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Multigrid

A powerful technique for solving PDE discretisations:

Fine grid
more accurate

more expensive

Coarse grid
less accurate

less expensive
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Multigrid

Multigrid combines calculations on a nested sequence of
grids to get the accuracy of the finest grid at a much lower
computational cost.

We will use a similar idea to achieve variance reduction in
Monte Carlo path calculations, combining simulations with
different numbers of timesteps – same accuracy as finest
calculations, but at a much lower computational cost.
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Generic Problem

SDE with general drift and volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

Suppose we want to compute the expected value of an
option dependent on the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn)h + b(Ŝn, tn) ∆Wn

Simplest estimator for expected payoff is an average of N

independent path simulations:

Ŷ = N−1
N∑

i=1

f(Ŝ
(i)
T/h

).

weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual path
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Standard MC Approach

Mean Square Error is O
(
N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−2(log ε)2

)

(In 2005, Ahmed Kebaier published a two-level method
which reduces the cost to O

(
ε−2.5

)
, equivalent to a single

application of Richardson extrapolation.)
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Multilevel MC Approach

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡ V [P̂l−P̂l−1],

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l .

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.
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Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V [P̂l−P ] = O(hl) =⇒ V [P̂l−P̂l−1] = O(hl)

and the optimal Nl is asymptotically proportional to hl.

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost
which is O(ε−2L2) = O(ε−2(log ε)2).
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V [Ŷl] ≤ c2 N−1
l h

β
l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multi-level estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < 1,

S(0)=1, r=0.05, σ=0.2

Heston model:

dS = r S dt +
√

V S dW1, 0 < t < 1

dV = λ (σ2−V ) dt + ξ
√

V dW2,

S(0)=1, V (0)=0.04, r=0.05, σ=0.2, λ=5, ξ=0.25, ρ=−0.5

All calculations use M =4, more efficient than M =2.
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Results

GBM: European call, max(S(1)−1, 0)
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Results

GBM: European call, max(S(1)−1, 0)
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Results

GBM: lookback option, S(1) − min0<t<1 S(t)
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Results

GBM: lookback option, S(1) − min0<t<1 S(t)
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Results

Heston model: European call
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Results

Heston model: European call
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Comments

Results so far:

improved order of complexity

easy to implement

significant benefits for model problems

Future work:

use of Milstein method and a control variate or
antithetic variables to reduce complexity to O(ε−2)

adaptive sampling to treat discontinuous payoffs and
pathwise derivatives for Greeks

use of quasi-Monte Carlo methods

additional variance reduction techniques
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Milstein Scheme

Generic SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T,

with correlation matrix Ω(S, t) between elements of DW (t).

Simplest Milstein scheme sets Lévy areas to zero to give

Ŝi,n+1 = Ŝi,n+ai h+bij ∆Wj,n+1
2

∂bij

∂Sl
blk

(
∆Wj,n ∆Wk,n − hΩjk

)

using implied summation convention.
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Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs

O(ε−2(log ε)2) complexity for digitals and Greeks

In vector case:

still only O(h1/2) strong convergence

but Ŝn − E[S |Wn] = O(h)
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Milstein Scheme

If a coarse path with timestep 2h is constructed using

∆W c
n =

√
2h Yn

where the Yn are N(0, 1) random variables, and the fine
path uses a Brownian Bridge construction with

∆W f
n = 1

2

√
2h (Yn+Zn), ∆W

f
n+ 1

2

= 1
2

√
2h (Yn−Zn).

where the Zn are also N(0, 1) random variables, then
perturbation analysis shows that the O(h1/2) difference
between the two paths comes from a sum of terms
proportional to

Yj,nZk,n − Yk,nZj,n.
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Milstein Scheme

Using the idea of antithetic variables, we use the estimator

Ŷl = N−1
l

Nl∑

i=1

(
1
2

(
P̂

(i)
l +P̂

(i)∗
l

)
− P̂

(i)
l−1

)
,

where P̂
(i)∗
l is based on the same coarse path Yn, but with

Zn replaced by −Zn, which leads to the cancellation of the
leading order error proportional to Zn.

V [Ŷl] = O(h2) for smooth payoffs, O(h3/2) for Lipschitz

in both cases, gives O(ε−2) complexity for O(ε) accuracy
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Adaptive sampling

With digital options, the problem is that small path changes
lead to an O(1) change in the payoff

For the Euler discretisation, O(h1/2) strong convergence
=⇒ O(h1/2) paths have an O(1) value for Ŷl

Hence,
V [Ŷl] = O(h1/2).

For improved results, need more samples of paths near
payoff discontinuities.
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Adaptive sampling

Two ideas for adaptive sampling are both based on
Brownian Bridge constructions, using coarse timestep
realisations to decide which paths are “interesting”
(i.e. likely to produce a large variance)

idea 1: start with lots of paths, and prune those which
are not interesting

idea 2: start with relatively few paths, and sub-divide
those which look interesting

in each case, need to use path weights to ensure
estimator remains unbiased

no results yet, but I think this will make digital and
barrier options as efficient as Lipschitz payoffs
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Quasi-Monte Carlo

Quasi-Monte Carlo methods can offer greatly improved
convergence with respect to the number of samples N :

in the best case, O(N−1+δ) error for arbitrary δ > 0,
instead of O(N−1/2)

depends on knowledge/identification of “important
dimensions” in an application

Brownian Bridge
Principal Component Analysis

most theory doesn’t apply to financial applications
because of lack of payoff smoothness

confidence intervals can be obtained by using
randomized QMC

my plans are to start by using Sobol sequences
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Other Variance Reduction

stratified sampling – probably not, because QMC has
already done a good job of leading dimensions

control variate – probably not (except perhaps for
geometric Asian) multilevel approach can be viewed as
using the coarse path value as a control variate

importance sampling – might be useful for
over-sampling the tails of the Normal distributions
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Final words

Results so far:

improved order of complexity

easy to implement

significant benefits for model problems

Future work:

use of Milstein method and a control variate or
antithetic variables to reduce complexity to O(ε−2)

adaptive sampling to treat discontinuous payoffs and
pathwise derivatives for Greeks

use of quasi-Monte Carlo methods

additional variance reduction techniques
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Working Paper

M.B. Giles, “Multi-level Monte Carlo path simulation”
Oxford University Computing Laboratory

Numerical Analysis Report NA-06/03

www.comlab.ox.ac.uk/mike.giles/finance.html

Email: giles@comlab.ox.ac.uk
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