a bit trickier this time, to avoid a bound which increases
exponentially in time

if g is the identity matrix, the strong error is first order
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Conclusions

Euler-Maruyama discretisation with adaptive timesteps is stable
for SDEs with non-globally Lipschitz drift

order of strong convergence same as usual, when viewed as
accuracy versus cost

works as expected within MLMC computation

also works well for invariant distributions for SDEs with
contraction property

future challenge: ergodic SDEs without contraction property

Webpages:
http://people.maths.ox.ac.uk/gilesm/mlmc.html

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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